
Consequences and applications of the Jordan theorem

Functions of an operator

Suppose thatA:V → V is an operator and f :C → C is an ordinary numerical function.
(In fact, the domain of f might be only a subset of C.) Does

f(A)

have any meaning? (Of course, we would not raise this question if it did not have a useful,
positive answer.)

Let’s look at some cases where the answer is already yes:

A2 ≡ A ◦A ⇒ polynomial functions of A are defined.

1

A
≡ A−1 ⇒ rational functions are defined. (The value of the function may not exist

for all A.) Example:

A− i

A+ i
≡ (A+ i)−1(A− i) = (A− i)(A+ i)−1

(if (A+ i)−1 exists).

Remark:
A− i

B + i
is not defined if [A,B] 6= 0.

Observe:

1) For a diagonal matrix A = D =





λ1 0
. . .

0 λn



,

f(D) =







f(λ1) 0
. . .

0 f(λn)







for rational f .

2) Since f(A) depends only on the operator A, not on the matrix (choice of basis), we
must have

f(SAS−1) = S f(A)S−1
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under any similarity transformation. To verify this for polynomials, note that internal
S’s cancel out: e.g.,

(SAS−1)2 = SAS−1 SAS−1 = SAAS−1 = S A2 S−1.

This suggests the following Idea: For a general f (say f(x) ≡ ex), define f(D) for a
diagonal matrix D as







f(λ1) 0
. . .

0 f(λn)






.

Then for a diagonalizable A, A = SDS−1, define

f(A) ≡ S f(D)S−1.

Thus f(A) is well-defined.

In other words, for A =

L
∑

ν=1

λνP ν , define f(A) ≡

L
∑

ν=1

f(λν)P ν .

Let’s check this for polynomials:

A2 =

(

∑

ν

λνP ν

)(

∑

µ

λµPµ

)

=
∑

ν

λν
2P ν

since P ν
2 = P ν and P νPµ = 0 if ν 6= µ. [What happens if f is the characteristic function

of a set?]

Some other definitions of f(A) are possible (for one who knows enough analysis):

(1) Power series. Examples:

eA ≡ 1 + A+
1

2
A2 + · · · =

∞
∑

n=0

1

n!
An ;

ln (1− A) ≡ −

∞
∑

n=1

1

n
An — or lnA ≡ −

∞
∑

n=1

1

n
(1−A)n.

If the series converges (see homework), this agrees with the diagonalization definition,
where it is applicable. [Check this.]

(2) Cauchy’s formula. This requires f to be analytic, but there is no restriction on the
radius of convergence.
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f(A) ≡
1

2πi

∮

f(z)

z −A
dz .....
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for any contour surrounding all eigenvalues of A in the usual way. This equation means
that for all ~v,

f(A)~v =
1

2πi

∮

[f(z) (z − A)−1~v] dz.

As a homework problem, I ask you to check that this definition is consistent with diago-
nalization.

If A is not diagonalizable, let’s assume that f is analytic and define f(A) by power
series. (The Cauchy definition could also be used.) For ~v ∈ U(λν), we’ll expand f(x) about
x = λν :

f(x) =
∞
∑

n=0

1

n!
f (n)(λν) (x− λν)

n.

Then, for x, substitute A
∣

∣

U(λν)
≡ Aν to find f(A)~v. (Note: U(λν) is an invariant subspace

under A, hence under all powers of A, hence under all functions of A.)

In a Jordan basis, Aν − λν =









0 1 0
0 0

0 1

0
. . .

. . .









. Let’s concentrate on a single

Jordan block, say N =





0 1 0
0 0 1
0 0 0



. We find

N2 =





0 0 1
0 0 0
0 0 0



 , N3 =





0 0 0
0 0 0
0 0 0



 = Nn for all n > 2.

In basis-vector terms, this observation is

N~vj = ~vj−1 for j > 1, N~v1 = ~0;

N2~vj = ~vj−2 for j > 2, N2~v2 = ~0 = N2~v1 ;

etc. We see that N is nilpotent: Np = 0 for p ≥ size of the Jordan block. Therefore,
Aν − λν is nilpotent. It follows that the Taylor series for f(Aν) is a finite sum!

Now we can write f(A) =

L
∑

ν=1

f̂(Aν) (a direct-sum, or block-diagonal, operator). Let’s

rewrite this result in terms of projections:
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Theorem. Let

A =

L
∑

ν=1

(λνP ν +Nν)

be the Jordan decomposition of A. That is, P ν = projection onto U(λν) along the other
U(λ)’s, and Nν ≡ Âν − λνP ν is the associated nilpotent operator on U(λν), Aν − λν ,
extended as 0 to the rest of V. (In general, Nν is a direct sum of elementary Jordan
nilpotents.) Then

f(A) =

L
∑

ν=1

[

f(λν)P ν +

dν−1
∑

n=1

1

n!
f (n)(λν)Nν

n

]

. (#)

(If Nν is a nontrivial direct sum, dν can be replaced by the size of the largest Jordan block
associated to λν .)

Recall that dν is the algebraic multiplicity of λν . Note that the matrix of f(A) in
the Jordan basis is not necessarily in Jordan canonical form, but is block-diagonal and
upper-triangular.

(#) is an operator equation; it holds without reference to a Jordan basis. Nevertheless,
transforming to Jordan canonical form is the most obvious way to calculate the right-hand
side of (#).

Now let’s look at some applications of this theorem and of the concept of function of
an operator:

Proof of the Hamilton–Cayley theorem

Recall that this theorem says that A satisfies its own characteristic equation, det (A−

λ) = 0. Since Galperin and Waksman proved the Jordan theorem for us without using the
HC theorem, we may use Jordan canonical form to prove HC. (Contrast Bowen & Wang.)

0 = det (A− λ) = (−1)dimV

L
∏

ν=1

(λ− λν)
dν ≡ f(λ).

Therefore,

f(A) ≡ ±

L
∏

ν=1

(A− λν)
dν .

For ~v ∈ U(λµ), we have

f(A)~v = ±
∏

ν 6=µ

(A− λν)
dν (A− λµ)

dµ ~v.

But (A − λµ)
dµ ~v ≡ Nµ

dµ ~v = ~0. Since V = U(λ1) ⊕ · · · ⊕ U(λL), it follows that f(A) is
identically 0, QED.
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Solving systems of ordinary differential equations

References: Noble & Daniel, Sec. 10.7.
Williamson and Trotter, Multivariable Mathematics, Chap. 16.
Boyce and DiPrima, Chap. 7.

dx

dt
= 5x+ 9yExample:

dy

dt
= x+ 3y

In vector notation,
d~x

dt
= A~x. Here ~x = ~x(t), and A is a constant (i.e., t-independent)

linear operator from R
2 into R

2.

Suppose A can be diagonalized: SAS−1 = D. Define new variables by ~u ≡ S~x. Then
d~u/dt = D~u. In components this is of the form

du

dt
= λu,

dv

dt
= κv,

where λ and κ are constants. Therefore,

u(t) = u(0) eλt, v(t) = v(0) eκt.

I.e.,
~u(t) = etD ~u(0).

This relation is independent of basis, so

~x(t) = etA ~x(0). (∗)

[In detail: ~x(t) = S−1~u(t) = S−1 etD S~x(0) = etS
−1DS ~x(0) = etA ~x(0). It is important

to remember to transform back to the ~x coordinates before imposing numerical initial
conditions or interpreting the answer.]

The formula (∗) can be interpreted in two ways:

1. as shorthand for the process of diagonalizing A, finding ~u(t), and calculating ~x(t) as
S−1 ~u(t);

2. as a direct formula for ~x(t), without reference to diagonalization. It’s useful if we can
calculate etA directly — say by power series. It’s also useful for theoretical purposes
when we don’t need to calculate the solution explicitly.
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Now suppose A can’t be diagonalized:

SAS−1 = D +N =







λ 1 0
. . .

. . .

0
. . .






≡ M.

Claim: ~x(t) = etA ~x(0) still.

Let’s choose a Jordan basis and investigate this claim. The formula becomes

~u(t) = etM~u(0).

Let’s evaluate this and compare it with a direct solution of the differential equation:

(1) According to our basic formula (#) for a function of an operator,

etA =
L
∑

ν=1

[

etλνP ν +

dν−1
∑

n=1

1

n!

(

d

dλ

)n

etλνNν
n

]

=

L
∑

ν=1

[

etλνP ν +

dν−1
∑

n=1

1

n!
tnetλνNν

n

]

.

In a Jordan basis, the matrix of etA is etM , where each p × p Jordan block of etM looks
like

etλν

















1 t 1
2 t

2 1
6 t

3 · · · 1
(p−1)! t

p−1

1 t 1
2 t

2

1 t
. . .

1
. . .

0
. . .

















for some p ≤ dν .

(2) We can solve the equation by elementary means if we work in the Jordan basis.
For simplicity let’s consider a 3× 3 example,

M =





λ 1 0
0 λ 1
0 0 λ



 ; λν = λ, ~u ≡





u(t)
v(t)
w(t)



 .

Then d~u/dt = M~u means

du

dt
= λu+ v,

dv

dt
= λv + w,

dw

dt
= λw.
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[Note: u, v, w are not basis vectors, but rather components of the vector-valued function

~u = u~e1 + v ~e2 + w~e3 ,

where the basis vectors satisfy the Jordan-chain relations

M~e3 = λ~e3 + ~e2 , M~e2 = λ~e2 + ~e1 , M~e1 = λ~e1 .

As usual, the matrix acting on the coordinates is the transpose of that acting on the basis
vectors.] We can easily solve this system from the bottom up:

w(t) = w(0)eλt ;

dv

dt
= λv + w(0)eλt,

v(t) = v(0)eλt + w(0)teλt ;

du

dt
= λu+ v(0)eλt + w(0)teλt,

u(t) = u(0)eλt + v(0)teλt +
1

2
w(0)t2eλt.

Thus




u
w
w



 = eλt





1 t 1
2
t2

0 1 t
0 0 1









u(0)
v(0)
w(0)





≡ etM~u(0) = ~u(t),

in agreement with (1). Clearly the argument is general, although our presentation was for
an example.

The concept of the exponential operator as solution operator generalizes to partial
differential equations: Consider

∂u

∂t
= −Au, u = u(t, x), u(0, x) = f(x) given,

where A:L2(Rm) → L2(Rm) is a positive, self-adjoint operator (e.g., A = −∇2). The
solution can be written

u(t, x) = [e−tA f ](x).

Rather than use this formula to obtain an explicit numerical solution, the usual application
is in the reverse direction: Direct study of e−tA by PDE methods gives useful information
about A and its eigenfunctions.

Another generalization (to second-order ODEs) is indicated in one of the homework
problems. It involves functions other than the exponential.
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