
The Ergosphere

A rotating (Kerr) black hole in the most common (Boyer–Lindquist) coordinate system
has a metric of the form

ds2 = −(mess)dt2 − (mess)dt dφ + (mess)dφ2 + (mess)dr2 + (mess)dθ2

(see Schutz (11.71) and Penrose–Floyd p. 2). The (mess)s are independent of t and φ, so
the energy, −pt, and angular momentum, pφ, of a particle are conserved. (Recall that p0

is normally a negative number in our metric signature, since U0 is positive.)

Suppose the hole were replaced by a spinning flywheel. A particle could hit it and be
batted away with more energy than it had coming in. This does not contradict conservation
of energy, because there is a nontrivial interaction with the flywheel and the wheel will
slow down slightly by recoil. The Penrose process is an analog that allows energy to be
extracted from the Kerr black hole.

As in the Brans–Stewart cylinder universe, there is no global rotating Lorentz frame.
(This is true of any rotational situation in relativity — it has nothing to do with horizons
or even with gravity.) The best one can do is to construct a rotating frame that is related
to local Lorentz frames by Galilean transformations (i.e., leaving the hypersurfaces of
constant time fixed).

The model

Here I present a simple model related to the Kerr black hole in somewhat the same
way that the uniformly accelerated (Rindler) frame is related to the Schwarzschild black
hole. Consider the line element

ds2 = −dt2 + (dx + V (y) dt)2 + dy2.

(We could add a third spatial dimension, dz, but it adds nothing conceptually so I’ll omit
it.) That is, the metric tensor is

gµν =





−1 + V (y)2 V (y) 0
V (y) 1 0

0 0 1



 ,

where the order of the coordinates is t, x, y. Since gµν is independent of t and x, −pt

and px are conserved. Notice that something strange is going to happen when |V (y)| ≥ 1,
because then gtt changes sign.

Consider now the Galilean transformation

t = t′, x = x′ − V0t
′, y = y′,

with inverse
t′ = t, x′ = x + V0t, y′ = y.
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Then dx = dx′ − V0 dt′ implies

ds2 = −dt′2 + [dx′ + (V (y) − V0)dt′]2 + dy′2.

In particular, in a region where V (y) = constant, choose V0 = V (y) ; then

ds2 = −dt′2 + dx′2 + dy′2

— space is flat!

Suppose that V (y) = 0 for y ≫ 0 (“outside”), so the space is flat and the unprimed
coordinates are inertial there; and that V (y) = V0 for y ≪ 0 (“inside”), so the space is flat
and the primed coordinates are inertial there. In the Kerr–Boyer–Lindquist situation, r is
analogous to y and φ is analogous to x. Like the Schwarzschild black hole, the Kerr black
hole has a horizon at some small r ≡ r+ (and a singularity inside that), but that does not
concern us today. We are interested in a region r+ < r < r0 called the ergosphere. (See
Schutz p. 312 for formulas for r+ and r0 ; r0 is where gtt = 0, and r+ is where grr = ∞.)
In our model, the ergosphere is the inside region, −∞ < y ≪ 0.

Basis vectors and basis change matrices

Let us look at the unprimed basis vectors in primed terms; in other words, look at
the (natural interior extension of the) inertial frame of an observer in the exterior region
from the point of view of an observer “going with the flow” in the interior region. The
change-of-basis matrices are

Λµ
ν′ =

∂xµ

∂xν′
=





1 0 0
−V0 1 0
0 0 1



 , Λν′

µ =
∂xν′

∂xµ
=





1 0 0
V0 1 0
0 0 1



 .

Recall that the columns of the second ma-
trix are the basis tangent vectors ~et , etc., and
the rows of the first matrix are the basis one-
forms dual to them. The important thing to
note is that if V0 > 1, then ~et , the time-
translation vector, is spacelike in the ergo-
sphere! (On the other hand, ∇t, the normal
vector to the surfaces of constant t, is still
timelike.)

Similarly, in Kerr, ~et in the ergosphere leans over and points primarily in the φ direc-
tion. (In any rotating system in GR, it will lean slightly; this is called the Lense–Thirring

frame-dragging effect, or gravitomagnetism; see Schutz pp. 310–311. But usually it remains
timelike. An ergosphere is a region where it leans so far it becomes spacelike.)
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Velocity

Let’s use Λ to transform the 4-velocity vector of a particle:

~v =





1 0 0
−V0 1 0
0 0 1



~v′ =





vt′

vx′ − V0vt′

vy′



 .

Now suppose that the spatial velocity is 0 in the unprimed frame; then

vx′ = V0vt′ .

But if |V0| > 1, this equation would say that ~v is spacelike, which is impossible for a
physical particle. Conclusion: A particle inside the ergosphere cannot be motionless as

viewed by an observer outside.

Momentum and geodesic equations

Because the metric is nondiagonal, the canonical momentum is not proportional to
the velocity. The Lagrangian for particle motion is

L = 1

2
[(V (y)2 − 1)ṫ2 + 2V (y)ṫẋ + ẋ2 + ẏ2].

Therefore,

py =
∂L

∂ẏ
= ẏ,

dpy

dt
=

∂L

∂y
= V V ′ṫ2 + V ′ṫẋ = V ′ṫpx ,

px =
∂L

∂ẋ
= V ṫ + ẋ = γ(V + v),

dpx

dt
=

∂L

∂x
= 0,

pt =
∂L

∂ṫ
= (V 2 − 1)ṫ + V ẋ,

dpt

dt
=

∂L

∂t
= 0.

We can further reduce

pt = −ṫ + V (V ṫ + ẋ) = −ṫ + V px .

Thus ṫ = −pt + V px , and we can write

ÿ =
dpy

dt
= V ′(y)px[V (y)px − pt],

which is the only nontrivial equation of motion. (Recall that px and pt are constants.)
Note that py = constant whenever the particle is in either of the asymptotic regions.
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Energy extraction

Consider a particle originating outside with

pt = p0 < 0, px = 0, py = −k < 0.

Since the inertial frame outside is the unprimed one, pt < 0 is required for a physical
particle. The condition py < 0 assures that the particle will fall in. In the primed frame
these momentum components are the same:

~p ′ = (p0, 0, py)





1 0 0
−V0 1 0
0 0 1



 = (p0, 0, py) = ~p.

In general, py will change with time, but px and pt are conserved. Let’s say that py =
−K < 0 when the particle is inside.

Now suppose that after it enters the ergosphere, the particle decays:

~p = ~p1 + ~p2 .

(This is a vectorial equation, hence valid in either frame.) Suppose also that

p′2y = +K > 0, so p′1y = −2K < 0.

Thus particle 1 gets swallowed by the “black hole”, but particle 2 reemerges. In exterior
coordinates

~p1 = (p′1t, p
′

1x, p′1y)





1 0 0
+V0 1 0
0 0 1



 = (p′1t + V0p
′

1x, p′1x, p′1y).

Note that p1t = p′1t + V0p
′

1x can be positive if (and only if) |V0| > 1 (since |p′1x| < |p′1t|).
(This is not a physical contradiction, since the unprimed frame is not inertial at points
inside.) Now do the same calculation for the escaping particle:

~p2 = (p′2t, p
′

2x, p′2y)





1 0 0
+V0 1 0
0 0 1



 = (p′2t + V0p
′

2x, p′2x, p′2y).

Here p2t = p′2t + V0p
′

2x can be less than p0 (i.e., |p2t| > |p0|) if and only if |V0| > 1. But
p2t is conserved, so it is the physical momentum of particle 2 after it emerges from the
ergosphere.

Conclusion: Mechanical energy has been extracted from the “black hole”. Total energy

is conserved, because the energy of the hole has been reduced by the amount |p1t| = |p0|,
the negative energy carried in by particle 1. In the true rotating-black-hole case, the
angular momentum is reduced similarly (corresponding to the conserved quantity px in
the model).

There is an analogue of the Penrose process for waves, called superradiance: For waves
of certain values of angular momentum (angular quantum number or separation constant),
the scattered wave amplitude exceeds the incident amplitude. In quantum field theory
this effect leads to production of particle-antiparticle pairs by the rotating black hole, in
analogy to something called the Klein paradox for quantum particles in a strong electric
field. (This is different from Dicke superradiance in atomic physics.)
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