On the Relation between Inversion and Index Swapping

In special relativity, Schutz writes $\left\{\Lambda_{\bar{\alpha}}^{\beta}\right\}$ for the matrix of the coordinate transformation inverse to the coordinate transformation

$$
\begin{equation*}
x^{\bar{\alpha}}=\Lambda^{\bar{\alpha}} x^{\beta} . \tag{*}
\end{equation*}
$$

However, one might want to use that same notation for the transpose of the matrix obtained by raising and lowering the indices of the matrix in $(*)$:

$$
\Lambda_{\bar{\alpha}}{ }^{\beta}=g_{\bar{\alpha} \bar{\mu}} \Lambda^{\bar{\mu}}{ }_{\nu} g^{\nu \beta} .
$$

Here $\left\{g_{\alpha \beta}\right\}$ and $\left\{g_{\bar{\alpha} \bar{\beta}}\right\}$ are the matrices of the metric of Minkowski space with respect to the unbarred and barred coordinate system, respectively. (The coordinate transformation $(*)$ is linear, but not necessarily a Lorentz transformation.) Let us investigate whether these two interpretations of the symbol $\Lambda_{\bar{\alpha}}^{\beta}$ are consistent.

If the answer is yes, then (according to the first definition) $\delta_{\bar{\gamma}}^{\bar{\alpha}}$ must equal

$$
\begin{aligned}
\Lambda^{\bar{\alpha}}{ }_{\beta} \Lambda_{\bar{\gamma}}^{\beta} & \equiv \Lambda^{\bar{\alpha}}{ }_{\beta}\left(g_{\bar{\gamma} \bar{\mu}} \Lambda^{\bar{\mu}}{ }_{\nu} g^{\nu \beta}\right) \\
& =g_{\bar{\gamma} \bar{\mu}}\left(\Lambda^{\bar{\mu}}{ }_{\nu}^{\nu \beta} g^{\nu \beta} \Lambda^{\bar{\alpha}}{ }_{\beta}\right) \\
& =g_{\bar{\gamma} \bar{\mu}}^{\bar{\mu} \bar{\alpha}} \\
& =\delta_{\bar{\gamma}}^{\bar{\alpha}}, \quad \text { Q.E.D. }
\end{aligned}
$$

(The first step uses the second definition, and the next-to-last step uses the transformation law of a $\binom{2}{0}$ tensor.)

In less ambiguous notation, what we have proved is that

$$
\left(\Lambda^{-1}\right)^{\beta}{ }_{\bar{\alpha}}=g_{\bar{\alpha} \bar{\mu}} \Lambda^{\bar{\mu}}{ }_{\nu} g^{\nu \beta} .
$$

Note that if Λ is not a Lorentz transformation, then the barred and unbarred g matrices are not numerically equal; at most one of them in that case has the form

$$
\eta=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

If Λ is Lorentz (so that the g matrices are the same) and the coordinates are with respect to an orthogonal basis (so that indeed $g=\eta$), then (\dagger) is the indefinite-metric counterpart of the "inverse = transpose" characterization of an orthogonal matrix in Euclidean space: The inverse of a Lorentz transformation equals the transpose with the indices raised and lowered (by η). (In the Euclidean case, η is replaced by δ and hence (\dagger) reduces to

$$
\left(\Lambda^{-1}\right)^{\beta}{ }_{\bar{\alpha}}=\Lambda^{\bar{\alpha}}{ }_{\beta},
$$

in which the up-down index position has no significance.) For a general linear transformation, (\dagger) may appear to offer a free lunch: How can we calculate an inverse matrix without the hard work of evaluating Cramer's rule, or performing a Gaussian elimination? The answer is that in the general case at least one of the matrices $\left\{g_{\bar{\alpha} \bar{\mu}}\right\}$ and $\left\{g^{\nu \beta}\right\}$ is nontrivial and somehow contains the information about the inverse matrix.

Alternative argument: We can use the metric to map between vectors and covectors. Since

$$
v^{\bar{\alpha}}=\Lambda^{\bar{\alpha}}{ }_{\beta} v^{\beta}
$$

is the transformation law for vectors, that for covectors must be

$$
\begin{aligned}
\tilde{v}_{\bar{\mu}} & =g_{\bar{\mu} \bar{\alpha}} v^{\bar{\alpha}} \\
& =g_{\bar{\mu} \bar{\alpha}} \Lambda^{\bar{\alpha}}{ }_{\beta} v^{\beta} \\
& =g_{\bar{\mu} \bar{\alpha}} \Lambda^{\bar{\alpha}}{ }_{\beta} g^{\beta \nu} \tilde{v}_{\nu} \\
& \equiv \Lambda_{\bar{\mu}}{ }^{\nu} \tilde{v}_{\nu}
\end{aligned}
$$

according to the second definition. But the transformation matrix for covectors is the transpose of the inverse of that for vectors - i.e.,

$$
\tilde{v}_{\bar{\mu}}=\Lambda^{\nu}{ }_{\bar{\mu}} \tilde{v}_{\nu}
$$

according to the first definition. Therefore, the definitions are consistent.

