Consequences and applications of the Jordan theorem

FUNCTIONS OF AN OPERATOR

Suppose that A: V — Vis an operator and f: C — C is an ordinary numerical function.

(In fact, the domain of f might be only a subset of C.) Does
f(4)

have any meaning? (Of course, we would not raise this question if it did not have a useful,
positive answer.)

Let’s look at some cases where the answer is already yes:
A? = Ao A = polynomial functions of A are defined.

= A~! = rational functions are defined. (The value of the function may not exist

NES

for all A.) Example:

(if (A+14)~! exists).

_Z, is not defined if [A, B] # 0.

REMARK: —
5L+
Observe:
A1 0
1) For a diagonal matrix A = D = ,
0 An
(A1) 0
f(D) =
0 f(An)

for rational f.
2) Since f(A) depends only on the operator A, not on the matrix (choice of basis), we

must have

f(SAS™) =S f(4) 57!
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under any similarity transformation. To verify this for polynomials, note that internal
S’s cancel out: e.g.,

(SAS™1)2 = SAS'SAS™! = SAAS™t = S A2 SL.

This suggests the following Idea: For a general f (say f(z) = e%), define f(D) for a
diagonal matrix D as
(M) 0

0 FOw)
Then for a diagonalizable A, A = SDS~!, define
f(A) =S f(D)sS™

Thus f(A) is well-defined.

L L
In other words, for A = Z AP, , define f(A) = Z fo)P
v=1

=V "*
v=1

Let’s check this for polynomials:
A2 = (Z )\VBV) (Z AH£H> =Y "\2P,
v ) v

since P2 = P, and P, P . = 0if v # p. [What happens if f is the characteristic function
of a set?]

Some other definitions of f(A) are possible (for one who knows enough analysis):

(1) Power series. Examples:

1 1
A=14+A+ =42 :E — A"
e _+_+2_ + nzon!_,
B 0o 1 . B 0o 1 .
n=1 n=1

If the series converges (see homework), this agrees with the diagonalization definition,
where it is applicable. [Check this.]

(2) Cauchy’s formula. This requires f to be analytic, but there is no restriction on the
radius of convergence.



fay=L § 19

- 2mi Z—Adz

for any contour surrounding all eigenvalues of A in the usual way. This equation means

that for all ¥,
FA)T= = d17(2) (2 — 4)17) de.
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As a homework problem, I ask you to check that this definition is consistent with diago-
nalization.

If A is not diagonalizable, let’s assume that f is analytic and define f(A) by power
series. (The Cauchy definition could also be used.) For ¢ € U(\, ), we'll expand f(z) about

T=A:
oo

Fa) =30 ) (= A"

n=0
Then, for z, substitute A‘u(/\ )= A, to find f(A)vU. (Note: U(\,) is an invariant subspace
under A, hence under all powers of A, hence under all functions of A.)

0

0
In a Jordan basis, 4, — A\, = 0 1 . Let’s concentrate on a single

1
0
0
0 0 0
, N3=10 0 0] =N" foralln>2.
0 0 0

In basis-vector terms, this observation is
Mﬁj:ﬁj—l fOI‘j>1, ﬁﬁlzﬁ;
Nz’l_])j:??j_g fOI'j>2, ﬂzﬁgzﬁzﬂzﬁl;

etc. We see that IV is nilpotent: NP = Q for p > size of the Jordan block. Therefore,
A, — A, is nilpotent. It follows that the Taylor series for f(A,) is a finite sum!
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L
Now we can write f(A) = Z f(A,) (a direct-sum, or block-diagonal, operator). Let’s
v=1

rewrite this result in terms of projections:



Theorem. Let
A=

L
()\VBI/ + ﬂu)

v=1
be the Jordan decomposition of A. That is, P, = projection onto U (A\,) along the other
U(N)’s, and N,, = A, — A\, P,, is the associated nilpotent operator on U(N\,), A, — A\,
extended as 0 to the rest of V. (In general, N, is a direct sum of elementary Jordan
nilpotents.) Then

L dy—1 4

f(4) = Z[mu)ﬂu + Y S fPON (#)

v=1 n=1
(If N,, is a nontrivial direct sum, d,, can be replaced by the size of the largest Jordan block
associated to A\, .)

Recall that d,, is the algebraic multiplicity of A, . Note that the matrix of f(A) in
the Jordan basis is not necessarily in Jordan canonical form, but is block-diagonal and
upper-triangular.

(#) is an operator equation; it holds without reference to a Jordan basis. Nevertheless,
transforming to Jordan canonical form is the most obvious way to calculate the right-hand

side of (#).

Now let’s look at some applications of this theorem and of the concept of function of
an operator:

PRrROOF OF THE HAMILTON-CAYLEY THEOREM

Recall that this theorem says that A satisfies its own characteristic equation, det (A—
A) = 0. Since Galperin and Waksman proved the Jordan theorem for us without using the
HC theorem, we may use Jordan canonical form to prove HC. (Contrast Bowen & Wang.)

0=det (A—)\) = (D)"Y ][ =r)" = f(n).

Therefore,
L

fA) =+ [@a- )™

v=1
For v € U(\,), we have
FA)T ==+ [J(A- )™ (A—N)% v
VN

But (A —\,)% ¥ = M,fl“ 7 =0. Since V=UN) @ ---®BU\L), it follows that f(A) is
identically 0, QED.



SOLVING SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

REFERENCES: Noble & Daniel, Sec. 10.7.
Williamson and Trotter, Multivariable Mathematics, Chap. 16.
Boyce and DiPrima, Chap. 7.

E le: - =
xample 7 oz + Yy
dy
27 _ 3
L r + 3y

—

dx
In vector notation, il AZ. Here ¥ = ©(t), and A is a constant (i.e., t-independent)

linear operator from R? into R?.

Suppose A can be diagonalized: SAS~! = D. Define new variables by @ = SZ. Then
di/dt = Du. In components this is of the form

du dv
% = )\'U/, E =

KU,

where A and x are constants. Therefore,

ILe.,

#(t) = "2 7(0). (%)
[In detail: Z(t) = SL@(t) = S~'etP SF(0) = et DS F(0) = €4 #(0). It is important
to remember to transform back to the ¥ coordinates before imposing numerical initial
conditions or interpreting the answer.]

The formula (%) can be interpreted in two ways:

1. as shorthand for the process of diagonalizing A, finding (t), and calculating Z(t) as
S=Li(t);

2. as a direct formula for Z(t), without reference to diagonalization. It’s useful if we can
calculate e directly — say by power series. It’s also useful for theoretical purposes
when we don’t need to calculate the solution explicitly.
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Now suppose A can’t be diagonalized:

SAS ' =D+ N =

I
<

CraM: Z(t) = et4 2(0) still.
Let’s choose a Jordan basis and investigate this claim. The formula becomes
i(t) = e™i(0).
Let’s evaluate this and compare it with a direct solution of the differential equation:

(1) According to our basic formula (#) for a function of an operator,

d,—1 n
— 1 [/ d
tA _ tA, s el tA, n
e__Z|:e £V+7lz_:ln' (d}\) € KV:|
L d,—1 1
— t>\1/ n t>\,/ n
_Z[e Bl,-l-zate ﬂy}.

t

In a Jordan basis, the matrix of e*4 is e!™ | where each p x p Jordan block of et™ looks

fike Lot 5?5t - iyt
1t 1
tA, 1 +
1

for some p < d,, .

(2) We can solve the equation by elementary means if we work in the Jordan basis.
For simplicity let’s consider a 3 x 3 example,

A 10 u(t)
M={(0 X 1]|; A = A, u=| v(t)
0 0 A w(t)
Then di/dt = M means

du

i Au + v,

dv

i AU+ w,

dw

E Aw



[Note: u,v,w are not basis vectors, but rather components of the vector-valued function
U=u€ +veéy+wes,
where the basis vectors satisfy the Jordan-chain relations
Meés = \é3 + €5, Meéy = Nés + €1, Mey = ey .

As usual, the matrix acting on the coordinates is the transpose of that acting on the basis
vectors.] We can easily solve this system from the bottom up:

Ccli—lz = \u+ v(0)e™ 4 w(0)te
1
u(t) = u(0)e + v(0)te + §w(0)t26>‘t
Thus
u 1t it? u(0)
_ A
w | =e 0 1 ¢ v(0)
w 0 0 1 w(0)

eM7(0) = @(t),

in agreement with (1). Clearly the argument is general, although our presentation was for
an example.

The concept of the exponential operator as solution operator generalizes to partial
differential equations: Consider
ou .
i —Au, u=u(t,x), u(0,x) = f(z) given,
where A: L2(R™) — L2(R™) is a positive, self-adjoint operator (e.g., A = —V?). The
solution can be written

u(t, ) = e f](2).

Rather than use this formula to obtain an explicit numerical solution, the usual application
is in the reverse direction: Direct study of e *4 by PDE methods gives useful information
about A and its eigenfunctions.

Another generalization (to second-order ODEs) is indicated in one of the homework
problems. It involves functions other than the exponential.



