Test A - Solutions

1. (25 pts.) If $\tilde{\omega}$ is a covector, then (by definition) $\tilde{\omega}(\vec{v})$ is a linear function of the vector argument \vec{v} whose calculated values must be the same in all reference frames. Under a certain change of frame the components of vectors transform according to

$$
v^{\beta^{\prime}}=\Lambda^{\beta^{\prime}} v^{\alpha} .
$$

Deduce the transformation law of the covector components, ω_{α}.

$$
\omega_{\alpha} v^{\alpha}=\tilde{\omega}(\vec{v})=\omega_{\beta^{\prime}} v^{\beta^{\prime}}=\omega_{\beta^{\prime}} \Lambda_{\alpha}^{\beta^{\prime}} v^{\alpha},
$$

so

$$
\omega_{\alpha}=\omega_{\beta^{\prime}} \Lambda_{\alpha}^{\beta^{\prime}} .
$$

Alternative method (credit John Langford): $v^{\beta^{\prime}}=\Lambda^{\beta^{\prime}}{ }_{\alpha} v^{\alpha}$ is equivalent to the basis transformation $\vec{e}_{\alpha}=\Lambda^{\beta^{\prime}}{ }_{\alpha} \vec{e}_{\beta^{\prime}}$. The components of $\tilde{\omega}$ are its values on the basis vectors:

$$
\omega_{\alpha}=\tilde{\omega}\left(\vec{e}_{\alpha}\right)=\Lambda^{\beta^{\prime}}{ }_{\alpha} \tilde{\omega}\left(\vec{e}_{\beta^{\prime}}\right)
$$

(by linearity), so

$$
\omega_{\alpha}=\Lambda^{\beta^{\prime}}{ }_{\alpha} \omega_{\beta^{\prime}} .
$$

Remark: The formula can also be written either

$$
\omega_{\beta^{\prime}}=\left(\Lambda^{-1}\right)^{\alpha}{ }_{\beta^{\prime}} \omega_{\alpha} \quad \text { or } \quad \omega_{\beta^{\prime}}=\Lambda_{\beta^{\prime}}^{\alpha} \omega_{\alpha} .
$$

In the last case we are using Schutz's convention that the direction of the transformation is indicated unambiguously by the positions of the primed and unprimed indices.
2. (essay - 20 pts.) Explain what tides have to do with general relativity. (If you were standing on a planet of very small radius, how would you see nearby objects fall, relative to each other and you?) Explain why a uniform gravitational field produces no tides.
[Cf. Exercise 5.2.]
3. (20 pts.) The 4 -velocity of a rocket ship is $\vec{U}=(2,1,1,1)$ (in earth's inertial frame). It encounters a cosmic ray (high-energy particle) whose 4 -momentum is $\vec{P}=(30,25,0,0) \times$ $10^{-26} \mathrm{~kg}$.
(a) What is the rest mass of the particle?
$\vec{P} \cdot \vec{P}=-m^{2}$, so

$$
m=\sqrt{E^{2}-\mathbf{p}^{2}}=\sqrt{900-625}=\sqrt{225}=11 \sqrt{5}
$$

(in units $10^{-26} \mathrm{~kg}$).
(b) What is the energy of the particle in the rocket's frame?
[Cf. Exercise 2.30.] Take inner product with the basis vector in the time direction in the rocket's frame:

$$
E^{\prime}=-\vec{U} \cdot \vec{P}=60-25=35
$$

(in units $10^{-26} \mathrm{~kg}$).
4. (35 pts.) We define hyperbolic coordinates, (τ, σ), in two-dimensional space-time by

$$
t=\sigma \sinh \tau, \quad x=\sigma \cosh \tau
$$

Let T be a $\binom{2}{0}$ tensor field whose components in the hyperbolic frame are

$$
T \xrightarrow{\mathcal{O}^{\prime}}\left(\begin{array}{cc}
2 & 0 \\
0 & \tau
\end{array}\right) ; \quad \text { i.e., } \quad T^{\tau \tau}=2, \quad T^{\sigma \sigma}=\tau, \quad T^{\tau \sigma}=0=T^{\sigma \tau}
$$

(a) Find the components of T with respect to the inertial frame, (t, x). (Leave the answer as functions of the variables τ and σ.)

$$
T^{\alpha \beta}=\Lambda^{\alpha}{\mu^{\prime}}^{\beta} \Lambda_{\nu^{\prime}} T^{\mu^{\prime} \nu^{\prime}}
$$

where

$$
\Lambda_{\mu^{\prime}}^{\alpha}=\left(\begin{array}{ll}
\frac{\partial t}{\partial \tau} & \frac{\partial t}{\partial \sigma} \\
\frac{\partial x}{\partial \tau} & \frac{d x}{d \sigma}
\end{array}\right)=\left(\begin{array}{ll}
\sigma \cosh t & \sinh \tau \\
\sigma \sinh \tau & \cosh \tau
\end{array}\right) .
$$

In matrix notation,

$$
T^{\prime}=\Lambda T \Lambda^{\mathrm{t}}
$$

(since the ν^{\prime} is connected to the column index of the second Λ). After two matrix multiplications,

$$
T^{\alpha \beta}=\left(\begin{array}{cc}
2 \sigma^{2} \cosh ^{2} \tau+\tau \sinh ^{2} \tau & \left(2 \sigma^{2}+\tau\right) \sinh \tau \cosh \tau \\
\left(2 \sigma^{2}+\tau\right) \sinh \tau \cosh \tau & 2 \sigma^{2} \sinh ^{2} \tau+\tau \cosh ^{2} \tau
\end{array}\right)
$$

Remark: In a real physical problem the matrix elements of T (and the arguments of the hyperbolic functions) would involve some physical constants to keep the units right. (A pressure is not a time, for example.)
(b) Explain what a $\binom{2}{0}$ tensor "really is" (the modern definition as a multilinear functional on some space).
[Talk about bilinear functionals on covectors $\left(T: \mathcal{V}^{*} \times \mathcal{V}^{*} \rightarrow \mathbf{R}\right.$, linear in each argument with the other argument fixed).]

