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Abstract

This paper revisits the college admissions problem and studies the efficiency, incentive,

and monotonicity for colleges. We show that max-min criterion that is stronger than sub-

stitutability, together with the quota-saturability that requires having enough acceptable

applicants, guarantees weak Pareto efficiency and strategy-proofness for colleges under the

colleges-proposing deferred acceptance algorithm. Moreover, we introduce a new notion of

max-min criterion, called W-max-min criterion, which together with the quota-saturability

condition, ensures that the colleges-proposing deferred acceptance algorithm is not only

weakly Pareto efficient and strategy-proof, but also monotone for colleges.
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1 Introduction

Gale and Shapley (1962, henceforth GS) originally studied the college admissions problem.

This problem generalizes the marriage matching model in such a way that colleges have pref-

erences over students and students have preferences over colleges; each college c can accept at

most a certain number qc of students and each student can enroll in at most one college. For
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the college admissions problem, two assignment criteria are concerned primarily: stability and

optimality. The stability requires that there exist no coalition of students and colleges to block

the assignment. The optimality means that every agent (college or student) is at least as well

off under the given stable assignment as he would be under any other stable assignment. GS

proposed the deferred acceptance algorithm that always yields an optimal stable matching for

agents on the proposing side.

For the efficiency and incentives, the stability implies Pareto efficiency even for one-to-one

matching (if the preference relation is strict). Roth (1982) showed that there exists no mechanism

that is both stable and strategy-proof. Indeed, strategy-proofness is not only incompatible

with stability but also Pareto efficiency and individual rationality. Alcalde and Barberá (1994)

obtained that there exists no mechanism that is Pareto efficient, individually rational, and

strategy-proof. For relatively weak expectation, there are some positive results. Roth (1982)

investigated the marriage problem and obtained that the men (resp. women)-optimal matching

is weakly Pareto efficient and strategy-proof for men (resp. women).1

For a unified model, Hatfield and Milgrom (2005) studied the incentive property for matching

with contracts. They obtained that the doctor-optimal matching is strategy-proof for doctors

under very weak preference assumption (hospitals’ preferences satisfy substitutes and the law of

aggregate demand). Under the same framework as above, Hatfield and Kojima (2009) showed

that the doctor-optimal matching is group strategy-proof and weakly Pareto efficient for doctors.

For the college admissions problem, Roth (1985) showed that, when colleges have responsive

preferences, the colleges-optimal matching may be neither weakly Pareto efficient nor strategy-

proof for colleges, while the students-optimal matching is weakly Pareto efficient and strategy-

proof for students.

Bäıou and Balinski (2000) introduced the notion of max-min preferences and presented the

reduction algorithm by graphic approach. They studied the many-to-many matching problem

and asserted that, if every agent has max-min preference, the reduction algorithm produces

a stable assignment that satisfies weak Pareto efficiency, strategy-proofness and monotonicity

for agents on one side of the market. However, even for many-to-one matchings, Hatfield et

al. (2014) constructed an example to show that the condition of max-min preferences is not

sufficient for the existence of a stable mechanism that satisfies weak Pareto efficiency, strategy-

1Dubins and Freedman (1981) showed that, under the men (resp. women)-proposing deferred acceptance

algorithm, there exists no coalition of men (resp. women) that can simultaneously improve the assignment of

all its members if those outside the coalition state their true preferences. This result implies the property of

strategy-proofness.
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proofness or monotonicity. Thus, the above-mentioned result of Bäıou and Balinski (2000) is

incomplete. Therefore, it is still an important open question on the efficiency, incentive, and

monotonicity for agents with multi unit demand.

In this paper we consider efficiency, incentive, and monotonicity of many-to-one matching

problems. We propose an additional condition which was originally introduced by GS. In fact,

Gale and Shapley (1962) made the following assumption for the college admissions model: “There

are enough applicants to assign each college precisely as many as its quota students.” Although

this assumption did not play a crucial role in the analysis of GS, it seems to be a natural and

reasonable condition. We call it the quota-saturability condition. When each college is assigned

to as many as its quota acceptable applicants, the colleges side is saturated.

We will show that, if colleges have max-min preferences and there are enough acceptable

students, then the colleges-proposing deferred acceptance algorithm is weakly Pareto efficient

and strategy-proof for colleges. We also deal with the issue of monotonicity for the college

admissions problem and obtain that the colleges-proposing deferred acceptance algorithm is not

only weakly Pareto efficient and strategy-proof, but also monotone for colleges if the quota-

saturability condition and the W-max-min preference criterion are satisfied.

Specifically, the contribution of this paper is threefold: Firstly, as mentioned above, we pro-

pose the quota-saturability condition and show that the colleges-proposing deferred acceptance

algorithm is weakly Pareto efficient and strategy-proof for colleges if the max-min preference

criterion and the quota-saturability condition are satisfied. If the quota-saturability condition is

not satisfied, Hatfield et al. (2014) showed that there exists no stable mechanism that satisfies

weak Pareto efficiency or strategy-proofness for colleges under the max-min preference. On the

other hand, if the max-min preference criterion does not hold, Roth (1985) showed that the

colleges-optimal matching may be neither weakly Pareto efficient nor strategy-proof for colleges

even under the assumptions of quota-saturability condition and responsive preferences.

It may be remarked that while max-min criterion and responsiveness condition both implies

substitutability introduced by Kelso and Crawford (1982) and commonly assumed in match-

ing literature, it can be easily checked that max-min criterion is not implied by nor implies

responsiveness. It is the max-min preferences that have both properties of substitutability and

complementary enable us to obtain the desired results possible. We also note that one like-

ly cannot expect to obtain the desired efficiency and incentive properties for colleges under a

preference restriction which is weaker than max-min criterion.

Secondly, we extend the “blocking lemma” for marriage problem (one-to-one matching) ob-
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tained by Gale and Sotomayor (1985) to the college admissions problem (many-to-one matching).

For many-to-one matching, the blocking lemma for agents with unit demand holds under re-

sponsive preference profile. For a weak preference restriction, Mart́ınez et al. (2010) show that

the corresponding result holds under substitutable and quota-separable preference. They also

note that the blocking lemma for agents who have multi-unit demand does not hold even under

responsive preference. We will show that the blocking lemma for colleges (which with multi-unit

demand) holds under max-min preference restriction.

Thirdly, we introduce the notion of W-max-min preference and prove that the colleges-

proposing deferred acceptance algorithm is not only weakly Pareto efficient and strategy-proof,

but also monotone for colleges if the W-max-min criterion and the quota-saturability condition

are satisfied. For the college admissions problem, Balinski and Sönmez (1999) proved that the

students-proposing deferred acceptance algorithm is monotone for students. Essentially, the

result obtained by Balinski and Sönmez is about agents who have unit demand. We extend

their result to the case of agents with multiple demand.

The remainder of this paper is organized as follows. The next section presents some prelim-

inaries on the formal model. In Section 3 we study the efficiency and incentive properties for

colleges. We deal with the issue of monotonicity for colleges in Section 4. In Section 5 we note

by an example that the efficiency and incentive properties fail even if we slightly relax preference

requirement imposed by max-min criterion. We conclude in Section 6. All proofs are provided

in the Appendix.

2 The Model

Our model follows the framework of Roth and Sotomayor (1989, 1990). There are two

finite and disjoint sets, C = {c1, · · · , c|C|} and S = {s1, · · · , s|S|}, of colleges and students,

respectively, where the notation |A| denotes the number of elements of the set A. Each student

has preferences ≻s over the set of colleges C and the outside option — the null college ∅, and

each college has preferences ≻c over the set of students S and the prospect of having its seat

unfilled, also denoted by ∅. Student s is acceptable to college c iff s ≻c ∅, and college c is

acceptable to student s iff c ≻s ∅. We assume these preferences are complete, transitive and

strict, so they may be represented by order lists. For example, ≻c: s2, s1,∅, s3, · · · denotes that

college c prefers to enroll s2 rather than s1, that it prefers to enroll either one of them rather

than leave a position unfilled, and that all other students are unacceptable, in the sense that it

would be preferable to leave a position unfilled rather than fill it with, say, student s3. Similarly,
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for the preferences of a student, ≻s: c1, c3, c2,∅, · · · indicates that the only positions the student

would accept are those offered by c1, c3 and c2, in that order. We will write ci ≻s cj to indicate

that student s prefers ci to cj , and ci ≽s cj to indicate that either ci ≻s cj or ci = cj . Similarly,

we can give corresponding notions on preferences of colleges. Each college c has a quota qc which

is the maximum number of students for which it has places. Let q ≡ (qc)c∈C denote the vector

of college quotas.

We denote the preferences profile of all colleges by ≻C≡ (≻c)c∈C , and the preferences profile

of all students by ≻S≡ (≻s)s∈S . The preferences profile of all players is denoted by ≻≡ (≻C

,≻S). We denote a college admissions problem by a four-tuple (C,S; q;≻). We also write it as

(C,S; q;≻C ,≻S).

For colleges, since they may be matched with different sets of students, we also need to

consider their preferences over groups of students.2 We assume these preferences are transitive,

but the completeness is not required. Particularly, throughout this paper we assume the following

properties hold (see, e.g., Konishi and Ünver, 2006a):

(i) Weak monotonicity in population: For every college c, any subset of acceptable students

G ∈ 2S with |G| < qc and any student s /∈ G, c prefers G∪{s} to G if and only if s is acceptable

to c.3

(ii) For any G ∈ 2S , if |G| > qc or G contains any unacceptable students, then c prefers

having all its positions unfilled to admitting G.

We will specify the colleges-proposing deferred acceptance algorithm below. These two as-

sumptions provide rationality for the procedure of that algorithm: colleges always want to match

with as many as possible (within their quotas) acceptable students and never propose to any

unacceptable student.

2.1 Matching between Colleges and Students

Definition 2.1 A matching is a correspondence µ : C ∪ S ⇒ 2C∪S∪{∅} such that

(1) µ(c) ⊆ S ∪ {∅} and |µ(c)| ≤ qc for all c ∈ C,

(2) µ(s) ⊆ C ∪ {∅} and |µ(s)| ≤ 1 for all s ∈ S,

(3) s ∈ µ(c) if and only if µ(s) = {c} for all c ∈ C and s ∈ S.4

2Without confusion, we abuse notations: For any i ∈ S (resp. i ∈ C), j, k ∈ C ∪ {∅} (resp. j, k ∈ S ∪ {∅}),

the preference relation {j} ≻i {k} is also denoted as j ≻i k.
3College’s preferences satisfy strong monotonicity in population iff ∀c ∈ C, ∀G,G′ ∈ 2S , |G′| < |G| ≤ qc implies

G ≻c G′ (see, e.g., Konishi and Ünver, 2006b). Obviously, strong monotonicity implies weak monotonicity.
4For i ∈ S, j ∈ C ∪ {∅}, we also write the notation µ(i) = {j} as µ(i) = j if it is not confused.
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Note that, for all i ∈ C ∪ S, we stipulate |µ(i)| = 0 if µ(i) = {∅}. We will use the notation

min(µ(c)) to denote the least preferred student of c in the set µ(c).

A matching µ is blocked by an individual i ∈ C ∪ S iff there exists some player j ∈ µ(i)

such that ∅ ≻i j. A matching is individually rational iff it is not blocked by any individual. A

matching µ is blocked by a pair (c, s) ∈ C × S iff

(1) c is acceptable to s and s is acceptable to c,

(2) |µ(c)| < qc or s ≻c s
′ for some s′ ∈ µ(c), and

(3) c ≻s µ(s).

Definition 2.2 A matching µ is stable iff it is not blocked by any individual or any college-

student pair.

2.2 Deferred Acceptance Algorithm

The deferred acceptance algorithm was first proposed by GS to find a stable assignment

for the marriage problem (one-to-one matching) and college admissions problem (many-to-one

matching). Specifically, the Colleges-Proposing Deferred Acceptance Algorithm proceeds as fol-

lows:

Step 1. (a). Each college c proposes to its top qc acceptable students (if c has fewer acceptable

choices than qc, then it proposes to all its acceptable choices).

(b). Each student s then places the best college among those proposed to her on her

waiting list, and rejects the rest.

In general, at

Step k. (c). Any college c who was rejected at step (k − 1) by any student proposes to its

most-preferred qc acceptable students who have not yet rejected it (if there are fewer than qc

remaining acceptable students, then it proposes to all).

(d). Each student s selects the best one from among the new colleges and that on

her waiting list, puts it on her new waiting list, and rejects the rest.

Since no college proposes twice to the same student, this algorithm always terminates in

a finite number of steps. The algorithm terminates when there are no more rejections. Each

student is matched with the college on his waiting list in the last step.

The colleges-proposing deferred acceptance algorithm yields an assignment denoted by µC .

GS showed that µC is a stable matching and it is optimal for every college. That is, for any

c ∈ C, there exists no other stable matching µ such that µ ≻c µC .
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3 Pareto Efficiency and Strategy-proofness for Colleges

In this section we study the Pareto efficiency and strategy-proofness for colleges. Roth (1985)

constructed two examples to show that, if the colleges have responsive preferences over groups

of students,5 then the colleges-proposing deferred acceptance algorithm may be neither weakly

Pareto efficient nor strategy-proof for colleges. Bäıou and Balinski (2000) introduced the concept

of max-min preference6 and investigated efficiency and incentives properties for many-to-many

matching. They provided valuable ideas, although some of their conclusions are not completely

correct. More recently, Hatfield et al. (2014) obtained some negative results. Specifically, in the

context of college admissions problem, results of Hatfield et al. (2014) show that there exists no

stable mechanism that satisfies weak Pareto efficiency and strategy-proofness for colleges even

though colleges have max-min preferences over groups of students. We first state the definition

of max-min preference as follows.

Definition 3.1 (Max-Min Criterion) The preference relation of c ∈ C is said to satisfy the

max-min criterion iff for any two sets of acceptable students G1, G2 ∈ 2S with |G1| ≤ qc and

|G2| ≤ qc,

(i) The strict preference relation ≻c over groups of students is defined as: G1 ≻c G2 if and

only if G2 is a proper subset of G1, or, |G1| ≥ |G2| and min(G1) ≻c min(G2) (i.e., c strictly

prefers the least preferred student in G1 to the least preferred student in G2), where min(Gi)

denotes the least preferred student of c in Gi;

(ii) The weak preference relation ≽c over groups of students is defined as: G1 ≽c G2 if and

only if G1 ≻c G2 or G1 = G2.
7

It is interesting to point out that max-min preferences over groups of students can display

either substitutability or complementarity effect, depending on whether G2 is a proper subset

of G1. As we know, for many-to-one or many-to-many matching problem, substitutability is

often adopted.8 While responsibility clearly implies substitutability, the max-min criterion also

5The preferences of college c are responsive iff whenever G ∈ 2S and i, j ∈ S such that |G| < qc and i, j /∈ G,

then i ≻c j implies G ∪ {i} ≻c G ∪ {j}.
6Similar conditions were studied by Echenique and Oviedo (2006), Kojima (2007) and Sotomayor (2004).
7Without confusion, we abuse notations: For college c, we denote its preferences over groups of students and

over individual students by the same notations ≻c and ≽c.
8In the language of the college admissions model, substitutability of college c’s preferences requires:“if admitting

s is optimal when certain students are available, admitting s must still be optimal when a subset of students are

available.” Formally, an agent c’s preference relation ≻c satisfies substitutability if, for any sets S and S′ with

S ⊆ S′, s ∈ Ch(S′ ∪{s},≻c) implies s ∈ Ch(S ∪{s},≻c), where Ch(S ∪{s},≻c) denotes agent c’s most-preferred
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implies substitutability. To see that max-min criterion is stronger than substitutability, we

assume that college c’s preference relation ≻c satisfies max-min criterion. Let S and S′ be sets

of students, with S ⊆ S′. Suppose s ∈ Ch(S′ ∪ {s},≻c). We shall prove s ∈ Ch(S ∪ {s},≻c).

Consider the following two cases:

Case (I): |Ch(S ∪ {s},≻c)| < qc. The condition s ∈ Ch(S′ ∪ {s},≻c) implies that s is

acceptable to c. Then, by the definition of max-min criterion, we have s ∈ Ch(S ∪ {s},≻c).

Case (II): |Ch(S ∪ {s},≻c)| = qc. We have |Ch(S′ ∪ {s},≻c)| = qc according to max-min

criterion. Since S ∪ {s} ⊆ S′ ∪ {s}, we have min(Ch(S′ ∪ {s},≻c)) ≽c min(Ch(S ∪ {s},≻c)).

The condition s ∈ Ch(S′ ∪ {s},≻c) implies s ≽c min(Ch(S′ ∪ {s},≻c)). Thus we infer s ≽c

min(Ch(S ∪ {s},≻c)). By max-min criterion, s ∈ Ch(S ∪ {s},≻c).

Thus, when G2 is a proper subset of G1, the max-min criterion displays substitutability

effect. When G2 and G1 have no belonging relationship, the max-min criterion then will display

complementarity effect. Indeed, when |G2| ≤ |G1| ≤ qc, the value uc(G1) = min
s∈G1

{uc(s)} and

uc(G2) = min
s∈G2

{uc(s)}.9 Then G1 ≻c G2 if and only if min(G1) ≻c min(G2), i.e., a college’s

welfare over a group of students is increased only if the least preferred student’s overall quality

in the group becomes higher, which means colleges’ preferences over a group of students are

complementary.

However, while max-min criterion and responsiveness both imply substitutability, there is

no implication relationship between max-min preferences and responsive preferences. Indeed,

the responsiveness does not imply the max-min criterion. For instance, suppose that college c’s

preferences over individual students are given by s1 ≻c s2 ≻c s3, qc = 2 and that the preference

list over groups of two candidates is given by {s1, s2} ≻c {s1, s3} ≻c {s2, s3}. Then it is clear that

the responsiveness is satisfied, but {s1, s3} ≻c {s2, s3} does not imply min{s1, s3} ≻c min{s2, s3},

which violates the max-min criterion.

The max-min criterion does not imply the responsiveness either. For instance, now suppose

s1 ≻c s2 ≻c s3, qc = 2, and that the preferences over groups of two candidates are given by

{s1, s2} ≻c {s1, s3}, {s1, s2} ≻c {s2, s3} and, college c cannot compare {s1, s3} and {s2, s3}.

subset of S∪{c} according to c’s preference relation ≻c. Kelso and Crawford (1982) introduce the substitutability

condition on hospital preferences in a matching model with wages. Roth (1984) adapts the deferred acceptance

algorithm to the many-to-many matching model with substitutable preference and obtains the corresponding

optimal stable matching. Mart́ınez et al. (2004), Echenique and Oviedo (2006) and Klaus and Walzl (2009) study

the stability problem of many-to-many matching under substitutable preference. Hatfield and Kojima (2008),

Hatfield and Kojima (2009), Hatfield and Kojima (2010) and Hatfield and Milgrom (2005) study the matching

with contracts under substitutable hospitals’ preferences.
9Sotomayor (2004) gave a similar illustration.
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Then it is clear that the max-min criterion is satisfied, but it violates the responsiveness (oth-

erwise one would have {s1, s3} ≻c {s2, s3}, contradicting the hypothesis that college c cannot

compare {s1, s3} and {s2, s3}).

A matching µ is said to be weakly colleges-efficient iff there exists no individually rational

matching µ′ such that µ′(c) ≻c µ(c) for all c ∈ C. A weakly students-efficient matching is defined

analogously.

For any two matchings µ and µ′, the notions µ ≻c µ′ means µ(c) ≻c µ′(c), µ ≽c µ′ means

µ(c) ≽c µ
′(c), µ ≽C µ′ means µ ≽c µ

′ for every c ∈ C, and µ ≻C µ′ means µ ≽C µ′ and µ ≻c µ
′

for some college c.

Given the colleges C and students S, a mechanism φ is a function from any stated pref-

erences profile ≻ and quota-vector q to a matching. A mechanism is stable iff the outcome

of that mechanism, denoted by φ(C,S; q;≻), is a stable matching for any reported ≻ and q.

A mechanism is weakly colleges (resp. students)-efficient iff it always selects a weakly colleges

(resp. students)-efficient matching for every preference profile. A mechanism is colleges (resp.

students)-strategy-proof iff at every preference profile, no college (resp. student) can receive a

strictly better assignment by misrepresenting its preferences.

Now we borrow the example of Abdulkadiroğlu and Sönmez (2010) to show that, under any

reasonable preference assumption, there exists no stable matching mechanism satisfying weak

colleges-efficiency or colleges-strategy-proofness.

Example 1 This example is essentially the same as that used by Hatfield et al. (2014): there

are two colleges c1, c2 with qc1 = 2, qc2 = 1, and two students s1, s2. The preferences are as

follows:

≻s1 : c1, c2, ∅ ≻c1 : {s1, s2}, {s2}, {s1}, {∅}

≻s2 : c2, c1, ∅ ≻c2 : {s1}, {s2}, {∅}

The only stable matching for this problem is:

µ =

 c1 c2

{s1} {s2}

 .

For another matching

µ′ =

 c1 c2

{s2} {s1}

 ,

we can see that both c1 and c2 prefer µ′ to µ. This means that there exists no stable mechanism

being of weakly colleges-efficient. In addition, if college c1 reports that s2 is its only acceptable

student, other agents’s preference relations keep unchanged, then the only stable matching is
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µ′. Thus under any stable matching mechanism college c1 can become strictly better off by

misreporting its preference. There exists no stable mechanism being of colleges-strategy-proof.

In Example 1, we can see that college c1’s preference relation is commonly reasonable, but

the number of students is less than the aggregate quota of colleges. This may potentially cause

the failure of the existence of stable mechanism satisfying colleges-efficiency or colleges-strategy-

proofness. To avoid this possible environment, we propose the following condition which says

that in the market there are enough acceptable students such that each college can admit as

many as its quota acceptable students if they want.

Definition 3.2 (Quota-Saturability) For the college admissions problem, we say the quota-

saturability condition holds iff there are enough acceptable students such that each college c can

be assigned qc acceptable students under the college-optimal stable matching.

We will show that the max-min criterion, together with quota-saturability condition, ensures

that the colleges-proposing deferred acceptance algorithm is weakly Pareto efficient and strategy-

proof for colleges. We first present the following lemma.

Lemma 1 Suppose that the quota-saturability condition is satisfied. Let µ be a stable assign-

ment. If for the least preferred student min(µ(c)) of every c ∈ C, there exists another college c′

which prefers min(µ(c)) to one of its mates µ(c′), then there exists a stable assignment µ∗ with

µ∗ ≻C µ.

This lemma actually says that, for a stable assignment such that each college is matched

with as many as its quota students, if each least preferred student has another college which

want to be matched with her, then there exists another stable assignment such that no college

becomes worse off and at least one college is strictly better off. Intuitively, Since each least

preferred student has another college which want to be matched with her, it is expected to find

a cycle consisting of the same number of least preferred students and colleges such that each

least preferred student is followed by a college which wishes to be matched with her. Then let

every least preferred student enroll into the college which followed her. By this way, one can get

the desirable matching.

We note that Lemma 1 was first claimed by Bäıou and Balinski (2000, henceforth BB)

without assuming the quota-saturability condition. However, the conclusion of Lemma 1 fails

to fulfil if the quota-saturability condition is not satisfied. Specifically, we consider the setting

as given in Example 1.
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Example 1 (Continued) Consider the sets of colleges and students, and their preferences and

quotas are as given in Example 1. The only stable matching for this problem is:

µ =

 c1 c2

{s1} {s2}

 .

For c1, min(µ(c1)) = s1 is not matched to c2 and c2 prefers min(µ(c1)) = s1 to s2 ∈ µ(c2).

For c2, min(µ(c2)) = s2 is not matched to c1 and c1 prefers min(µ(c2)) = s2 to s1 ∈ µ(c1).

There exists no other stable assignment. This indicates that we cannot obtain the conclusion of

Lemma 1 if the quota-saturability condition is not satisfied.

With Lemma 1, we have the following theorem on weak Pareto efficiency.

Theorem 1 Suppose the quota-saturability condition holds and the preference of every college

satisfies the max-min criterion. Then, the colleges-proposing deferred acceptance algorithm is

weakly colleges-efficient.

Theorem 1 shows that the colleges-proposing deferred acceptance algorithm is weakly Pareto

efficient for colleges under the max-min preference and quota-saturability condition. If the

colleges have responsive preferences over groups of students, the corresponding result does not

hold even if the quota-saturability condition is satisfied (see Proposition 1 of Roth, 1985). We

know that the max-min criterion is unrelated to the responsiveness. Thus, Theorem 1 lies in

obtaining the desired result under a preference condition that is not stronger or weaker than

responsive preference.

To obtain the strategy-proofness property, we give the following “blocking lemma”, which

extends the “blocking lemma” for marriage problem obtained by Gale and Sotomayor (1985).

Lemma 2 Suppose the quota-saturability condition holds and the preference of every college

satisfies the max-min criterion. Let µ be any individually rational matching and C ′ be all colleges

who prefer µ to µC . If C
′ is nonempty, then there is some c′ ∈ C ′ and a pair (c, s) ∈ C\C ′×µ(c′)

that blocks µ.

Note that both quota-saturability condition and max-min preference are crucial for the

conclusion of Lemma 2. We illustrate this by the following two examples.

Example 1 (Continued) Consider the sets of colleges and students, and their preferences and

quotas are as given in Example 1. The matching produced by the colleges-proposing deferred

acceptance algorithm is:

µC =

 c1 c2

{s1} {s2}

 .
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An individually rational matching µ is:

µ =

 c1 c2

{s2} {s1}

 .

One can see that the max-min criterion is satisfied, but the quota-saturability condition does

not hold. It is easy to check that both c1 and c2 prefer µ to µC . Thus C
′ = {c1, c2} is nonempty

and C ′ = C. The conclusion of Lemma 2 does not hold. Hence, this example shows that, if the

quota-saturability condition does not hold, the max-min criterion alone is not sufficient for the

conclusion in Lemma 2. Thus, the quota-saturability condition cannot be dispensed with.

Example 2 There are three colleges c1, c2, c3 with qc1 = 2, qc2 = 1, qc3 = 1, and four students

s1, s2, s3, s4. The preferences are as follows:

≻c1 : {s1, s2}, {s1, s3}, {s1, s4}, {s2, s3}, {s2, s4}, {s3, s4}, {s1}, {s2}, {s3}, {s4}, {∅}

≻c2 : {s3}, {s1}, {s2}, {s4}, {∅} ≻c3 : {s1}, {s2}, {s3}, {s4}, {∅}

≻s1 : c2, c1, c3, ∅ ≻s2 : c3, c1, c2, ∅

≻s3 : c1, c2, c3, ∅ ≻s4 : c1, c3, c2, ∅

The matching produced by the colleges-proposing deferred acceptance algorithm is:

µC =

 c1 c2 c3

{s3, s4} {s1} {s2}

 .

An individually rational matching µ is as follows:

µ =

 c1 c2 c3

{s2, s4} {s3} {s1}

 .

One can see that the quota-saturability condition holds, but college c1’s preference does not

satisfy the max-min criterion. It is easy to check that all of the three colleges prefer µ to µC ,

so C ′ = {c1, c2, c3} is nonempty and C ′ = C. Therefore, the conclusion of Lemma 2 does not

hold. This example shows that, if the max-min criterion is not satisfied, we cannot achieve the

conclusion of Lemma 2 even if the quota-saturability condition holds.

With the help of the above “blocking lemma”, we have the following theorem on strategy-

proofness.

Theorem 2 Suppose that the quota-saturability condition holds and the preference of every

college satisfies the max-min criterion. Then the colleges-proposing acceptance algorithm is

colleges-strategy-proof.
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Combining Theorems 1 and 2 together, we know that the algorithm is weakly Pareto efficient

and strategy-proof for colleges under the max-min preference and quota-saturability condition.

If colleges have responsive preferences over groups of students, neither efficiency nor strategy-

proofness holds even if the quota-saturability condition is satisfied (see Propositions 1 and 2 of

Roth, 1985).

4 Monotonicity for Colleges

In this section we consider the issue of monotonicity for the college admissions problem. We

want to find the conditions under which the colleges-proposing deferred acceptance algorithm

is not only weakly Pareto efficient and strategy-proof, but also monotone for colleges. The

monotonicity means that an agent is weakly better off if she becomes more preferred by players

on the opposite side. For completeness, we first introduce the following concept originally

proposed by Balinski and Sönmez (1999):

Definition 4.1 A preference relation ≻′
s is an improvement for a college c over ≻s iff

(1) c ≻s c
′ implies c ≻′

s c
′ for all c′ ∈ C ∪ {∅} and

(2) c1 ≻′
s c2 if and only if c1 ≻s c2 for all c1, c2 ∈ (C ∪ {∅})\{c}.

Loosely speaking, an improved preference relation means c becomes more preferred by s. A stu-

dent preference profile ≻′
S is an improvement for c over ≻S iff for every s, ≻′

s is an improvement

for c over ≻s. That is, c becomes more preferred by all students.

Definition 4.2 A mechanism φ is colleges-monotone iff, whenever for any preference profile ≻,

any c ∈ C, and any students preference profiles ≻S and ≻′
S , ≻′

S is an improvement for c over

≻S , then c weakly prefers φ(≻′
S ,≻C) to φ(≻S ,≻C).

That is, the outcome of a mechanism is weakly better off for a college if that college becomes

more preferred by all students. A students-monotone mechanism is also defined in the same

way.

Balinski and Sönmez (1999) proposed the concept of “respecting improvement”. Bäıou

and Balinski (2000) used the notion of monotonicity to express the same meaning. For the

college admissions problem, Balinski and Sönmez (1999) proved that the students-proposing

deferred acceptance algorithm is monotone for students. That is, under the students-proposing

deferred acceptance algorithm, a student will enroll in a weakly better college if she becomes

more preferred by all colleges. Bäıou and Balinski (2000) studied the many-to-many matching
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under the assumption of max-min preference. They asserted that the reduction algorithm is also

monotone for agents on one of the two matching sides. However, Hatfield et al. (2014) showed

that the condition of max-min preference is not sufficient for the existence of a stable mechanism

that satisfies the monotonicity property. Hence the above result of Bäıou and Balinski (2000)

is also incomplete. In fact, even though the preferences of colleges are max-min and the quota-

saturability condition is satisfied, there may not exist a stable colleges-monotone mechanism.

To see this, consider the following example:

Example 3 There are three colleges c1, c2, c3 with qc1 = 2, qc2 = 1, qc3 = 1, and four students

s1, s2, s3, s4. The preferences are as follows:

≻s1 : c2, c1, c3, ∅ ≻c1 : {s1, s2}, · · · , {s3}, {s4}, {∅}

≻s2 : c3, c1, c2, ∅ ≻c2 : {s4}, {s1}, · · ·

≻s3 : c1, c2, c3, ∅ ≻c3 : {s2}, {s4}, · · ·

≻s4 : c3, c2, c1, ∅

Under (C,S; q;≻C ,≻S), the only stable matching for this problem is:10

µ =

 c1 c2 c3

{s1, s3} {s4} {s2}

 .

Now suppose ≻′
s2 : c1, c3, c2, ∅, and ≻′

si=≻si for i = 1, 3, 4. Then ≻′
S is an improvement

for c1 over ≻S . Under (C, S; q;≻C ,≻′
S), the only stable matching for this problem is:11

µ′ =

 c1 c2 c3

{s2, s3} {s1} {s4}

 .

In this example, the quota-saturability condition is satisfied, but under max-min preference (resp.

responsive preference), we cannot obtain µ′(c1) ≽c1 µ(c1),
12 although c1 becomes (weakly) more

preferred by all students. Thus, there does not exist any stable college-monotone mechanism.

A natural question is under what conditions the monotonicity property can also be guar-

anteed. To this end, we propose the following preference criterion, which, together with the

quota-saturability condition, ensures that the colleges-proposing deferred acceptance algorithm

is not only weakly Pareto efficient and strategy-proof, but also monotone for colleges.

10The uniqueness of the stable matching under (C, S; q;≻C ,≻S) is shown in the Appendix.
11The uniqueness of the stable matching under (C, S; q;≻C ,≻′

S) is shown in the Appendix.
12Under responsive preference, we have µ(c1) = {s1, s3} ≻c {s2, s3} = µ′(c1). Under max-min preference,

colleges c1 cannot compare µ(c1) = {s1, s3} and µ′(c1) = {s2, s3}.
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Definition 4.3 (W-Max-Min Criterion) The preference relation of c ∈ C is said to satisfy

the W-max-min criterion iff the following conditions are met: for any two sets of acceptable

students G1, G2 ∈ 2S with |G1| ≤ qc and |G2| ≤ qc,

(i) The weak preference relation ≽c over groups of students is defined as: If G2 is a subset of

G1 or, |G1| ≥ |G2| and min(G1) ≽c min(G2) (i.e., c weakly prefers13 the least preferred student

in G1 to the least preferred student in G2), then G1 ≽c G2;

(ii) If G1 ≽c G2 and G2 ≽c G1, then G1 and G2 are indifferent for c, denoted by G1 ∼c G2.

If G1 ≽c G2 and G2 �c G1, then c strictly prefers G1 to G2, denoted by G1 ≻c G2.

Here the notion of “W-max-min criterion” refers to the max-min criterion that is defined in

terms of weak preferences over group of students to distinguish from the conventional notion of

max-min criterion that is defined in terms of strict preferences over group of students. Note that,

for any G1, G2 ∈ 2S with |G1| ≤ qc and |G2| ≤ qc, G1 ≻c G2 under the W-max-min criterion

is equivalent to G1 ≻c G2 under the max-min criterion. The difference between the max-min

criterion and the W-max-min criterion lies in: (1) Under the max-min criterion, G1 ≽c G2 and

G2 ≽c G1 imply G1 = G2, while under W-max-min criterion G1 ≽c G2 and G2 ≽c G1 imply

G1 = G2 or, |G1| = |G2| and min(G1) = min(G2). (2) For any G1, G2 ∈ 2S with |G1| ≤ qc and

|G2| ≤ qc, under the max-min criterion, c may not compare G1 and G2. It may be remarked

that, together with the transitivity of preferences, the preference relation between G1 and G2 is

complete under the W-max-min criterion, that is, either G1 ≽c G2 or G2 ≽c G1.

We note that there is cohesive coincidence between the W-max-min criterion and the deferred

acceptance algorithm. We illustrate this point by a simple example. Assume there five students

s1, · · · , s5, college c’s preference relation is given by s1 ≻c s2 ≻c s3 ≻c s4 ≻c s5 and the quota

qc = 2. Then the assignment outcomes produced by the deferred acceptance algorithm and the

W-max-min preference relations can be compared as in Table 1.

We then have the following result.

Theorem 3 Suppose that the W-max-min criterion and the quota-saturability condition are

satisfied. Then the colleges-proposing deferred acceptance algorithm is not only weakly colleges-

efficient and colleges-strategy-proof, but also monotone for colleges.

Theorem 3 indicates that, if the condition of max-min preference in Theorems 1-2 is replaced

by W-max-min criterion condition, then the colleges-proposing deferred acceptance algorithm

13As c’s preference over individual students is strict, “weakly prefers” means that min(G1) ≻c min(G2) or

min(G1) = min(G2).
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Table 1: Comparison between DA-algorithm and W-max-min preference relation

The satisfactory

grade of c

The last student

c proposes to

in the DA algorithm

c’s partners W-max-min preference relation

1 s2 {s1, s2} {s1, s2} is the first-best choice of c

2 s3 {s1, s3} or {s2, s3} {s1, s3} ∼c {s2, s3}

3 s4
{s1, s4} or {s2, s4}

or {s3, s4}
{s1, s4} ∼c {s2, s4} ∼c {s3, s4}

4 s5
{s1, s5} or {s2, s5} or

{s3, s5} or {s4, s5}
{s1, s5} ∼c {s2, s5} ∼c {s3, s5} ∼c {s4, s5}

guarantees not only weak Pareto efficiency and strategy-proofness, but also monotonicity for

colleges.

5 Discussion

As we discussed in Section 3, max-min preferences contain both substitutability and comple-

mentarity effects, which enable us to get the desirable properties such as weak Pareto efficiency,

strategy-proofness, and monotonicity. An question is then whether the max-min criterion can

be weakened. The answer is unlikely. Indeed, we note that both the weak Pareto efficiency

and strategy-proofness properties fail even if we slightly weaken the requirement of max-min

preference. Specifically, we consider the following example.

Example 4 There are three colleges c1, c2, c3 with qc1 = 2, qc2 = 1, qc3 = 1, and five students

s1, s2, s3, s4, s5. The preferences are as follows:

≻s1 : c2, c1, c3, ∅ ≻s5 : c1, c3, c2, ∅

≻s2 : c3, c1, c2, ∅ ≻c1 : s1, s2, s3, s4, s5, ∅

≻s3 : c1, c2, c3, ∅ ≻c2 : s3, s1, · · ·

≻s4 : c1, c3, c2, ∅ ≻c3 : s4, s2, · · ·

Under (C,S; q;≻C ,≻S), the college-optimal matching is

µC =

 c1 c2 c3

{s3, s4, s5} {s1} {s2}

 .

For college c1’s preference over groups of students, we slightly weaken the requirement of max-

min criterion.
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Case I: We assume that c1 prefers {s1, s2} to {s3, s4, s5}. Sometimes, such assumption seems

to be reasonable. One can easily check that this assumption violates the max-min criterion, as

|{s1, s2}| ≥ |{s3, s4, s5}| does not hold although min({s1, s2}) ≻c1 min({s3, s4, s5}). Then, under

µ1 =

 c1 c2 c3

{s1, s2} {s3} {s4}

 ,

every college obtains improvement relative to µC . Thus µC is not weakly Pareto efficient. In

addition, for this case, college c1 can receive a strictly better assignment by misreporting its

preferences and quota. That is, if it reports qc1 = 2 and s1, s2 are its only acceptable students,

then it will become strictly better off than to report truthfully. Consequently, µC is not strategy-

proof.

Case II: We assume that c1 prefers {s1, s2, s5} to {s3, s4, s5}. Generally, such assumption is

natural and reasonable. One can easily check that this assumption violates the max-min criteri-

on, as min({s1, s2, s5}) ≻c1 min({s3, s4, s5}) does not hold although |{s1, s2, s5}| ≥ |{s3, s4, s5}|.

Then, under

µ2 =

 c1 c2 c3

{s1, s2, s5} {s3} {s4}

 ,

every college obtains improvement relative to µC . Thus µC is not weakly Pareto efficient. For

this case, college c1 can also receive a strictly better assignment by misreporting its preferences.

That is, if it reports s1, s2 and s5 are its only acceptable students, then it will become strictly

better off than to report truthfully. Thus µC is not strategy-proof.

This example indicates that one unlikely expect to obtain the desired efficiency and incentive

properties for colleges under a preference restriction which is weaker than max-min criterion.

6 Conclusion

We investigate the efficiency, incentive, and monotonicity properties for colleges. We first

show that the colleges-proposing deferred acceptance algorithm is weakly Pareto-efficient for

colleges if the quota-saturability condition holds and every college has max-min preference. We

then extend the “blocking lemma” for marriage problem (one-to-one matching) obtained by Gale

and Sotomayor to the college admissions problem (many-to-one matching), and consequently

obtain the strategy-proofness property of the colleges-proposing deferred acceptance algorithm.

We also define the notion of W-max-min criterion and show that the W-max-min criterion, to-
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gether with quota-saturability condition, ensures that the colleges-proposing deferred acceptance

algorithm is weakly Pareto-efficient, strategy-proof and monotone for colleges.

For marriage problem (one-to-one matching), Roth (1982) showed that the men-proposing de-

ferred acceptance algorithm is weakly Pareto efficient and strategy-proof for men. The strategy-

proofness property is also obtained by Dubins and Freedman (1981). However, there exists

no straightforward approach to extend the corresponding results to the case of many-to-one

matching. Roth (1985) showed that the college admissions problem is not equivalent to the

marriage problem: the colleges-proposing deferred acceptance algorithm may be neither weakly

Pareto efficient nor strategy-proof for colleges if colleges have responsive preferences. In some

sense, the results of this paper provide complements for efficiency and incentives properties of

many-to-one matching. Whether these efficiency and incentives properties can be extended to

the case of many-to-many matching is an interesting problem for future investigations.
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Appendix

Proof of Lemma 1. We first note that the quota-saturability condition and the stability

of µ imply |µ(c)| = qc for every c ∈ C. For simplicity, let sc ≡ min(µ(c)), α ≡ {sc|c ∈ C} and

β ≡ {(c, sc)|c ∈ C}. For each sc ∈ α, by assumption, there is at least one c′ ∈ C not matched

with sc who prefers sc to one of its mates µ(c′). Let c∗ be the college in this set that sc prefers

most, and denote by α∗ ≡ {c∗|c ∈ C} and β∗ ≡ {(c∗, sc)|c ∈ C}.

By the stability of µ, we have c ≻sc c
∗ for every c ∈ C, as sc /∈ µ(c∗) and c∗ prefers sc to one

of its mates µ(c∗). By the construction of α∗, we know that sc ≻c∗ sc∗ for every c∗ ∈ α∗. Since

|α| = |C| is finite, there must exist a directed cycle among a subset, γ, of α∪α∗. Particularly, γ

can be expressed as (c, sc, c
∗, sc∗ , (c

∗)∗, s(c∗)∗ , · · · , c, sc) such that in the sequence every member

prefers her predecessor to her successor. We denote by γ∗ ≡ {(c, sc)|c ∈ γ} ∪ {(c∗, sc)|c ∈ γ}.

Define µ∗ to be µ except for the pairs belonging to γ∗, where those of β∗ are taken instead

of those of β:

(c, s) ∈ µ∗ if (c, s) ∈ µ\γ∗ or (c, s) ∈ β∗ ∩ γ∗.

By construction, we know that, under µ∗ and µ, every player is matched with the same number

of opposite side players. Thus µ∗ is an assignment. It is also stable. Specifically, we suppose

(c, s) /∈ µ∗, then either (c, s) /∈ µ ∪ µ∗ or (c, s) ∈ µ\µ∗. For the first case, (c, s) /∈ µ implies that,

either there exists some c′ ∈ C being matched to s under µ such that c′ ≻s c, or there are qc

students, whom c prefers to s, being matched to c under µ. By the construction of β∗ and µ∗,

together with the condition (c, s) /∈ β∗∩γ∗, we obtain that, either there exists some c̃ ∈ C being

matched to s under µ∗ such that c̃ ≻s c, or there are qc students who are matched to c under

µ∗ and are preferred to s by c. For the second case, (c, s) = (c, sc) ∈ β ∩ γ∗, and thus by the

construction of µ∗, there are qc students who are matched to c under µ∗ and are preferred to sc

by c. Finally, the construction of µ∗ implies that µ∗ ≻C µ. The proof is completed. �

Proof of Theorem 1. We argue by contradiction. Suppose there exists some individually

rational matching µ such that µ ≻c µC for every c ∈ C. Since there are enough acceptable

students in the market, |µC(c)| = qc for any c ∈ C according to the procedure of the deferred

acceptance algorithm. By the max-min criterion, µ ≻c µC implies |µ(c)| = qc and min(µ(c)) ≻c

min(µC(c)) for every c ∈ C.

We assert that, if (c, s) ∈ µC\µ, then there exists some c′ ∈ C such that (c′, s) ∈ µ\µC .

Suppose not, then there exists some pair (c, s) ∈ µC\µ and µ(s)\µC(s) = {∅}. This implies

0 = |µ(s)| < |µC(s)| = 1. There must exist s̃ ∈ S such that 1 = |µ(s̃)| > |µC(s̃)| = 0, as

19



|µC | =
∑c=|C|

c=1 qc = |µ| and
∑s=|S|

s=1 |µ(s)| = |µ| = |µC | =
∑s=|S|

s=1 |µC(s)|. Then we can find some

college, say, c̃ ∈ C, such that (c̃, s̃) ∈ µ\µC . Since s̃ ≻c̃ min(µC(c̃)) and |µC(s̃)| = 0, µC is

blocked by (c̃, s̃), which contradicts the stability of µC .

Particularly, for every c ∈ C, µ ≻c µC implies (c,min(µC(c))) ∈ µC\µ. Then, there exists

some c′ ∈ C such that (c′,min(µC(c))) ∈ µ\µC . (c
′,min(µC(c))) ∈ µ and µ ≻c′ µC imply that

min(µC(c)) ≻c′ min(µC(c
′)). Thus we obtain that, for the stable matching µC and every c ∈ C,

min(µC(c)) is not matched to some college c′ who prefers min(µC(c)) to min(µC(c
′)). By Lemma

1, there exists a stable assignment µ′ such that µ′ ≻C µC , which contradicts the optimality of

µC . The proof is completed. �

Proof of Lemma 2. Case I: µ(C ′) ̸= µC(C
′). For any college c̃ ∈ C ′, the assumption that c̃

prefers µ to µC implies |µ(c̃)| = qc̃, as the quota-saturability condition implies |µC(c̃)| = qc̃ and

the max-min criterion holds. Then we have |µ(C ′)| ≡
∑

c∈C′ |µ(c)| =
∑

c∈C′ |µC(c)| ≡ |µC(C
′)|,

and thus, by µ(C ′) ̸= µC(C
′), we have µ(C ′)\µC(C

′) ̸= ∅. Choose s in µ(C ′)\µC(C
′) such that

s ∈ µ(c′) for some c′ ∈ C ′. Since c′ prefers µ(c′) to µC(c
′), we obtain |µ(c′)| = |µC(c

′)| = qc′

and min(µ(c′)) ≻c′ min(µC(c
′)). Then s ∈ µ(c′) implies s ≻c′ min(µC(c

′)). This indicates that,

in the procedure of the deferred acceptance algorithm, c′ must have proposed to s before it

proposes to min(µC(c
′)). s /∈ µC(c

′) implies that s has another choice which is better than

c′ and s rejects c′, so µC(s) ≻s c′. Since s ∈ µ(c′), the college c = µC(s) is unmatched with

s under µ. It is easy to see that (c, s) blocks µ. Firstly, c ≻s c′ and c′ = µ(s). Secondly, if

|µ(c)| < qc, the fact that c and s are acceptable to each other implies (c, s) blocks µ; if |µ(c)| = qc,

s /∈ µC(C
′) and c = µC(s) imply c /∈ C ′, then the preference relation µ ≻c µC does not hold.

Thus min(µC(c)) ≽c min(µ(c)). Then, by the condition s ∈ µC(c)\µ(c), we have s ≻c min(µ(c)).

Hence (c, s) blocks µ.

Case II: µ(C ′) = µC(C
′) = S′. Let s be the last student in S′ to receive a proposal from an

acceptable college, say, c′, of C ′ in the deferred acceptance algorithm such that s = min(µC(c
′))

(if there is more than one such student, we choose anyone among them). Suppose this happens

at step k. Since c′ prefers µ to µC , min(µ(c′)) ≻c′ min(µC(c
′)) by the max-min criterion. Then

we have s /∈ µ(c′). Thus s ∈ µ(C ′) implies that there is some other college c′′ ∈ C ′ such that

s ∈ µ(c′′)\µC(c
′′). The assumption that c′′ prefers µ to µC implies min(µ(c′′)) ≻c′′ min(µC(c

′′)).

Hence we have s ≻c′′ min(µC(c
′′)). This indicates that c′′ must propose to s in the procedure

of the deferred acceptance algorithm. s /∈ µC(c
′′) implies that s accepts a better college and

rejects c′′. According to the deferred acceptance algorithm, we know that student s has at least

one better choice on her waiting list when she rejects c′′ at some step sooner than step k (as no
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students reject any college in C ′ after step (k − 1)). Since c′ proposes to s and is accepted by

s at step k, we know it must be the case that s rejects some college c ∈ C\C ′ and accepts c′

at this step. It is easy to see that c and s are acceptable to each other and c ≻s c′′. Taking a

similar argument as given in Case I, we obtain (c, s) blocks µ. The proof is completed. �

Proof of Theorem 2. Let µC be the assignment produced by the colleges-proposing

deferred acceptance algorithm under the true preferences and true quotas (C, S; q;≻C ,≻S).

Suppose some nonempty subset C ′ of C misstates its preferences and quotas and is strictly better

off under the matching µ, produced by the colleges-proposing deferred acceptance algorithm

according to the reported preferences and quotas (C, S; q′;≻′
C ,≻S), than under µC with respect

to the true environment (C, S; q;≻C ,≻S). By Theorem 1, we know C ′ ̸= C. Note that µ is stable

under the reported environment (C,S; q′;≻′
C ,≻S). If µ is not individually rational, it must be

the case that for some c′ ∈ C ′, c′ is matched to an unacceptable student or matched with more

students than its quota. This contradicts µ ≻c′ µC . Thus µ must be individually rational. Also,

by Lemma 2, there exists (c, s) ∈ [C\C ′]× S that blocks µ with respect to the true preferences

and quotas (C, S; q;≻C ,≻S). Since c and s do not misstate their preferences and quotas, they

are exactly the same in both (C,S; q;≻C ,≻S) and (C, S; q′;≻′
C ,≻S). Thus (c, s) blocks µ with

respect to (C, S; q′;≻′
C ,≻S). However, we know µ is stable under (C, S; q′;≻′

C ,≻S), as µ is

produced by the colleges-proposing deferred acceptance algorithm according to (C,S; q′;≻′
C ,≻S

). This contradiction completes the proof. �

Uniqueness of Stable Matching under (C,S; q;≻C ,≻S). If for some matching µ,

|µ(c1)| = 1, it must be unstable. We consider the matching µ such that |µ(c1)| = 2. If

s4 ∈ µ(c1), then (c2, s4) blocks µ, it is unstable. If s2 ∈ µ(c1), then (c3, s2) blocks µ, it is

unstable. If µ(c2) = {s2}, then (c3, s2) blocks µ, it is unstable. Hence the only stable matching

is: µ(c1) = {s1, s3}, µ(c2) = {s4} and µ(c3) = {s2}. �

Uniqueness of Stable Matching under (C,S; q;≻C ,≻′
S). If for some matching µ,

|µ(c1)| = 1, it must be unstable. Consider the matching µ such that |µ(c1)| = 2. If s4 ∈ µ(c1),

then (c2, s4) blocks µ, it is unstable. If s2 /∈ µ(c1), then (c1, s2) blocks µ, it is unstable. Now

consider the case s2 ∈ µ(c1) but s4 /∈ µ(c1). If µ(c2) = {s4}, then (c3, s4) blocks µ, it is unstable.

Thus the stable assignment satisfies: s2 ∈ µ(c1) and µ(c3) = {s4}. If s1 ∈ µ(c1), then (c2, s1)

blocks µ. The only stable matching is: µ(c1) = {s2, s3}, µ(c2) = {s1} and µ(c3) = {s4}. �

Proof of Theorem 3. We can prove the weak Pareto efficiency and strategy-proofness for

colleges by repeating the proofs of Lemmas 1-2 and Theorems 1-2 step by step. Thus, here we

only need to prove the monotonicity for colleges.
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Suppose ≻′
S be an improvement for college c over ≻S . Let µC and µ′

C be the two assignments

produced by the colleges-proposing algorithm under (C, S; q;≻C ,≻S) and (C, S; q;≻C ,≻′
S), re-

spectively. We want to show that µ′
C(c) ≽c µC(c). By the quota-saturability condition, we

know |µ′
C(c)| = |µC(c)| = qc. According to the W-max-min criterion, it is sufficient to prove

min(µ′
C(c)) ≽c min(µC(c)).

We assert that, under (C, S; q;≻C ,≻′
S), the college c only needs to propose to students s

with s ≽c min(µC(c)) on c’s preference list, and then the college c will be assigned with qc

students.

Indeed, consider the step, say, step k, in the deferred acceptance algorithm, at which c

proposes to at least one student and is not rejected by any student (including students who are

proposed to in this step and who place c on their waiting lists at some previous step), and also

there are no students who reject c from step k to the termination of the algorithm. That is,

after step k, the college c always has qc matched students and never needs to propose to other

students. Let Sk denote the set of students to whom the college c newly proposes at step k, and

min(Sk) denote the least preferred student of c in Sk. For step k, we check the following two

cases.

Case I: min(Sk) ≽c min(µC(c)). Obviously, the college c must be matched with qc students

who are weakly preferred to min(µC(c)). The proof is done.

Case II: min(µC(c)) ≻c min(Sk).

(i) min(µC(c)) /∈ Sk. We want to prove that c has been accepted by qc students belonging to

µ′
C(c) before step k, which contradicts the assumption on step k. Thus this case is impossible.

To see this, for any s ∈ µC(c), if s ∈ µ′
C(c), then student s ∈ µC(c) corresponds to herself

s ∈ µ′
C(c). If s /∈ µ′

C(c), then it must be the case that college c proposes to s, but s rejects c.

The reason is the following:

(1): s rejects c because s enrolls in another college c(1) such that c(1) ≻′
s c. Since ≻′

s is

an improvement for c over ≻s, it implies c(1) ≻s c. The stability of µC and s ∈ µC(c) imply

that µC(c
(1)) contains qc(1) students who are better than s according to the preferences of c(1).

s ∈ µ′
C(c

(1)) indicates that c(1) must propose to s under µ′
C . The underlying reason must be

that there exists some student s(1) ∈ µC(c
(1)) who rejects c(1) under µ′

C .

(2): s(1) rejects c(1) because she enrolls in another college c(2) such that c(2) ≻′
s(1)

c(1). Since

≻′
s(1)

is an improvement for c over ≻s(1) , it implies c(2) ≻s(1) c(1). The stability of µC and

s(1) ∈ µC(c
(1)) imply that µC(c

(2)) contains qc(2) students who are better than s(1) according to

the preferences of c(2). s(1) ∈ µ′
C(c

(2)) indicates that c(2) must propose to s(1) under µ′
C . The
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underlying reason must be that there exists some student s(2) ∈ µC(c
(2)) who rejects c(2) under

µ′
C .

(n): With this process going on, we must find at some step a college c(n) and a student s(n)

such that s(n) ∈ µC(c
(n)) ∩ µ′

C(c) and c ≻′
s(n) c

(n), as every college has no empty seat under µC

and s ∈ µC(c)\µ′
C(c).

Thus, for any student s ∈ µC(c)\µ′
C(c), we can always find a corresponding student s(n) ∈

µ′
C(c)\µC(c). The above analysis indicates that s(n) accepts c previous to that s rejects c, so

s(n) has accepted c before step k. Therefore, we obtain that c has been accepted by qc students

belonging to µ′
C(c) before step k, which violates our assumption on step k.

(ii) min(µC(c)) ∈ Sk. Then every student in µC(c)\Sk corresponds to a student belonging

to µ′
C(c)\Sk (the proof as given in (i)), and, |µC(c)∩Sk| < |Sk| and Sk ⊆ µ′

C(c) imply |µC(c)| <

|µ′
C(c)|, which contradicts |µC(c)| = qc = |µ′

C(c)|. Thus, this case is also impossible.

The combination of (i) and (ii) implies Case II is impossible. We complete the proof. �
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3. Bäıou, M., Balinski, M., 2000. Many-to-many matching: stable polyandrous polygamy (or

polygamous polyandry). Discrete Appl. Math. 101, 1-12.

4. Balinski, M., Sönmez, T., 1999. A tale of two mechanisms: student placement. J. Econ.

Theory 84, 73-94.

5. Dubins, L.E., Freedman, D.A., 1981. Machiavelli and the Gale-Shapley algorithm. Amer.

Math. Monthly 88, 485-494.

6. Echenique, F., Oviedo, J., 2006. A theory of stability in many-to-many matching. Theor.

Econ. 1, 233-273.

7. Gale, D., Shapley, L., 1962. College admissions and the stability of marriage. Amer.

Math. Monthly 69, 9-15.

8. Gale, D., Sotomayor, M., 1985. Some remarks on the stable matching problem. Discrete

Appl. Math. 11, 223-232.

9. Hatfield, J.W., Kojima, F., 2008. Matching with contracts: Comment. Amer. Econ. Rev.

98, 1189-1194.

10. Hatfield, J.W., Kojima, F., 2009. Group incentive compatibility for matching with con-

tracts. Games Econ. Behav. 67, 745-749.

11. Hatfield, J.W., Kojima, F., 2010. Substitutes and stability for matching with contracts.

J. Econ. Theory 145, 1704-1723.

12. Hatfield, J.W., Kojima, F., Narita, Y., 2014. Many-to-many matching with max-min

preferences. Discrete Appl. Math. 179, 235-240.

13. Hatfield, J.W., Milgrom, P., 2005. Matching with contracts. Amer. Econ. Rev. 95,

913-935.

14. Kelso, A., Crawford, V., 1982. Job matching, coalition formation, and gross substitutes.

Econometrica 50, 1483-1504.

24



15. Klaus, B., Walzl, M., 2009. Stable many-to-many matchings with contracts. Journal of

Mathematical Economics 45, 422-434.

16. Kojima, F., 2007. When can manipulations be avoided in two-sided matching markets?

Maximal domain results. Contrib. Theor. Econ. 7, Article 32.
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