
Math. 489GR November 2009

Test B – Solutions

1. (35 pts.) A two-dimensional space-time has the metric tensor given by the line element

ds2 = −dt2 + cosh2 t dx2

(i.e., gtt = −1, gxx = cosh2 t, gxt = 0).

(a) Find the geodesic equation (the equation of motion of a free particle in this gravitational
background).

A Lagrangian that yields the geodesic equation is

L =
1

2
gαβẋ

α
ẋ

β = −
1

2

(

dt

ds

)2

+
1

2
cosh2

t

(

dx

ds

)2

.

∂L

∂ṫ
= −ṫ,

∂L

∂ẋ
= (cosh2

t)ẋ.

∂L

∂t
= (cosh t sinh t)ẋ2

,
∂L

∂x
= 0.

Thus the equation
∂L

∂t
−

d

ds

∂L

∂ṫ
= 0 is

ẗ + (cosh t sinh t)ẋ2 = 0,

and the other component of the geodesic equation is

0 =
∂L

∂x
−

d

ds

∂L

∂ẋ
= −

d

ds
(ẋ cosh2

t)

= −ẍ cosh2
t − 2(cosh t sinh t)ẋṫ.

This last equation is better rewritten

ẍ + 2(tanh t)ẋṫ = 0.

(b) Find the curvature (Riemann) tensor for this space-time. Avoid unnecessary work:

Note that the tensor has very few independent components in dimension 2.

The basic formula is
R

α
βµν = Γα

βν,µ − Γα
βµ,ν + Γα

σµΓσ
βν − Γα

σνΓσ
βµ ,

and from (a) we read off the Christoffel symbols

Γt
xx = cosh t sinh t, Γt

tt = Γt
tx = Γt

xt = 0,

Γx
tt = Γx

xx = 0, Γx
xt = Γx

tx = tanh t.
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(Alternatively, you could calculate the Christoffel symbols from the formula

Γα
βγ = 1

2
g

αµ(gµγ,β + gβµ,γ − gβγ,µ). (1)

The results can then be used to answer (a) as well as (b).)
By the antisymmetry of the Riemann tensor in each index pair and the diagonality of the metric

tensor, we may assume without loss of generality that α 6= β, µ 6= ν, and the indices in each pair
are in a certain order, say t before x. Thus there is only one independent component, which we may
take as

R
t
xtx = Γt

xx,t − Γt
xt,x + Γt

σtΓ
σ
xx − Γt

σxΓσ
xt

=
d

dt
(cosh t sinh t) − 0 + 0 − (cosh t sinh t) tanh t

= sinh2
t + cosh2

t − sinh2
t;

so

R
t
xtx = cosh2

t = −R
t
xxt .

To get the other nonzero components, lower the index and use antisymmetry:

Rtxtx = − cosh2
t = −Rxttx ,

so

R
x
ttx = 1 = −R

x
txt .

(c) Find the Ricci tensor and its covariant trace, the Ricci curvature scalar.

The Ricci tensor is

Rαβ = R
µ
αµβ .

In our case we have

Rtt = R
x
txt = −1,

Rxx = R
t
xtx = cosh2

t,

Rxt = Rtx = R
µ
xµt = 0.

The covariant trace, R = gαβRαβ , is

−Rtt +
1

cosh2 t
Rxx = 2.

Interestingly, this is a constant.
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2. (15 pts.)

(a) Show that if a vector field ξα satisfies Killing’s equation,

∇αξβ + ∇βξα = 0,

then
pαξα (= pαξα) = constant

along the geodesic with tangent vector
~p

m
. [Such a field is called a Killing vector.

The theorem is true in any space-time, but no Killing vectors will exist unless the
space-time has some degree of symmetry.]

If s is the affine parameter along the geodesic, then we are supposed to prove that

d

ds

(

p
α
ξα

)

= 0.

We can apply the product rule to this derivative in a geometrically covariant way by employing the
absolute derivative, which may be written as the contraction of the covariant derivative with the
tangent vector to the curve:

D

ds
=

1

m
p
β
∇β ;

this equation is literally true for ξ̃ and symbolic for ~p. But in any event, the absolute derivative of ~p
along its own curve vanishes, by definition of a geodesic. So we find

d

ds

(

p
α
ξα

)

=
Dpα

ds
ξα + p

α Dξα

ds

= 0 +
1

m
p
α
p
β
∇βξα

=
1

2m
p
α
p
β
(

∇αξβ + ∇βξα

)

= 0.

(The next-to-last step uses the symmetry of pαpβ to relabel dummy indices in half of the expression.)

(b) Show (without using (7.29)) that the “important result” in italics on p. 179 of Schutz
is a corollary of the theorem in (a). (In the old edition it’s on p. 189.)

By definition of covariant derivative,

∇αξ
β = ∂αξ

β + Γβ
ναξ

ν
,

so
∇αξβ + ∇βξα = gβµ∂αξ

µ + gβµΓ
µ
ναξ

ν + gαµ∂βξ
µ + gαµΓ

µ
νβ

ξ
ν
. (2)

If
ξ
β = 1, ξ

α = 0 for α 6= β (i.e., ξ
a = δ

αβ), (3)

then pβ = pαξa and we have a chance of proving what we want from part (a).
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Assume (3) and also that gµν is independent of xβ . Then (2) becomes (after renaming an index
to avoid ambiguity)

∇αξγ + ∇γξα = 0 + gγµΓ
µ
βα

+ 0 + gαµΓ
µ
βγ

. (3)

The metric factor in front merely undoes the index raising in (1):

gαµΓ
µ
βγ

= 1
2
(gαγ,β + gβα,γ − gβγ,α).

In our case the first term is zero (like all β derivatives), and the other two terms are antisymmetric
in α and γ. So (3) collapses to 0, as claimed.

3. (25 pts.) In three-dimensional Minkowski space-time with the line element

ds2 = −dt2 + dx2 + dy2

consider the surface M defined by

−t2 + x2 + y2 = 1.

Introduce a new coordinate system (r, τ , θ) by

t = r sinh τ ,

x = r cosh τ cos θ,

y = r cosh τ sin θ.

(a) Show that M is the surface r = 1. What must be the ranges of the variables τ and θ

so that we get every point of M, exactly once?

Using

cos2 θ + sin2
θ = 1 and cosh2

τ − sinh2
τ = 1

we find that

−t
2 + x

2 + y
2 = r

2
.

(This is a hyperboloid of revolution.) To trace out the entire hyperboloid exactly once, let

−∞ < τ < ∞ and 0 ≤ θ < 2π

(or any other interval of length 2π.)
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(b) Find the metric tensor on M with respect to the coordinates (τ , θ). (M “inherits” its
geometry from the three-dimensional Minkowski space just as a sphere or other surface
gets its geometry from three-dimensional Euclidean space.)

Set r = 1 in the coordinate transformation equations and take differentials:

dt = cosh τ dτ ,

dx = sinh τ cos θ dτ − cosh τ sin θ dθ,

dy = sinh τ sin θ dτ + cosh τ cos θ dθ.

Then you find (intermediate algebra omitted)

−dt
2 + dx

2 + dy
2 = −dτ

2 + cosh2
τ dθ

2
.

(I.e., gττ = −1, gθθ = cosh2 τ , gθτ = 0).
An equivalent way of stating this calculation is: We construct the basis vectors ~eτ and ~eθ , where,

for example,

~eτ →

(

∂t

∂τ
,
∂x

∂τ
,
∂y

∂τ

)

,

and take their dot products to get the components of the metric tensor. (These vectors are in three-
space, but they are tangent to M and form a basis for the two-dimensional space of tangent vectors
to M at each point.) The foregoing manipulation with differentials just mechanizes this calculation.

A conceptually simpler but calculationally longer way to reach the same result is to find the
metric tensor for the entire three-space in terms of the coordinates (r, τ , θ), then specialize to M by
setting r = 1, dr = 0.

(c) Show that the Ricci curvature scalar of M is a constant (independent of τ and θ).

Identify the coordinates t and x of Question 1 with the τ and θ of Question 3. The space-time
described in Question 1 is our M, provided that the ranges of the variables there are those we
established in part (a) here. (Note that the periodicity of x, or lack thereof, is irrelevant to the local
differential geometry studied in Question 1.)

The constancy of R indicates that the hyperboloid, as a submanifold of Minkowski space, has
constant curvature, just as a sphere has constant curvature as a submanifold of Euclidean space.
This should not be surprising, since hyperboloids are the Lorentzian analogues of spheres. [As a
space-time, M is called two-dimensional de Sitter space.]

4. (25 pts.)

(a) Write out the three components of the Killing equation ∇αξβ +∇βξα = 0 for the case

of the two-dimensional universe M with (τ , θ) coordinates.

Using the Christoffel symbols from Question 1 and the covariant derivative definition

ξα;β = ξα,β − Γ
µ
αβ

ξµ

you get
∂ξτ

∂τ
= 0 ,

∂ξθ

∂θ
= cosh τ sinh τ ξτ ,

∂ξθ

∂τ
+

∂ξτ

∂θ
= 2 tanh τ ξθ .
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(b) Find three (independent) conserved quantities for particle motion in M. Hint: One
Killing vector should be immediately obvious. Hunt for two more by finding a solution
of the form

ξτ = f(τ)eiθ, ξθ = g(τ)eiθ

(i.e., periodic in θ), and taking real and imaginary parts at the end.

According to Question 2, one conserved quantity is

pθ = cosh2
τ p

θ
.

It is the linear momentum associated with invariance of the geometry under translation in the spatial

coordinate θ. [The corresponding Killing vector in contravariant components is ξτ = 0, ξθ = 1. Its

covariant components are ξτ = 0, ξθ = cosh2 τ , and one can easily check that it satisfies the three
Killing equations in (a).]

Substituting the eiθ ansatz into the three Killing equations, you get

f
′(τ) = 0, ig(τ) = cosh τ sinh τ f(τ), g

′(τ) + if(τ) = 2 tanh τ g(τ).

Therefore, from the first two equations f(τ) = constant and g(τ) = −i cosh τ sinh τ f . (The third
equation is then satisfied, too.) It follows that two linearly independent real-valued Killing vectors
are

ξτ = cos θ , ξθ = cosh τ sinh τ sin θ

and
ξτ = sin θ , ξθ = − cosh τ sinh τ cos θ .

[To see the geometical significance of these vector fields, look at their contravariant components near
the origin (i.e., to first order in (τ , θ)): the first one is

ξ
τ
≈ −1 , ξ

θ
≈ 0,

which looks like a time translation; the second one is

ξ
τ
≈ −x , ξ

θ
≈ −τ ,

which is an infinitesimal Lorentz boost. If you were to look one quarter of the way around the world
(θ = π

2
), these two vector fields would exchange roles! Like Minkowski space, the de Sitter space has

a very large symmetry group, and consequently has three independent Killing vectors and constants
of motion, the maximum number allowed in dimension 2.]

The two resulting constants of motion, according to the formula in Question 2, are

p
τ cos θ + p

θ cosh τ sinh τ sin θ

and
p
τ sin θ − p

θ cosh τ sinh τ cos θ.

[Again, these become more intuitive if you expand to first order near the origin. The first one becomes

pτ , the energy in a local Lorentz frame, and the second one becomes pτ θ − pθτ , which is a kind of
“angular momentum” associated with local Lorentz transformations.]


