
General exchange rules with single-peaked

preferences

Zhen Huang*

School of Economics

Shanghai University of Finance and Economics, China

Guoqiang Tian*

Department of Economics

Texas A&M University, USA

March 25, 2023

Abstract

Following Bade (2019), we study the exchange in Shapley-Scarf housing markets

when agents have single-peaked preferences. We propose a general class of mecha-

nisms, called the r-neighborhood mechanisms, which are group strategy-proof, indi-

vidually rational and Pareto efficient. In an r-neighborhood mechanism, every agent

progressively points to her most preferred house within distance r of her current

house, according to the linear order on houses that underlies agents’ single-peaked
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preferences. We show that r-neighborhood mechanisms include Gale’s Top Trading

Cycles mechanism and Bade’s Crawler mechanism as extreme cases, and among r-

neighborhood mechanisms, the 1-neighborhood mechanism (i.e., the crawler and its

dual) is the only obviously strategy-proof mechanism.

JEL classification: C78; D47; D61; D78

Keywords: Single-peaked preferences, Top Trading Cycles, Pareto efficiency, group

strategy-proof, obvious dominance.

1 Introduction

We study the Shapley-Scarf housing market, where each agent is endowed with a house

and demands exactly one house (Shapley and Scarf, 1974). It is well-known that for these

markets, Gale’s Top Trading Cycles (TTC) mechanism always selects the unique matching

in the core (Roth and Postlewaite, 1977), and it is the only mechanism that is individually

rational, Pareto efficient and strategy-proof (Ma, 1994).

Bade (2019) is the first to study housing markets with single-peaked preferences.

Consider that there is an objective linear order on the houses: All the houses are located

on a street, from the left end to the right end. Agents’ preferences are strict and single-

peaked: There is an ideal house on the street for each agent. A house h should be worse

than h
′
to an agent, if they locate on the same side of the ideal point, and h is further away

from that point than h
′
. Bade (2019) proposes a new mechanism call the crawler. In the

crawler, each agent points to her ideal houses. Among all the agents who point to the

occupied houses or to the right side of the occupied houses, we find the rightmost agent

and assign her ideal houses to her. All agents who currently occupy houses between this

agent’s choice and the house she vacated “crawl” to the next house on the left. This pro-
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cess is repeated until all agents are matched. Bade (2019) shows that the crawler, like

TTC mechanism, is individually rational, efficient and strategy-proof with single-peaked

preferences.

Namely, Ma’s characterization no longer holds on this restricted domain. Then, how

are TTC mechanism and the crawler related to each other? We start with the observation

that the process of the crawler is equivalent to letting agents trade progressively with

their most preferred direct neighbors. In this framework, we can regard the crawler and

the TTC mechanism as extreme cases: agents can only trade with the direct neighbors in

the crawler and they can choose the most preferred house among the whole set of houses

in the TTC mechanism. The following question arises: Are there other mechanisms also

satisfying individual rationality, Pareto efficiency and strategy-proofness in this setting?

We propose a large class of individually rational, Pareto efficient and strategy-

proof mechanisms, called r-neighborhood mechanisms, for housing markets with single-

peaked preferences. These mechanisms incorporate the TTC mechanism and the crawler

as extreme cases. More generally, as houses are lined up on a street, we assume that

the distance between two adjacent remaining houses is exactly one. We can easily visu-

alize situations in which each agent is only able to see houses within distance r of her

current house, called an r-neighborhood. As a result, she will only wish for her most pre-

ferred house in the r-neighborhood. The r-neighborhood mechanisms allow each agent

to progressively trade for her most preferred house in her r-neighborhood. Then the TTC

mechanisms is a N-neighborhood mechanism, where N denotes the number of agents,

and the crawler is a 1-neighborhood mechanism.

In Theorem 1, we show that, like the TTC mechanism and the crawler, r-

neighborhood mechanisms are individually rational, Pareto efficient and group strategy-

proof. We further generalize the r-neighborhood mechanisms to a larger class of mecha-
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nisms called neighborhood mechanisms, in which the sizes of neighborhoods depend on

the identity of agents and the occupied houses. In Proposition 2, we show that the neigh-

borhood mechanisms are also individually rational, Pareto efficient and group strategy-

proof. These results tell us that there are many individually rational, Pareto efficient

and group strategy-proof mechanisms other than the TTC mechanism with single-peaked

preferences, and this is in sharp contrast with Ma (1994)’s characterization that TTC is the

unique individually rational, Pareto efficient and strategy-proof mechanism in Shapley-

Scarf housing markets.

Obvious dominance is a desirable property proposed by Li (2017). Obviously domi-

nant strategies can be seen as optimal by a cognitively limited agent, who does not under-

stand how each strategy’s outcome depends on unobserved contingencies. Bade (2019)

shows that the crawler can be implemented in obviously dominant strategies. In The-

orem 2 we show that among all the r-neighborhood mechanisms, the 1-neighborhood

mechanism, which is outcome equivalent to the crawler, is the only mechanism that is

implementable in obviously dominant strategies.

In the neighborhood mechanisms, the key assumption that agents are only able to

or allowed to point to a restricted range of objects has solid theoretical and empirical

foundation. In most theoretical models, there is a trade-off between the benefit and the

cost of further objects. As a result, agents would only choose the objects in a limited

distance. The cost includes transport cost (see e.g., Hotelling, 1929 or Pal, 1998) or the

cost of search(see e.g.,Stigler, 1961 or Ioannides, 1975). Empirical studies also find that

distance is one of the most important determinant of the decision of agents and examine

the impact of spacial distance on the preferences of consumers(see e.g. Berdegué et al.,

2006 or He et al., 2019). Also, the assumption is related to literature about the regulations

which restrict the objects available for agents, such as the Nearby Enrollment Policy(see
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e.g., Black, 1999 and Bayer et al., 2007).

Besides Shapley and Scarf (1974)’s classical work, this paper is most closely related

to Ma (1994)’s characterization about the TTC mechanism and the crawler in Bade (2019).

This paper is also closely related to Tamura and Hosseini (2022) and Liu (2021). Tamura

and Hosseini (2022) show the equivalence between the crawler and the dual crawler, and

the equivalence between the crawler from random endowments and the random prior-

ity rule. They also find that the crawler is invariant to the order over the object set that

preserves single-peakedness. Liu (2021) introduces another class of individually rational,

efficient and strategy-proof mechanisms, where only a subset of houses is available for

exchange in each step and the next subset of available houses may depend on the ex-

changes performed previously. The relationship between the two classes of mechanisms

will be discussed in detail in Section 4. This paper is related to other works that study

mechanisms under single-peaked preferences. Damamme et.al. (2015) provide an algo-

rithm which is Pareto efficient on the single-peaked domain, and Mandal and Roy (2021)

present a impossibility result and characterize all strategy-proof, Pareto efficient, top-

envy-proof, non-bossy, and pairwise reallocation-proof assignment rules on a minimally

rich single-peaked domain as hierarchical exchange rules. Our paper is also related to the

literature which study the properties of Gale’s TTC mechanism, such as Pápai (2000) and

Sethuraman (2016). Regarding obviously strategy-proofness of trading mechanisms, this

paper is related to the works of Li (2017), Troyan (2019) and Pycia and Troyan (2022).

The rest of this paper is organized as follows. In Section 2, we introduce the basic

setup, Gale’s Top Trading Cycles mechanism and the crawler. We then propose the r-

neighborhood mechanisms and present the related results in Section 3. We discuss the

further generalization of these mechanisms and the relationship with other related mech-

anisms in Section 4. Section 5 concludes. All proofs are relegated to Appendix A.
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2 Model

2.1 Notations

We study the allocation problem of a Shapley-Scarf housing market (Shapley and Scarf

(1974)). In a housing market, each agent is endowed with an indivisible object called a

house and agents trade with each other. Let I = {1, 2, · · · , N} denote the set of agents,

and let H = {h1, h2, · · · , hN} denote the set of houses. Each agent i ∈ I is endowed with

the house hi, and has a strict preference Pi over H with symmetric extension Ri. Given

a preference Pi, if agent i strictly prefers (weakly prefers, reps.) hj to hk, we write hjPihk

(hjRihk, resp.). A preference is a linear order if it is antisymmetric. Given an agent i, let

P−i denote the profile of all other agents’ preferences. And given a coalition of agents

C ⊆ I, let PC and P−C denote the preference profile of the coalition C and the preference

profile of all other agents out of C, respectively.

Following Bade (2019), we further assume that agents have single-peaked preferences

over houses. Suppose the houses are located on a street that stretches from its left end to

its right end. House h1 is located at the left end and hN is located at the right end, and if

i < j then hi is located at the left side of hj. Then a strict preference Pi is single-peaked if

there exists a house hi∗ such that hjPihk holds if either k < j ≤ i∗ or i∗ ≥ j > k.

A matching(or allocation) µ is a bijection µ : N → H. If µ(i) = hj then agent i is

matched with house hj. A matching µ is individually rational if µ(i)Rihi for all i. A

matching ν (Pareto) dominants a matching µ if ν(i)Riµ(i) for all agent i and ν(j)Pjµ(j)

for some agent j. A matching µ is Pareto efficient if there exists no matching ν that

Pareto dominants µ. For notational convenience, we sometimes use (i1h1, i2h2, · · · , iNhN)

to present a matching µ where µ(ik) = hk for all k = 1, 2, · · · , N.
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A direct revelation mechanism, or simply a mechanism, f selects a matching f (P)

for each preference profile P. Let fi(P) denote the house that agent i receives in f (P).

A mechanism f is (Pareto) efficient (individually rational, respectively), if for any pref-

erence profile P, the matching selected is Pareto efficient (individually rational, respec-

tively). A mechanism f is strategy-proof if f (Pi, P−i)Ri f (P
′
i , P−i) holds for all Pi, P

′
i and

P−i. The mechanism f is group strategy-proof if for any preference profile P, there

exist no coalition C ⊆ I and another preference profile P
′
C such that for all i ∈ C,

f (P
′
C, P−C)Ri f (PC, P−C) holds and for some j ∈ C, f (P

′
C, P−C)Pi f (PC, P−C) holds. And

the mechanism f is non-bossy if for all P, i and P
′
i , if fi(P) = fi(P

′
i , P−i) then f (P) =

f (P
′
i , P−i). Pápai (2000) shows that a mechanism f is group strategy-proof if and only if it

is strategy-proof and non-bossy.

2.2 Gale’s Top Trading Cycles and the Crawler

Shapley and Scarf (1974) propose the Gale’s Top Trading Cycles(TTC) mechanism and

show that the TTC mechanism is efficient and individually rational. Roth (1982) shows

that the TTC mechanism is strategy-proof. The TTC mechanism operates as follows.

Step 1. Each agent points to the owner of her most preferred house. Due to finiteness,

there exists at least one cycle (including self-cycles) and cycles don’t intersect. Let

agents in cycles trade and remove them.

Step k, k ≥ 2. Repeat Step 1 with the remaining agents until all are removed.

Ma (1994) shows that the TTC mechanism is the unique IR, efficient and strategy-

proof mechanism on the domain of all linear preferences.

Bade (2019) proposes a new mechanism call the crawler and shows that the crawler
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is also individually rational, Pareto efficient and strategy-proof under single-peaked pref-

erences. The crawler operates as follows:

Step 1. Each agent points to her most preferred house in the remaining houses. Among

all the agents who point to the current house or point to the right side, the rightmost

owner is matched and removed with the house which she points to. Each current

occupant of a house between the house vacated and the house removed moves to

the next house on the left and regards the new house as new endowment.

Step k, k ≥ 2. Repeat Step 1 with the remaining agents until all are matched.

Since the agents’ preferences are single-peaked, there are only three kinds of agents

on the street: agents want to move leftwards, want to move rightwards, and already

occupy the most preferred house. Among all the agents who want to move rightwards or

already occupy the most preferred house, we find the rightmost agent, assign her the most

preferred unmatched house and remove them. All agents between the house vacated and

the house removed ”crawl” to the next house on the left. This process is repeated N times

until all agents are matched.

The dual crawler is the dual mechanism, in which we find the leftmost agent pre-

ferring to moving leftwards or preferring the current house most. Then we allocate her

most preferred house to her. Then agents between the two houses ”crawl” to the next

house on the right side. Bade (2019) shows that both the crawler and the dual crawler are

individually rational, Pareto efficient and strategy-proof.
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3 The r-neighborhood mechanism

3.1 Definition

We observe that Bade (2019)’s crawler mechanism essentially only allows each agent

to trade for adjacent houses. Inspired by the crawler, we propose general mechanisms

in which, progressively, each agent is only allowed to trade for houses within the r-

neighborhood of her occupied house.

To begin with, we define the r-neighborhood of an house. An r-neighborhood of a

houses h is the set of the nearest r houses in each side of h. Formally, giving a house h, a set

of houses H̄ and an integer r, define a set of houses Nr(h, H̄; r) = {h
′ | At most r− 1 houses

locate between h and h
′} as the r-neighborhood of h on H̄. That is, the r-neighborhood

Nr(h, H̄; r) contains a house h
′

if and only if either |{ĥ ∈ H̄ : h < ĥ < h
′}| < r or

|{ĥ ∈ H̄ : h
′
< ĥ < h}| < r holds.

For each integer r ≥ 1, the r-neighborhood mechanism is defined as follows.

Step 0. Initialize with H1 = H.

Step 1. Let each agent point to the owner of the most preferred house in the r-

neighborhood Nr(hi, H1; r). There exists at least one cycle (including self-cycle) and

cycles do not intersect. Let agents in cycles trade. Then if an agent occupies her

most preferred house in H1, assign the current house to the agent and remove them.

If all agents are removed, terminate. If not, let H2 be the set of remaining house.

Then go to step 2.

Step k, k ≥ 2. If an agent points to an owner who does not trade in step k− 1, let the agent

point to the same owner as in step k− 1. Otherwise, let this agent point to the owner
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of her most preferred house in the r-neighborhood Nr(h, Hk; r) with respect to the

current house h. There exists at least one cycle (including self-cycle) and cycles do

not intersect. Let agents in cycles trade. Then if an agent occupies her most preferred

house in Hk, assign the current house to the agent and remove them. If all agents

are removed, terminate. If not, let Hk+1 be the set of remaining houses. Then go to

step k + 1.

That is, in step 1 of the r-neighborhood mechanism, all houses are unmatched, and we

can define r-neighborhoods on the whole set H. Each agent points to the most preferred

house in the r-neighborhood with respect to the endowment and trades if she is in a cycle.

If an agent has already get her most preferred house, she is matched and removed with

this house. All the unremoved agents regard the current house as the new endowment,

and go to the next step. In a following step k, we define the r-neighborhood on the set

of unmatched houses Hk. The target of an agent depends on whether the previous target

trades in step k − 1: If the previous target of an agent is not involved in a trade in step k −

1, she should point to the same agent as in the last step. This restriction is essential for the

strategy-proofness of the mechanisms. If the previous target of an agent is involved in a

trade in step k − 1, the agent can point to the most preferred house in an r-neighborhoods

with respect to the remaining houses Hk and the current house. Then agents in cycles

trade, and those occupy the most preferred houses are removed. The remaining agents

regard the new house as the endowment and then go to the next step. By definition of

the single-peaked preference, the preference on a subset Hk ⊆ H is still single-peaked. So

an agent has a unique peak in each step. The algorithm terminates when all agents are

removed.

As houses are lined up on a street, we can visualize situations in which each agent is

only able to see the nearest r houses of her current house, and as a result, she will only
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be able to choose her most preferred house in the r-neighborhood. The r-neighborhood

mechanisms allow each agent to progressively trade for her most preferred house in her

r-neighborhood.

The following example illustrates how the r-neighborhood mechanisms unify the

TTC mechanism, the crawler and the dual crawler. It also shows that there exist r-

neighborhood mechanisms different from these mechanisms.

Example 1. Suppose the set of agents is I = {1, 2, 3, 4}. Define a preference profile P in

which agent 1, 2, 3 prefer the house on the right side and agent 4 prefers the left side, i.e.,

we have h4Pih3Pih2Pih1 for i = 1, 2, 3 and h1P4h2P4h3P4h4 for agent 4. The following table

illustrates the preference profile.

P1 P2 P3 P4
h4 h4 h4 h1
h3 h3 h3 h2
h2 h2 h2 h3
h1 h1 h1 h4

In the TTC mechanism and the 4-neighborhood mechanism, all the agents choose

their most preferred houses among {h1, h2, h3, h4}. So agent 1, 2 and 3 point to h4, and

agent 4 points to h1. Then agent 1 and 4 trade in a cycle, and receive h4 and h1 respectively.

Then agent 3 and 2 are in self-cycles and matched with h3 and h2 successively in the

following two steps. The final matching is (4h1, 2h2, 3h3, 1h4).

In the crawler, no agent initially occupies the most preferred house. Agent 1, 2 and

3 want to move rightwards, and agent 3 is the rightmost one. So agent 3 is screened out

in the first step. She is matched with h4 and agent 4 ”crawls” to h3. In the following step,

agent 2 is screened out and is matched with h3, and agent 4 crawls to h2. Then agent 1 is

screened out and is matched with h2, and agent 4 finally receives h1. So the final matching

of the crawler is (4h1, 1h2, 2h3, 3h4). Note that the process above is outcome equivalent to
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the process that agent 4 sequentially trade with agent 3, agent 2 and agent 1, and finally

receives h1.

We can reproduce the crawler with the 1-neighborhood mechanism. In the 1-

neighborhood mechanism, agent 1 chooses between {h1, h2}, and points to h2. Agent

2 chooses among {h1, h2, h3} and points to h3. Similarly, agent 3 points to h4 and agent

4 points to h3 in the first step. Then agent 3 and 4 trades, and agent 3 is matched and

removed with h4. In the second step, agent 1 should point to h2 since agent 2 is not in

a cycle in step 1. Agent 2 prefers h3 most and points to it. Agent 4 (with h3) chooses

between {h2, h3} and points to h2. So agent 2 and agent 4 trade. Then agent 2 is matched

and removed with h3. In the third step, agent 1 and agent 4 (with h2) point to each other

and trade in a cycle. Then all are removed. So the matching (4h1, 1h2, 2h3, 3h4) is selected,

which is the same as the matching selected by the crawler.

As for the dual crawler, agent 4 is the only agent who wants to move leftwards, and

no agent already occupies her most preferred house. So agent 4 receives house h1 in the

first step, and agent 1, 2 and 3 crawls to the next right house. Then agent 3 (with h4) is the

only agent occupying the most preferred unmatched house and no agent wants to move

leftwards. So agent 3 receives h4. Similar steps occurs with agent 2 and 1 successively in

the following steps, and the matching selected is (4h1, 1h2, 2h3, 3h4), which is the same as

the matching from the crawler and the 1-neighborhood mechanism.

We can reproduce the TTC mechanism and the crawler with r-neighborhood mecha-

nisms by letting r ≥ 3 and r = 1, respectively. And if r = 2, the 2-neighborhood mech-

anism selects different matching from the TTC mechanism and the crawler. In the first

step of 2-neighborhood mechanism, agents 1 can choose among {h1, h2, h3} and points

to h3; agent 4 can choose among {h2, h3, h4} and points to h2; the other two agents can

choose among {h1, h2, h3, h4} and point to h4. Therefore agent 2 and agent 4 exchange
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their houses first, and agent 2 is matched and removed with her most preferred house

h4. In the second step, agent 1 should still point to h3 since agent 3 is not in a cycle in

step 1. Agent 4 (with h2) and agent 3 chooses among {h1, h2, h3} and points to h1 and

h3 respectively. Then agent 3 is matched and removed with h3. In the following step,

agent 1 (with h1) and agent 4 (with h2) point to each other and trade in a cycle. All agents

are removed, and the matching (4h1, 1h2, 3h3, 2h4) is selected, which is different from the

matchings from the TTC mechanism and the crawler.

In Example 1, the r-neighborhoods select the same matching with the TTC mecha-

nism and the crawler by letting r = 4 and r = 1 respectively. Besides, the dual crawler is

also reproduced with r = 1 in our framework.

3.2 Results

Proposition 1 states the equivalent results between the r-neighborhood mechanisms, the

TTC mechanism, the crawler and the dual crawler.

Proposition 1. If the preferences of agents are single-peaked, the following statements hold:

• The TTC mechanism and the N-neighborhood mechanism are outcome equivalent.

• The crawler, the dual crawler and the 1-neighborhood mechanism are outcome equivalent.

The first statement of Proposition 1 is implied by the definition of the N-

neighborhood mechanisms and the TTC mechanism. The equivalence between the

crawler and the 1-neighborhood mechanism is implied by the observation that each step

of the crawler can be replicated by letting agents trade with the direct neighbors sequen-

tially. This observation is also true between the dual crawler and the 1-neighborhood
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mechanism. So the second statement implies the equivalence between the crawler and

the dual crawler, which is a main result in Tamura and Hosseini (2022).

The class of r-neighborhood mechanisms is a large class of mechanisms. The main

result is that all the r-neighborhood mechanisms are individually rational, Pareto efficient

and group strategy-proof.

Theorem 1. If a mechanism f is an r-neighborhood mechanism, then it is individually rational,

Pareto efficient and group strategy-proof.

Theorem 1 ensures that the r-neighborhood mechanisms maintain the good prop-

erties of the TTC mechanism and the crawler and greatly generalize the class of such

mechanisms with single-peaked preferences.

3.3 Obviously strategy-proofness

Some implementations of strategy-proof mechanisms can be recognised more easily. Li

(2017) define obvious dominance to verify the strategies that would be chosen even if

agents do not understand how each strategy’s outcome depends on unobserved contin-

gencies. A strategy is obviously dominant if, for any deviation, at any information set

where the two strategies first diverge, the best outcome under the deviation is no bet-

ter than the worst outcome under the dominant strategy. A mechanism is obviously

strategy-proof (OSP) if it has an equilibrium in obviously dominant strategies. Bade

(2019) shows that the crawler is obviously strategy-proof. Proposition 1 shows that the

crawler is outcome equivalent to the 1-neighborhood mechanism, and below we show

that 1-neighborhood mechanism is the only OSP-implementable mechanism in the class

of r-neighborhood mechanisms.

An extensive-form game G is a rooted tree representing a set of history. If h is a
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continuation history of h
′
, we denote h

′ ⊆ h, and h
′

is a subhistory of h. A history with

no continuation history is terminal. Each terminal history is associated with a matching.

At every history h, an agents has a set of action A(h). A strategy Si chooses an action

at every information set for agent i. An extensive-form mechanism is an extensive-form

game G together with a profile of strategies (Si)i∈I . Following Li (2017), a strategy Si ob-

viously dominant another strategy S
′
i if at the earliest history at which Si and S

′
i diverge,

the worst payoff of agent i from playing Si is at least as good as the best possible payoff

of playing S
′
i. A profile (Si(·))i∈I of strategy is obviously dominant if for any agent i and

preference Pi, the strategy Si(Pi) obviously dominants any other strategies with respect

to Pi. An extensive-form mechanism is obviously strategy-proof if there exists a profile

of strategies (Si(·))i∈I that is obviously dominant. Let G(S(P)) denotes the matching

selected with the extensive-form game G, the profile of strategies (Si(·))i∈I and the pref-

erence profile P. A (direct revelation) mechanism f is OSP-implementable if there exist

an extensive-form mechanism G and a profile of obviously dominant strategies (Si(·))i∈I

such that G(S(P)) = f (P) for all P. We say that G OSP-implement f and f is obviously

implemented in obviously dominant strategies (Si(Pi))i∈I .

Strategy-proof mechanisms may not be OSP-implementable. Li (2017) shows that

Gale’s Top Trading Cycles mechanism with at least three agents cannot be implemented

in obviously strategies with the domain of all linear preferences. With single-peaked

preferences, Bade (2019) shows that the TTC mechanism with at least 4 agents is not OSP-

implementable, and the crawler can be implemented in obviously dominant strategies.

Although r-neighborhood mechanisms has already greatly expanded the set of

individually rational, Pareto efficient and group strategy-proof mechanisms, most r-

neighborhood mechanisms are not OSP-implementable. The following theorem shows

that the 1-neighborhood mechanism is the only OSP r-neighborhood mechanism.
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Theorem 2. If |I| ≥ 4 and f is an r-neighborhood mechanism, then f can be implemented in

obviously dominate strategies if and only if it is a 1-neighborhood mechanism.

Theorem 2 implies that the 1-neighborhood mechanism, which is outcome equivalent

to the crawler, is the only OSP-implementable mechanism in the class of r-neighborhood

mechanisms when there are at least 4 agents. When |I| ≤ 3, an r-neighborhood mecha-

nism is either equivalent to the crawler or equivalent to the TTC mechanism, and in each

case the r-neighborhood mechanism can be implemented in obviously dominant strate-

gies(Bade, 2019).

4 Extension

4.1 Generalization

In an r-neighborhood mechanism, the size of r-neighborhoods is constant for all agents.

We can further generalize the r-neighborhood mechanisms if the sizes of neighborhoods

depend on the agents, the houses and the directions.

For an agent i and a house hj, let positive integers l j
i , rj

i denote the left and right

size for a neighborhood respectively. Given a set of houses H̄, let Nr(hj, H̄; l j
i , rj

i) denote

the neighborhood with size l j
i , rj

i for agent i with hj. The neighborhood Nr(hj, H̄; l j
i , rj

i)

contains a house h
′

if and only if either |{ĥ ∈ H̄ : h
′
< ĥ < hj}| < l j

i or |{ĥ ∈ H̄ : hj < ĥ <

h
′}| < rj

i holds. The generalized r-neighborhood mechanisms, which is simply called the

neighborhood mechanisms, operates as follows.

Step 0. Initialize with H1 = H.

Step 1. Let each agent i point to the owner of the most preferred house in the neighbor-
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hood Nr(hi, H1; li
i , ri

i). There exists at least one cycle (including self-cycle) and cycles

do not intersect. Let agents in cycles trade. Then if an agent occupies her most pre-

ferred house in H1, assign the current houses to the agent and remove them. If all

agents are removed, terminate. If not, let H2 be the set of remaining houses. Then

go to step 2.

Step k, k ≥ 2. If an agent points to an owner who does not trade in step k − 1, let the

agent point to the same owner as in step k − 1. Otherwise, let this agent point to

the owner of her most preferred house in the r-neighborhood Nr(hi, Hk; li
i , ri

i) with

respect to the current house h. There exists at least one cycle (including self-cycle)

and cycles do not intersect. Let agents in cycles trade. Then if an agent occupies her

most preferred house in Hk, assign the current house to the agent and remove them.

If all agents are removed, terminate. If not, let Hk+1 be the set of remaining houses.

Then go to step k + 1.

In the neighborhood mechanisms, agents may point into different neighborhoods

at different houses, and the neighborhood mechanisms allow different agents to have

different views in the same house. In each step k, we first define the neighborhoods with

respect to the unmatched houses Hk. The target of an agent still depends on the previous

target in the step k − 1: If the previous target trades in step k − 1, the agent points to the

most preferred house in the neighborhood with respect to the current house; Otherwise,

this agent points the same target as in the step k − 1. This restriction is essential for the

strategy-proofness of the neighborhood mechanisms.

We can also visualize situations in which an agent is only able to see houses in the

neighborhood. Compared with the r-neighborhood mechanisms, the range of visible

houses is determined by the identity of the agent and the occupied houses. An agent
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will only wish for her most preferred house in the neighborhood, and each agent pro-

gressively trades for the most preferred houses in the neighborhoods.

So r-neighborhood mechanisms are special cases of neighborhood mechanisms.

Proposition 2 shows that neighborhood mechanisms preserve the good properties of the

r-neighborhood mechanisms.

Proposition 2. If a mechanism f is a neighborhood mechanism, then it is individually rational,

Pareto efficient and group strategy-proof.

Since all the r-neighborhood mechanisms are neighborhood mechanisms, Proposi-

tion 2 implies Theorem 1. We can enlarge the class of individually rational, efficient and

group strategy-proof mechanisms to the set of neighborhood mechanism. Although The-

orem 2 shows that the 1-neighborhood mechanism is the only OSP-implementable mech-

anism among all the r-neighborhood mechanism, the direct generalization does not hold.

The 1-neighborhood mechanism is not the only OSP-implementable neighborhood mech-

anism when |I| ≥ 4.

Remark 1. We can further generalize the neighborhood mechanisms. We get a larger class of

mechanisms if the range of neighborhood depends on the allocations in each step and the size of

neighborhood can be non-negative integers. This set of mechanisms generalize the neighborhood

mechanisms. But if earlier cycles may effect the forthcoming neighborhoods of other agents, some

of these mechanisms can be bossy, and the group strategy-proofness may be violated.

4.2 Discussion about Liu (2021)

In the neighborhood mechanisms, we define the nearest several houses of an agent i with

a house h as the neighborhood of i with h. And each agent points to her most preferred
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house in the neighborhood. Liu (2021) introduces another class of mechanisms, where a

subset of houses is available for exchange in each step. In each step, only the agents who

occupy the houses in the subset are allowed to exchange with each other. All the houses

are available in finitely many steps, after which the algorithm terminates. Liu (2021) use

”neighborhood” to call this subset of houses available in each step if they are next to each

other.

Liu (2021) identifies the class of mechanisms called neighborhood top trading cy-

cles(NTTC) mechanisms. An NTTC mechanism selects the final allocation by several

steps. In each step, a set of houses is chosen exogenously. Each agent who occupies a cho-

sen house points to the owner of her most-preferred house in this set. Agents in cycles

trade and exit the step with the new houses. In each step this procedure is repeated until

all chosen houses exit this step. An NTTC mechanism terminates after a step in which all

the houses are selected. The selected houses are restricted to be next to each other in each

step. And such a set can be path-dependently, in the sense that it can be determined ac-

cording to the allocations in the previous steps. The NTTC mechanisms are individually

rational, Pareto efficient and strategy-proof with single-peaked preferences. Below we

introduce the definition of the NTTC mechanisms and discuss the relationship between

the class of NTTC mechanisms and the class of neighborhood mechanisms.

For each NTTC mechanism, Liu (2021) defines a tree to determine the sets available

for exchange along the iteration. Let e be the initial allocation. Given a subset of agents Î

and a subset of houses Ĥ such that | Î| = |Ĥ|, a sub-allocation m is a one-to-one mapping

from a Î to a subset of houses Ĥ, and let Im and Hm denote the agents and houses involved

in m respectively. A sub-allocation m is called to be nested in another sub-allocation m
′

if

Hm ⊆ Hm′ and Im ⊆ Im′ . The set of all sub-allocation is M. A sequence of sub-allocations

m1m2 · · · is called a history if m1 = e and mk+1 is nested in mk for k = 1, 2, · · · . If a sub-
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history γ is created by appending some sub-allocations to history γ
′
, we denote γ

′ ⊆ γ

and say that γ
′
is a sub-history of γ. For example, m1m2 is a sub-history of both itself and

m1m2m3. Let Γ denotes the set of all histories. Let |γ| denotes the number of allocation

s in the history γ and let Γ̄ = {γ ∈ Γ : |γ| = ∞} be the set of all infinite histories. An

available tree is a function T : Γ → 2H \ ∅ satisfying the condition that for any history

γ̄ ∈ Γ̄, there is a non-terminal sub-history γ ⊆ γ̄ such that T(γ
′
) = Hm, where m is the

last sub-allocation in γ and that for any history γ̄ ∈ Γ \ Γ̄, T(γ
′
) ⊆ Hm, where m is the

last sub-allocation in γ. An available tree T is called a neighborhood tree, if hi, hj ∈ T(γ)

and hi < hk < hj imply hk ∈ T(γ) for any hk ∈ Hm and any γ ∈ Γ \ Γ̄, where m is the last

sub-allocation in γ.

Fix a neighborhood tree T : Γ → 2H \ ∅. An NTTC mechanism operates as follows.

Step 1 Initialize with m1 = e.

Step k, k ≥ 2. Preparation sub-step: Check for each agent whether her current house is

the most-preferred one among the remaining ones. If so, let the agent leave with the

current house. Repeat this process until no such agent exists. If no agent remains,

iteration terminates. Otherwise, denote the resulted sub-allocation by m̄k−1.

Exchange sub-step: Each agent who owns a house in the set T(m̄1m̄2 · · · m̄k−1)

points to the owner of her most preferred house in T(m̄1m̄2 · · · m̄k−1). There exists at

least one cycle(including self-cycles) and cycles don’t intersect. Let agents in cycles

trade and exit the step with the new houses. Repeat this process until all the houses

in T(m̄1m̄2 · · · m̄k−1) are removed in this step. Let mk denote the allocation after all

the trades in this step. If T(m1m2 · · ·mk−1) = H, terminate and the matching mk is

selected. Otherwise proceed to step k + 1.

The definition of the neighborhood tree ensures that given a neighborhood tree and a
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preference profile, the whole set of houses is available after a finite step and then the algo-

rithm terminates. Liu (2021) shows that the NTTC mechanisms are individually rational,

Pareto efficient and strategy-proof with single-peaked preferences. Below we discuss the

relationship between the neighborhood mechanisms and the NTTC mechanisms.

In a neighborhood mechanism, the left and right size of neighborhood is determined

by the identity of agents houses, but the neighborhood tree of an NTTC mechanism might

be path-dependent. So a NTTC mechanism may not be in the class of neighborhood

mechanisms. In the NTTC mechanisms, only selected agents are allowed to trade in each

step, so they share the same range of vision in the step. In the neighborhood mecha-

nisms, different agents may have different neighborhood in the same step. So the class

of neighborhood mechanisms contains mechanisms that are not NTTC mechanisms. On

conclusion, we have the following statement.

Claim 1. The class of NTTC mechanisms and the set of neighborhood mechanisms are not compa-

rable.

Example 2 shows that some of neighborhood mechanisms are not NTTC mechanism,

and some NTTC mechanisms are not contained in the class of neighborhood mechanisms.

Example 2. Suppose I = {1, 2, 3, 4}, H = {h1, h2, h3, h4}. Consider three preference pro-

files. In case 1, agent 1, 2, 3 want h4 most, while agent 4 prefers h1. The table below

illustrates the preference profile in case 1:

P1 P2 P3 P4
h4 h4 h4 h1
h3 h3 h3 h2
h2 h2 h2 h3
h1 h1 h1 h4

In case 2, agent 1 prefers h2, agent 2 and 3 wants h4, and agent 4 wants h1. The
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following table illustrates it:

P1 P2 P3 P4
h2 h4 h4 h1
h3 h3 h3 h2
h4 h2 h2 h3
h1 h1 h1 h4

In case 3, agent 1 wants h4, and the other agents prefer h1. The following table illus-

trates it:

P1 P2 P3 P4
h4 h1 h1 h1
h3 h2 h2 h2
h2 h3 h3 h3
h1 h4 h4 h4

Now we show that the following neighborhood mechanism f is not outcome equiv-

alent to any NTTC mechanism: agent 1,3,4 can point to any houses, and agent 2 can

only point to the direct neighbor. That is, we have l j
i = rj

i = 4 for i = 1, 3, 4, ∀j, and

l j
2 = rj

2 = 1, ∀j. This neighborhood mechanism selects (4h1, 2h2, 3h3, 1h4) in Case 1 and

(4h1, 1h2, 2h3, 3h4) in Case 2. In case 1, TTC mechanism is the only NTTC mechanism se-

lecting (4h1, 2h2, 3h3, 1h4). In case 2, the only NTTC mechanism selects (4h1, 1h2, 3h3, 2h4).

So the neighborhood mechanism f is not in the class of NTTC mechanisms.

The following NTTC mechanism g is not outcome equivalent to any neighborhood

mechanism: agent 1,2,3 trade first, and then all the agents trade. That is, the neighborhood

tree T satisfies T(e) = {h1, h2, h3} and T(γ) = Hm for all |γ| > 1, where m is the last

sub-allocation in γ. The mechanism g selects (4h1, 2h2, 3h3, 1h4) in Case 1 and selects

(3h1, 2h2, 4h3, 1h4) in Case 3. If a neighborhood mechanism selects (4h1, 2h2, 3h3, 1h4) in

case 1, then agent 1 and 4 can point to each other in the first step (which means r1
1 = l4

4 ≥

3), and this neighborhood mechanism selects (4h1, 2h2, 3h3, 1h4) in Case 3. So the NTTC
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mechanism g is not in the class of neighborhood mechanisms.

Compared with the NTTC mechanisms, the neighborhood mechanisms have some

appealing advantages. First, Li (2017) defines two different neighborhood trees to repli-

cate the crawler and the dual crawler respectively, while we unify the crawler and the

dual crawler with the 1-neighborhood mechanism. Besides, in the NTTC mechanisms,

selected agents share the same range of vision in each step, and the neighborhood mecha-

nisms allow different agents to have different range of vision in the same step. Moreover,

the NTTC mechanisms are strategy-proof, while we show that the neighborhood mecha-

nisms are group strategy-proof.

5 Conclusion

In this paper, we unify and generalize the TTC mechanism and the crawler with single-

peaked preferences. We identify a large class of mechanisms called r-neighborhood mech-

anisms, and propose a more general set of mechanisms called neighborhood mechanisms

which are group strategy-proof, individually rational and Pareto efficient. We show

that the crawler, dual crawler and 1-neighborhood mechanism are outcome equivalent.

Among all the r-neighborhood mechanisms, the 1-neighborhood mechanism is the only

mechanism that can be implemented in obviously dominant strategies, while some neigh-

borhood mechanisms other than the crawler are OSP-implementable.

As for the characterization problem, noticing that some mechanisms are strategy-

proof, efficient and individually rational but they are not neighborhood mechanisms, the

full characterization problem is still an open question.
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A Appendix

A.1 Proof of Proposition 1

Proof. The first statement can be proved directly by the definition. Either in the N-

neighborhood mechanism or in the TTC mechanism, each agent can point to the owner

of the most preferred house among all the houses and does not change the target. So an

agent points to and trade with the same owner as the TTC mechanism in each step. Then

an agent receives the same house in the two mechanisms.

Now we prove the second statement. Given a preference profile P = (P1, P2, · · · , PN),

let C(P) denote the matching selected by the crawler and agent i receives Ci(P) in C(P).

Let f (P) be the matching selected by the 1-neighborhood mechanism and agent i receives

fi(P) in f (P). We need to show that Ci(P) = fi(P) for any i. Let ik denotes the agent

matched in step k of the crawler. Let mk denotes the number of agents who crawls in

step k of the crawler. Suppose agents i1
k , i2

k , · · · , imk
k crawl from houses h1

k, h2
k, · · · , hmk

k to

h0
k, h1

k, h2
k, · · · , hm−1

k respectively in step k of the crawler, where i1
k < i2

k < · · · < imk
k . Then

agent ik occupies house h0
k at the beginning of step k of the crawler and finally receives

hmk
k = Cik(P).

We now show that Ci1(P) = fi1(P) and agent i1 trades with agent im1
1 to the house

hm1
1 for all m = 1, 2, · · · , m1 in the 1-neighborhood mechanism. If agent i1 prefers the

house hi1 most, then no agent crawls in step 1 of the crawler and Ci1(P) = fi1(P) =

hi1 holds. If agent i1 wants to move rightwards, then agent i1
1, i2

1, · · · , im1
1 want to move

leftwards according to the definition of the crawler. In the first step in the 1-neighborhood

mechanism, agent im1
1 and agent i1 are direct neighbors and they point to each other. So

agent i1 moves from h1
1 to h2

1 in step 1 of the 1-neighborhood mechanism. Then agent i1 is

24



the direct neighbor of agent i2
1 and trade in a cycle. By induction, This process repeat until

agent i1 trade with agent imk
1 in step m1. So agent i1 trades with agent im1

1 to the house hm1
1

for all m = 1, 2, · · · , m1 in the 1-neighborhood mechanism by induction. Since hm1
1 is the

most-preferred house of agent i1, we have Ci1(P) = fi1(P) = hm1
1 holds.

Next we complete the proof by induction. Suppose for any j < k, agent ij trades with

agent in
j to the house hn

j for all n = 1, 2, · · · , mj in the 1-neighborhood mechanism and

Cij(P) = fij(P) holds. We need to show that fik(P) = Cik(P) holds and agent ik trades

with i1
k , i2

k , · · · , imk
k to h1

k, h2
k, · · · , hmk

k in some steps of the 1-neighborhood mechanism.

If ik > min{i1, i2, · · · , ik−1} holds, then agent ik prefers the currently occupied house

to the house of the right direct neighbor in any step of the crawler. So no agent crawls in

step k and h0
k = Cik(P) holds. By the induction hypothesis, for all j < k, if ik crawls from

a house h to another house h
′

in step j of the crawler, then agent ik trades with ij from h

to h
′

in the 1-neighborhood mechanism. So agent ik occupies Cik(P) in some step of the

1-neighborhood mechanism. Since fij(P) = Cij(P) holds for all j < k, agent ik does not

trade to any house strictly better than Cij(P) in the 1-neighborhood mechanism. So no

agent crawls in step k and Cik(P) = fik(P) holds.

If ik < min{i1, i2, · · · , ik−1} holds, then agent ik does not crawl in any step of the

crawler, and h0
k is the initial endowment hik . For any n = 0, 1, · · · , mk, we need to

show that agent ik trade with in
k from the house hn−1

k to hn
k in the algorithm of the 1-

neighborhood mechanism. By the induction hypothesis, for any j < k and n < mk,

if an agent in
k crawls from a house h to another house h

′
in step j of the crawler, then

agent in
k trades with ij in the 1-neighborhood mechanism. Let i0

k = ik. Then for any

n = 0, 1, 2, · · · , mk, there exist an integer tn such that agent in
k occupies hn

k at the beginning

of step tn of the 1-neighborhood mechanism. Now we show that agent ik trades with i1
k

from h0
k to h1

k in step max{t0, t1} of the 1-neighborhood mechanism. If t0 = t1, then agent
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ik and i1
k point to each other in step t0 and trade in a cycle. If t0 > t1, then we need to show

that agent i1
k does not trade from h1

k to h0
k before step t0 of the 1-neighborhood mechanism.

Suppose not, and agent i1
k trades with an agent ip, who is chosen in step p of the crawler,

from h1
k to h0

k before step t0 of the 1-neighborhood mechanism. Since agent i1
k does not

crawls from h1
k to h0

k in the first k − 1 steps of the crawler, we have p /∈ {1, 2, · · · , k − 1} by

the induction hypothesis and thus p > k holds. Meanwhile, agent ip occupies the house h0
k

before step t0 implies that ip > ik holds. The assumption that ip trades with i1
k implies that

ip prefers h1
k to h0

k and thus ip should be screened out before ik. So we have p < k, a contra-

diction. If t0 < t1, then we need to show that agent ik does not trade from h0
k to h1

k before

step t1. Suppose not, and agent ik trades with an agent ip from h0
k to h1

k before step t1. Since

each agent trades with the direct neighbor in the 1-neighborhood mechanism, the house

hiP locates between hik(which is h0
k) and hi1k

. Let h∗ denote the house owned by agent ip in

step k of the crawler. The assumption ik < min{i1, i2, · · · , ik−1} implies that h∗ located at

the right side of h0
k. If p > k holds, then agent i1

k cannot crawls to the left side of agent ip

before step k of the crawler. So the house h∗ locates at the left side of h1
k. But there is no re-

maining house between h0
k and h1

k in step k of the crawler. So p > k does not hold. If p < k

holds, then agent ip is removed before step k of the crawler. So fip(P) = Cip(P) = h∗ and

fip(P)Rip h0
k hold. But the assumption that agent ip trades with agent ik to house h0

k implies

that h0
kRip fip(P) due to the single-peaked preference, a contradiction. In conclusion, agent

ik trades with i1
k from h0

k to h1
k in step max{t0, t1} of the 1-neighborhood mechanism. Then

agent ik occupies house h1
k in step max{t0, t1}+ 1 of the 1-neighborhood mechanism, and

agent i2
k occupies h2

k in step t2. For the same reason, ik trades with i2
k from h1

k to h2
k in step

max{t0 + 1, t1 + 1, t2} of the 1-neighborhood mechanism. By induction, we have agent

ik sequentially trades with i1
k , i2

k , · · · , imk
k to h1

k, h2
k, · · · , hmk

k in the 1-neighborhood mecha-

nism, where hmk
k = Cik(P). Since fij(P) = Cij(P) for all j < k, agent ik does not trade to

any house strictly better than Cik(P), and Cik(P) = fik(P) holds.
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By induction, we have Ci(P) = fi(P) for any i, and the second statement is proved.

A.2 Proof of Theorem 1 and Proposition 2

Proof. Since Proposition 2 implies Theorem 1, we only need to prove Proposition 2. Pápai

(2000) shows that a mechanism is group strategy-proof if and only if it is strategy-proof

and non-bossy. We need to show that if f is a neighborhood mechanism, then f is indi-

vidually rational, Pareto efficient, strategy-proof and non-bossy.

Individual rationality: The neighborhood mechanisms are individually rational,

since the endowment is initially in the neighborhood. So an agents always trades to a

better house, and finally receives a house weakly better than the initial one.

Pareto efficiency: We can show that the neighborhood mechanisms are efficient by

induction. All the agents removed in step 1 is matched with their most preferred houses.

Removing houses matched in step 1, agents removed in step 2 receive their most preferred

in the remaining houses. So agents removed in step 2 cannot receive a strictly better house

without hurting agents removed in step 1. Proceeding inductively, agents matched in step

k receive their most preferred houses among those remaining at the beginning of step k.

So the neighborhood mechanisms are efficient.

Strategy-proofness: As for strategy-proofness, we need to show that

fi(Pi, P−i)Ri fi(P
′
i , P−i) holds for any P, P

′
and i. Given an agent i, a preference pro-

file P = (P1, P2, · · · , PN) and another preference P
′
i , let hk

i (Pi, P−i) denote the house

occupied by agent i in the end of step k with the preference profile (Pi, P−i) and let

Hk(Pi, P−i) denote the remaining houses at the beginning of step k with (Pi, P−i).

Without loss of generality, suppose the peak of Pi is to the right side of hi. Due to the
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single-peakedness, the left neighbor of agent i is worse than the occupied one in any

step, and thus agent i will never point to the left side of the occupied house in any step. If

misreporting leads to the same house, fi(Pi, P−i)Ri fi(P
′
i , P−i) holds. Otherwise, suppose

the first deviation happens in step k0. That is, define k0 = mink{hk
i (Pi, P−i) ̸= hk

i (P
′
i , P−i)}.

Note that the assumption that the first deviation happens at step k0 implies that agent i

is in a cycle in step k0 − 1 with either (Pi, P−i) or (P
′
i , P−i) if k0 ≥ 2. So agent i points to

the owner of the most preferred house in the neighborhood in step k0 with either Pi or P
′
i .

We say a house h is the (right) boundary of a neighborhood Nk
i , if h ∈ Nk

i and h
′

/∈ Nk
i

for any h
′
> h. A house h is in the interior of Nk

i if it is not the boundary of Nk
i . Then

there are three cases of step k0: Agent i with Pi moves to the interior of the neighborhood;

Agent i with Pi moves to the boundary of the neighborhood; And agent i with Pi is not in

a cycle in step k0.

Now we show that if agent i with Pi moves to the interior of the neighborhood in

step k0, then we have fi(Pi, P−i)Ri fi(P
′
i , P−i). If truth-telling leads to a house hk

i (Pi, P−i)

in the interior, the agent i occupies the most preferred house in the neighborhood after

the trade, which is also the most preferred house among all the remaining house at the

beginning of step k0 due to the single-peakedness. So misreporting to P
′
i cannot lead to a

strictly better house.

The next case is that agent i reporting Pi moves to the boundary of the neighborhood

in step k0. In this case agent i reporting P
′
i points to the interior of the neighborhood in

step k0. Then the peak of P
′
i among all the remaining houses Hk

i (Pi, P−i) is in the interior

of the neighborhood. So agent i with P
′
i will be removed with fi(P

′
i , P−i) after the next

trade. Suppose the boundary house is occupied by agent i
′

at the beginning of step k0.

There is a chain from agent i
′

to agent i in step k0 and the chain exists until agent i trades.

In the following steps, agent i reporting P
′
i points to the owner of the peak among the
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remaining houses, which locates between the boundary hk
i (Pi, P−i) and the currently oc-

cupied house. Since a cycle occurs if agent i point from the current house to either the

owner of boundary or herself, the house fi(P
′
i , P−i) locates between these two houses.

Then we have fi(Pi, P−i)Rihk
i (Pi, P−i)Ri fi(P

′
i , P−i), and the deviation is not profitable.

The last case is that agent with Pi does not trade in step k0, but agent with P
′

trades

with i
′′

to the house h
′′

in a cycle. Then there exists a chain from agent i
′′

to agent i until

agent i trades, and the house h
′′

is always available until a trade occurs for Pi. So if agent i

with Pi points to the left side of h
′′

in step k0, she will be removed after the next trade and

fi(Pi, P−i)Rih
′′
Ri fi(P

′
i , P−i) holds. And if the agent with Pi point to the right side of h

′′
in

step k0, we have fi(P
′
i , P−i) = h

′′
. The fact that h

′′
is always available until the next trade

of agent i with Pi implies fi(Pi, P−i)Ri fi(P
′
i , P−i).

As a result, the mechanism f is strategy-proof.

Non-bossiness: Next we show that f is non-bossy. Suppose a preference profile P

and a preference P
′
i satisfy fi(Pi, P−i) = fi(P

′
i , P−i). We need to show that f (Pi, P−i) =

f (P
′
i , P−i). If agent i points to the same agent in each step, the same matching will be

selected. Otherwise, consider the first step k where she points to different agents. Suppose

agent i with Pi and P
′
i moves to h and h

′
in the next trade of step k respectively. Without

loss of generality, suppose agent i moves rightwards and h is closer to the occupied house,

that is, either h < h
′

or h = h
′

holds. There is always a chain from the owner of h to

agent i before the next trade of P
′
. So the assumption that the house h is closer to the

currently occupied house implies that agent i with Pi does not point to the boundary of

the neighborhood in step k and will be removed after the next trade. Then fi(Pi, P−i) =

h holds. Agents in neighborhood mechanisms always move to the same direction, so

fi(Pi, P−i) = fi(P
′
i , P−i) = h implies h

′
= h. Then agent i with either Pi or P

′
i trades in the

same cycle in the next trade and is removed after this trade in each situation. Since the
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preference profile of other agents are the same, the deviation does not influence the cycles

in the algorithm. Then we have f (Pi, P−i) = f (P
′
i , P−i), and f is non-bossy.

Since f is strategy-proof and non-bossy, we conclude that f is group strategy-proof.

A.3 Proof of Theorem 2

Proof. We need to show that an r-neighborhood mechanism f with |I| ≥ 4 is OSP-

implementable if and only if r = 1 holds. When r = 1 holds, the 1-neighborhood mech-

anism f is outcome equivalent to the crawler according to Proposition 1. Bade (2019)

shows that the crawler is OSP-implementable. So the 1-neighborhood mechanism is OSP-

implementable.

Next we show that the r-neighborhood mechanism cannot be implemented in ob-

viously dominate strategies if |I| = 4 and r ≥ 2. Suppose an extensive-form game G

together with a profile of obviously dominate strategies (Si(·))i∈I implements f with

I = {1, 2, 3, 4} and H = {a, b, c, d}. Agent 1(2, 3, 4, respectively) is endowed with the

house a(b, c, d, respectively). If i < j holds, then the endowment of agent i locates at the

left side of the endowment of agent j. Inspired by Li (2017) (Proof of Proposition 5 ),

consider the following subset of the preference domain. Each agent i has two possible

preferences Pi and P
′
i such that,

P1 : bR1cR1dR1a

P
′
1 : dR

′
1cR

′
1bR

′
1a,

P2 : cR2dR2bR2a

P
′
2 : dR

′
2cR

′
2bR

′
2a,
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P3 : bR3aR3cR3d

P
′
3 : aR

′
3bR

′
3cR

′
3d,

P4 : cR4bR4aR4d

P
′
4 : aR

′
4bR

′
4cR

′
4d.

Then we argue by contraction. Consider some history h at which agent 1 moves and

two actions correspond to P1 and P
′
1 respectively. We claim that such a history h cannot

come before all such history for agent 2, 3 and 4 in the game G. That is, given such a

history h for agent 1, there exist a subhistory h
′ ⊆ h and j ∈ {2, 3, 4} such that agent j

moves at h
′

and two actions correspond to Pj and P
′
j respectively.

Suppose not, and suppose agent 1 with P1 chooses the action corresponding to P1. If

agent 1 faces the other agents with P
′
2, P3 and P4, then agent 1 gets the house a. If agent 1

chooses the other action, and faces P
′
2, P

′
3 and P4, then agent 1 receives house c and cP1a

holds. Thus it is not an obviously dominant strategy to choose the action corresponding

to P1. So agent 1 cannot be the first to have such a non-singleton action set.

Now consider a history h at which agent 2 moves and two actions correspond to P2

and P
′
2. We need to show that agent 2 cannot be the first as well. Suppose agent 2 with P

′
2

chooses the action corresponding to P
′
2, and faces P

′
1, P

′
3 and P4, then agent 2 receives the

house b. But if agent 2 chooses the action corresponding P2 and faces P1, P3 and P
′
4, agent

2 receives c and cP
′
2b holds. So agent 2 cannot be the first to have such a non-singleton

action set.

By symmetry, similar argument applies to agent 3 and 4 as well. Due to finiteness,

there is not such a game G and a profile of obviously dominate strategies that implements

f , a contradiction. So an 2-neighborhood mechanism cannot be implemented in obviously

dominate strategies when there are 4 agents.
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If r ≥ 3 holds, then an r-neighborhood mechanism f is outcome equivalent to TTC

mechanism when |I| = 4. The TTC mechanism cannot be implemented in obviously

dominated strategies when there are at least 4 agents(Bade, 2019). So r-neighborhood

mechanisms with r ≥ 3 are not OSP-implementable when |I| = 4.

Next we show that an r-neighborhood mechanism f cannot be implemented in obvi-

ously dominate strategies with r ≥ 2 and |I| > 4. Suppose not, and an extensive-form

game G together with a profile of obviously dominate strategies (Si(·))i∈I implements f .

Fix the preferences of agent i as P̄i for any i > 4, then the game G and (Si(·))i∈I induce an

extensive-form game Ḡ where only agent 1, 2, 3 and 4 choose on the nodes. Then Ḡ and

the profile of obviously dominate strategies (Si(·))i∈{1,2,3,4} implement f with 4 agents, a

contradiction.

On conclusion, the 1-neighborhood mechanism is the only OSP-implementable

mechanism with |I| ≥ 4 in the class of r-neighborhood mechanisms.
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Pycia, M. and M. U. Ünver, (2017), Incentive compatible allocation and exchange of discrete re-

sources , Theoretical Economics , 12, 287-329.

Roth, A. (1982), Incentive compatibility in a market with indivisible goods, Economics letters, 9,

127-132.

Roth, A. and A. Postlewaite (1977), Weak versus strong domination in a market with indivisible

goods, Journal of Mathematical Economics, 4, 131-137.

Sethuraman, J.(2016), An alternative proof of a characterization of the TTC mechanism, Operations

Research Letters , 44, 107-108.

Shapley, L. and H. Scarf (1974), On cores and indivisibility, Journal of mathematical economics, 1,

23-37.

Stigle, G. (1961), The economics of information, The Journal of Political Economy, 69(3), 213-225.

Tamura, Y. and H. Hosseini (2022), The cawler: three equivalence results for object (re)allocation

problems when preferences are single-peaked, Journal of Economic Theory, 203, 105466.

Troyan, P. (2019), Obviously strategy-proof implementation of top trading cycles, International

economic review, 60(3), 127-132.

34


	Introduction
	Model 
	Notations
	Gale's Top Trading Cycles and the Crawler

	The r-neighborhood mechanism 
	Definition
	Results
	Obviously strategy-proofness

	Extension 
	Generalization 
	Discussion about Liu2018

	Conclusion 
	Appendix
	Proof of Proposition 1
	Proof of Theorem 1 and Proposition 2
	Proof of Theorem 2


