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Abstract

This paper introduces the notion of semi-stability for matching problem with couples,

which is a natural generalization of, and identical to, the conventional stability for matching

without couples. It is shown that there always exists a semi-stable matching for matching

markets with strict preferences, and further the set of semi-stable matchings can be par-

titioned into subsets, each of which forms a distributive lattice. We also provide sufficient

conditions for stability, which enable us to provide a new explanation to the puzzle of NRMP

raised in Kojima et al. (2013). Moreover, we introduce the notion of asymptotical stability

and present sufficient conditions for a matching sequence to be asymptotically stable. An-

other important contribution of the paper is to develop a new algorithm, called the Persistent

Improvement Algorithm (PI-Algorithm in short), for finding semi-stable matchings, which

not only generalizes but is also more efficient than the Gale-Shapley algorithm that only fits

the matching market with singles. Lastly, this paper investigates the welfare property and

incentive issues of semi-stable mechanisms.
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1 Introduction

This paper studies the matching problem with couples. One typical feature of the problem

is that the stable matchings with couples may not exist. To avoid this defect, we introduce the

notion of semi-stability as a generalized solution for matching problem with couples, which is a

relaxation and natural generalization of the conventional stability, and further identical to, the

conventional stability for matching without couples.

Matching is one of the most important natures of market. Many problems, such as trade

problem in consumption goods markets, employment problem in labor markets and auction

problem of indivisible/public goods, etc., can be regarded as matching problems. Gale and

Shapley (1962) were the first to introduce the notion of stable matching and regarded it as the

solution of matching problem. The deferred acceptance algorithm proposed by them reveals that

stable matching always exists in one-to-one matching markets with strict preferences. Since

then, a lot of important theoretical results and their practice on matching have been developed

(cf. Roth (2008) for detailed literature review).

Stable matching mechanism has wide applications such as the National Resident Matching

Program (NRMP) that has a long history. The original algorithm for NRMP proposed by

Mullen and Stalnaker (1952) was an unstable mechanism, and later, it was revised repeatedly

as discussed in detail in Roth and Peranson (1999). One of the reasons is that, since the 1970s,

more and more female medical students had entered the job market, which made NRMP’s

algorithm run into difficulties in finding stable outcomes. For instance, couples would often

decline the job offers assigned by the clearinghouse and search positions themselves in order to

stay together, say, they would prefer to have jobs in the same city, although the choice may not

be the best for their professional development. This implies that couple students’ preferences are

complements. In order to make the NRMP’s algorithm also work for couple medical students,

Roth and Peranson (1999) designed the NRMP’s present algorithm, but it may result in an

empty set of stable matchings since stable matching does not exist at all.

Sun and Yang (2006, 2009) studied the auction problem in economies where agents of the

same type are substitutes for one another, but agents of different types are complements. They

showed that equilibrium always exists in economies with quasi-linear preferences. Ostrovsky

(2008) studied a more generalized problem of supply chain networks in which there are sim-

ilar restrictions—same-side substitutability and cross-side complementarity, and showed that

the set of chain-stable networks is non-empty. The problem of matching with couples, howev-

er, is different from that of cross-side complementarity in that the agents of same-couple are
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complements. As shown in Roth (1984), there may not exist any stable matching in matching

markets with couples. Ronn (1990) demonstrated that when couple factors in preferences are

taken into account, it is an NP-complete problem to show whether there exist stable matching

by computational methods.1

As Kojima et al. (2013) pointed out, although there may not exist any stable matching in

couple markets and the NRMP’s present algorithm proposed by Roth and Peranson (1999) is an

adjustment of the instability-chaining algorithm for markets with singles, which was proposed

by in Roth and Vande Vate (1990), so that the revised matching system can accept couples’

preferences, the market practice in the past two decades indicated that the algorithm rarely

failed for the clearinghouse to find stable matchings. Why can the clearinghouse find stable

outcomes while the theories indicate that there may not exist any stable outcomes for couple

markets? Kojima et al. (2013) regarded it as a puzzle and thought the reason may be that

the market size is very large while couples take a very small proportion. They also showed that

under some regularity conditions, as the size of market tends to infinity whereas the number of

couples relative to the size of market does not grow rapidly, the probability that there exists a

stable matching tends to 1.

In their attempt to find a generalized solution for the matching problem with couples, Klijn

and Masso (2003) introduced the notion of weakly stable matching2 in order to extend the

existence result to a larger class of preferences. For markets with singles only, they showed that

the set of weakly stable and weakly efficient matchings is identical to Zhou’s (1994) bargaining

set. However, as Klaus and Klijn (2005) indicated, the set of weakly stable matchings may still

be empty in matching markets with couples. When do there exist stable matchings in a matching

market with couples? Klaus and Klijn (2005) showed that there exists a stable matching when

all couples’ preferences are (weakly) responsive. But, (weakly) responsive preferences actually

imply that couples’ preferences would fail to be complements. When couples’ preferences are not

(weakly) responsive, that is, when they are complements, Klaus and Klijn3 showed that stable

outcomes may not exist even if in the system containing only one couple. Thus, their result is

limited in application.

Moreover, Aldershof and Carducci (1996) showed that, even when the set of stable matchings

is nonempty, there may not be a lattice structure, the set of unmatched objects may not be

1The abbreviation NP refers to nondeterministic polynomial time, which is a common term in computational

complexity theory.
2A matching is weakly stable if it is individually rational and all blocking coalitions are dominated. The

detailed definition can be seen in Klijn and Masso (2003), Klaus and Klijn (2005).
3The counterexample is seen in Roth (2008), but it belongs to Klaus and Klijn.
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the same at every stable matching, and further there may not be any strategy-proof stable

mechanisms. Klaus and Klijn (2005) demonstrated that there are not any ready parallels to any

of the standard results in marriage matching markets, even if preferences are responsive.

All in all, there has been no satisfactory result so far to the problem of matching with

couples. There is neither any concept of outcome that is generally applicable, nor any generalized

algorithm applicable to matching markets with couples for general settings.

In this paper we introduce the notion of semi-stability that can be seen as a generalized

solution of the matching problem with couples, and shows that there always exists a semi-stable

matching for couples markets with strict preferences. A semi-stable matching means that it

is individually rational and there does not exist any blocking coalition of the matching that

contains singleton, that is, any blocking coalition of a semi-stable matching contains a real

couple. As such, the set of stable matchings is clearly a subset of semi-stable matchings. For

a special matching market containing only singletons, a semi-stable matching is identical to a

stable matching. As a result, the notion of semi-stable matching is a natural generalization of

the conventional stable matching without couples.

We then provide sufficient conditions for the existence of stable matchings with couples even

in the presence of complementary preferences. It is shown that there exists a stable match-

ing with couples provided every real couple plays reservation strategies, i.e., some reservation

preferences, which can secure a pair of jobs if they want, are placed on top of its rank list of

preferences. The reason why couples play reservation strategies is that their preferences have

couple-complementarity, that is, although popular jobs are personally desirable, the pair of pop-

ular jobs may not be the most preferred for couples, as the pair of jobs may not be at the same

hospital or in the same city. In order to stay together, the most preferred pair of jobs may not

be popular jobs, which is consistent with the practice of NRMP. As a by-product of the results,

it provides another explanation for the puzzle of NRMP raised in Kojima et al. (2013).

This paper also introduces the notion of asymptotic stability. In a large matching market

with couples, if the number of couples is sufficiently small relative to that of singletons, a semi-

stable matching can be deemed as an approaching stable matching. The number of blocking

coalitions of any semi-stable matching must be very small, relative to the size of the market, if

the length of rank list of couples’ preferences is bounded and the market goes very large. We

then introduce the notion of the degree of instable matching to indicate the unorderly degree

of a matching. The degree of instability is 0 when stable matching exists, and 1 for the null

matching in which all players are unmatched. It is shown that under some simple regularity
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conditions, matching markets with couples is asymptotically stable, i.e., there exists a matching

sequence whose unstable degree tends to zero when the size of markets tends to infinity. This

conclusion is similar to the result in Kojima et al. (2013), who demonstrated that the probability

that a stable matching exists converges to 1 as the market size approaches infinity under some

regularity conditions. The simple regularity conditions defined in this paper are weaker than

their regularity conditions. As such, their result can be regarded as a special case of our result.

Another important contribution of the paper is to provide an algorithm, called Persistent

Improvement Algorithm (PI-Algorithm in short), for finding a semi-stable matching, which not

only generalizes but is also more efficient than the Gale-Shapley algorithm that only fits the

matching market with singles. Crawford and Knoer (1981) and Kelso and Crawford (1982)

studied the employment problem in labor markets, and generalized the Gale-Shapley algorithm

by introducing the salary adjustment process. Hatfield and Milgrom (2005) extended the Gale-

Shapley algorithm into a generalized algorithm for matching with contracts, which is in turn

a generalization of the salary adjustment process of Kelso and Crawford (1982). Ostrovsky

(2008) studied a more generalized problem about supply chain networks in which there are

restrictions—same-side substitutability and cross-side complementarity, and presented the T-

Algorithm which generalizes the algorithms in Kelso and Crawford (1982), Hatfield and Milgrom

(2005), as well as the Gale-Shapley algorithm for marriage matching. However, the problem of

matching with couples is different from the problem of cross-side complementarity in that the

agents of same-couple are complements. Those algorithms mentioned above cannot fit into the

matching markets with couples. Roth and Vande Vate (1990) presented the instability-chaining

algorithm for one-to-one matching markets. The NRMP’s present algorithm proposed in Roth

and Peranson (1999) is an improvement of the instability-chaining algorithm for single markets

such that the clearinghouse can accept the preferences of couples, but the algorithm may not

converge. This paper presents the PI-Algorithm which fits the matching markets with couples.

Moreover, it is a strict generalization of the Gale-Shapley algorithm and further is more efficient,

by which we can find a semi-stable matching quickly.

We also show that the set of semi-stable matchings can be partitioned into subsets, each of

which forms a distributive lattice, and in each of which there exist optimal semi-stable matchings

for one-side, truth telling is a dominant strategy for one-side, and the set of unmatched objects

is the same at every semi-stable matching. We study the problems of welfare property and

incentive issues of semi-stable matching mechanisms from the perspective of market design, and

generalizes the respective results in marriage matching markets.
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The remainder of this paper is organized as follows. Section II describes the setup and

introduces the notions of semi-stability in matchings with couples. Section III provides the

main results on the existence of semi-stable matchings, stable matchings, asymptotically stable

matching sequence, and a generalized lattice theorem. We also provides a new explanation

for the NRMP’s puzzle. Section IV presents the PI-Algorithm and its properties. Section V

discusses the welfare and incentive properties of semi-stable matching mechanisms from the

perspective of market design. Section VI concludes and the appendix gives proofs of theorems.

2 The Model of Matching with Couples

A matching market consists of jobs of hospitals, job-seeking medical students and their

preferences. Although a hospital may provide many jobs, yet as Gale and Shapley (1962) and

Roth and Sotomayor (1990) pointed out, when medical students’ preferences are on specific jobs,

it is equivalent to the one-to-one marriage matching market. In fact, a hospital may provide

some jobs of special profession, such as physician jobs, surgeon jobs or gynecologist jobs, etc.,

and the requirements for the jobs are generally different. As such, in this paper, matching

objects of medical students are jobs rather than hospitals. Let H denote the set of jobs of

hospitals, S the set of medical students and C the set of student couples. Their elements are

written as h, s, and c = (s, s′), respectively, where s ∈ S, s′ ∈ S ∪ {ϕ}. When s′ = ϕ, c = (s, ϕ)

denotes a special couple—single student. By this method, the model in this paper can actually

be applied to three markets, i.e., markets with singles only, markets with couples only, and the

markets containing both singles and couples.

We assume that all preferences of jobs and couples are strict. Let ≻h and ≻c denote h’s and

c’s preference, and P h and P c denote h’s and c’s preferences rank list, respectively. It is said that

s ∈ S is acceptable (resp. unacceptable) to h if s ≻h ϕ (resp ϕ ≻h s), and (h, h′) ∈ [H ∪{ϕ}]2 is

acceptable (resp. unacceptable) pair of jobs to c if (h, h′) ≻c (ϕ, ϕ) (resp. (ϕ, ϕ) ≻c (h, h
′)). For

convenience of discussion, we assume that ϕ and (ϕ, ϕ) are at the last in P h and P c, respectively.

Let Γ = (H,S,C, (≻h)h∈H , (≻c)c∈C) denote a market of matching with couples.

A matching µ is a one-to-one idempotent function from the set H ∪ S ∪ {ϕ} onto itself (i.e.,

µ2(x) = x for all x) such that µ(s) ∈ H ∪ {ϕ} and µ(h) ∈ S ∪ {ϕ}, where µ(s) and µ(h) are the

matched objects of s and h in µ. When a medical student or a job is not matched in µ, we denote

by ϕ its matched object. For convenience, we assume µ(ϕ) = ϕ. Let µ(c) = (µ(s), µ(s′)) with

µ(s) ∈ H ∪ {ϕ} and µ(s′) ∈ H ∪ {ϕ}. For any µ, µ(s) = h if and only if µ(h) = s; µ(c) = (h, h′)

if and only if µ(h) = s and µ(h′) = s′.
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If a job or couple cannot be improved by voluntarily abandoning its matched object, the

matching is individually rational. Formally,

Definition 2.1 A matching µ is individually rational, if (i) for all h ∈ H with µ(h) ̸= ϕ,

µ(h) ≻h ϕ; and (ii) for all c = (s, s′) ∈ C, µ(c) ≻c (ϕ, µ(s′)) when µ(s) ̸= ϕ, µ(c) ≻c (µ(s), ϕ)

when µ(s′) ̸= ϕ, and µ(c) ≻c (ϕ, ϕ) when µ(c) ̸= (ϕ, ϕ).

A couple and a pair of hospital jobs constitute a coalition. We then have the following

definitions.

Definition 2.2 {(s, s′), (h, h′)} is called a blocking coalition of matching µ if (i) (h, h′) ≻c µ(c);

and (ii) [h ̸= ϕ and µ(h) ̸= s imply s ≻h µ(h)] and [h′ ̸= ϕ and µ(h′) ̸= s′ imply s′ ≻h′ µ(h′)].

Thus, a blocking coalition means that agents can be improved upon by matching with each

other.

Definition 2.3 A matching said to be stable if it is individually rational and there exist no

blocking coalitions.

Definition 2.4 A matching is said to be semi-stable if it is individually rational and there are

no blocking coalitions containing a single.

It is obvious that a stable matching is semi-stable, but the reverse in general is not true.

However, a semi-stable matching is a stable matching for any matching market containing only

singletons. Indeed, when all couples are (s, ϕ), it is identical to the definition of stable matching

for singles markets. Thus, the notion of semi-stability for couples markets is a natural general-

ization of the conventional stability for singles markets. As Gale and Shapley (1962) showed,

there always exists a stable matching for singles markets with strict preferences. However, for

matching markets with couples, Roth (1984) showed that there may not exist any stable match-

ings. In the next section, departing from Roths example, we show that there always exists a

semi-stable matching for any matching market containing couples with strict preferences and

also provide sufficient conditions for the existence of stable matchings.

3 Main Existence Results and NRMP Puzzle Revisit

In this section, we first investigate the existence of semi-stable matching for couples markets

with strict preferences. We then show that the set of semi-stable matchings can be partitioned

into subsets, each of which forms a distributive lattice. We also provide sufficient conditions for
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the existence of stability. The results can enable us to provide a new explanation for the puzzle

of NRMP raised in Kojima et al. (2013). Moreover, we introduce the notion of asymptotical

stability and provide sufficient conditions for a matching sequence to be asymptotically stable.

3.1 Existence of Semi-Stable Matchings and Distributive Lattice

The example in Klaus and Klijn (2005) shows that, even if there is only one couple in a

matching market, there may not exist any stable matching. As such, if one focuses only on stable

matchings, the set of outcomes may be empty. This makes us to introduce the notion of semi-

stable matching, which means that there does not exist any blocking coalitions of the matching

that contains singletons. A question then is whether there exists a semi-stable matching for a

matching market with couples. The following theorem gives an affirmative answer.

Theorem 3.1 (Existence of Semi-Stable Matching) For any matching market with cou-

ples and strict preferences Γ = (H,S,C, (≻h)h∈H , (≻c)c∈C), there exists a semi-stable matching

µ.

The theorem indicates there always exists a semi-stable matching for strict preferences. Since

the theorem is proved by a constructive way, we actually obtain an algorithm to find a semi-

stable outcome. In addition, the algorithm also provides an approach to find a stable matching,

if any, in matching markets with couples. Indeed, we first find a semi-stable matching, and then

see if the semi-stable matching to be stable by verifying that each real couple does not form a

blocking coalition. Of course, this is only a sufficient condition for stable matching, that is, if

the semi-stable matching is not stable, we cannot assert that there does not exist any stable

matchings.

The Conway lattice theorem in the literature shows that the set of all stable matchings forms

a distributive lattice for a matching market of singletons with strict preferences.4 Can we have a

similar result of this nice properties for semi-stable matchings with couples? The answer is in the

affirmative in some sense. In any matching market containing couples with strict preferences,

there is a partition of the set of semi-stable matchings, each of which forms distributive lattices.

To see this, define a partial ordering relation ≥C on matchings as follows. For any c ∈ C and

two matchings µ1 and µ2, µ1 ≥c µ2 if and only if µ1(c) ≻c µ2(c) or µ1(c) = µ2(c). It is easily

seen that ≥C is a partial ordering relation, i.e., it is irreflexive, anti-symmetric and transitive.

Consider a matching market Γ = (H,S,C, (≻h)h∈H , (≻c)c∈C) with couples. Let F be the

set of all semi-stable matchings. Define operators ∨C and ∧C as follows: for any c ∈ C and

4The theorem is seen in Knuth (1976) and Roth and Sotomayor (1990), but it belongs to John Conway.
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µ1, µ2 ∈ F , let λ = µ1 ∨C µ2 and ν = µ1 ∧C µ2 where λ(c) = max≻c{µ1(c), µ2(c)}, ν(c) =

min≻c{µ1(c), µ2(c)}. We then have the following generalized lattice theorem.

Theorem 3.2 (Generalized Lattice Theorem) Let Γ = (H,S,C, (≻h)h∈H , (≻c)c∈C) be a

matching market with couples and strict preferences. Then the set of all semi-stable matchings

F can be partitioned into subsets, each of them forms distributive lattices for operators ∨C and

∧C .

For a matching market without couples, the set of all semi-stable matchings is identical to

the set of all stable matchings. As a corollary, the above theorem generalizes the Conway lattice

theorem for marriage matching markets.

Corollary 3.1 (Conway Lattice Theorem) If all preferences are strict, then the set of all

stable matchings in marriage matching markets forms a lattice for partial ordering relation.

3.2 Sufficient Condition for Existence of Stable Matchings

For a market of matching with couples Γ = (H,S,C, (≻h)h∈H , (≻c)c∈C), under what con-

ditions, does there exist a stable matching? Klaus and Klijn (2005) provided an answer by

introducing the notion of (weakly) responsive preference5, and showed that relative personal

preferences can be induced from the preference of couple when it is (weakly) responsive, and

these personal preferences induced must be unique. In such situations, the stable matchings

found by the Gale-Shapley algorithm are also stable in couple context.

However, (weakly) responsive preference implies that there is no complementarity for pref-

erences of couple, but in real world, they are generally complementary. For example, although

for an individual s, hp ≻s hr, yet for couple c = (s, s′), (hr,hq) ≻c (hp, hq), as hq and hr are

in Boston whereas hp is in New York. Thus, the preference of the couple c is not (weakly)

responsive. If so, there may not exist any stable outcomes even in markets containing only one

couple.

In this subsection, we provide a sufficient condition for the existence of stable matching

even in the presence of complementary preferences of couples. To do so, we first introduce the

following notions.

5The preference of couple c = (s, s′) ∈ C is (weakly) responsive if there exist single preferences ≻s and ≻s′ ,

such that: 1) for all h ∈ H ∪ {ϕ}, (h, ϕ) ≻c (ϕ, ϕ) if and only if h ≻s ϕ; (ϕ, h) ≻c (ϕ, ϕ) if and only if h ≻s′ ϕ; and

2) for all hp, hq, hr ∈ H ∪ {ϕ}, if hq ≻s′ ϕ, hp ≻s hr ≻s ϕ, then (hp, hq) ≻c (hr, hq); if hq ≻s ϕ, hp ≻s′ hr ≻s′ ϕ,

then (hq, hp) ≻c (hq, hr).
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Definition 3.1 (Reservation Preference) Let Γ = (H,S,C, (≻h)h∈H , (≻c)c∈C) be a match-

ing market with couples. A pair of jobs (h, h′) is said to be a couple c = (s, s′)’s reservation

preference if (i) (h, h′) ≻c (ϕ, ϕ), (ii) whenever h ̸= ϕ, s ≻h s̃ for all s̃ ∈ P h\{s}, and (iii)

whenever h′ ̸= ϕ, s′ ≻h′ s̃′ for all s̃′ ∈ P h′\{s′}.

A reservation preference of a couple means that the couple can get a pair of jobs if they

want, as the members of the couple are respectively the most preferred medical student for the

relevant jobs of hospitals.

Definition 3.2 (Effective Preference) Let Γ = (H,S,C, (≻h)h∈H , (≻c)c∈C) be a matching

market and c = (s, s′) be a couple. A pair of jobs (h, h′) is said to be c’s effective preference if

(i) (h, h′) ≻c (ϕ, ϕ), (ii) s ≻h ϕ whenever h ̸= ϕ, and (iii) s′ ≻h′ ϕ whenever h′ ̸= ϕ. Student s is

said to be an effective preference of h if (i) s ≻h ϕ and (ii) there exists h ∈ H ∪ {ϕ} such that

(h, h) ≻c (ϕ, ϕ). Student s
′ is h′’s effective preference can be similarly defined.

If jobs in a couple c’s preference can accept its corresponding members, then the couple’s

preference is an effective preference to the couple. If (h, h′) is not an effective preference of c,

then there does not exist any individually rational matching µ such that µ(c) = (h, h′). Similarly,

if s is not an effective preference of h, there does not exist any individually rational matching µ

such that µ(h) = s.

We then have the following theorem which shows that there must exist a stable matching if

the first preference of each couple is one of its reservation preference.

Theorem 3.3 (Sufficient Condition I for the Existence of Stable Matchings) Let Γ =

(H,S,C, (≻h)h∈H , (≻c)c∈C) be a matching market with couples and strict preferences. Suppose

that for all c ∈ C with s′ ̸= ϕ, the first preference in P c (h, h′) is a reservation preference of c.

Then, there exists a stable matching µ.

The reason why a reservation preference may be the first priority of a real couple is that

their preferences have couple-complementarity, that is, although one wants some popular jobs,

the pair of popular jobs may not be the most preferred for couples. Since the pair of popular

jobs may not be at the same hospital or in the same city, the most preferred pair for a couple

may not be popular jobs, but is its reservation preference. In the later subsection, we will give a

generalized version of the theorem with more slack condition that reservation preference of real

couples may not be their first preference.
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3.3 Asymptotical Stability

If we regard stable matchings as orderly matchings whereas unstable matchings as unorderly

matchings, then the degree of a unstable matching may be used to measure the unorderly degree

of a matching. For a matching market Γ = (H,S,C, (≻h)h∈H , (≻c)c∈C), the most unorderly

matching is the null matching µ0, i.e., for any c ∈ C, µ0(c) = (ϕ, ϕ), whose unstable degree is

denoted by 1. The most orderly matchings are stable matchings. For any stable matching µ1,

its unstable degree is denoted by 0. For any unstable matching µ, its unstable degree is a real

number between 0 and 1. The intuition is that the higher the unstable degree of a matching is,

the more unorderly the matching is. Formally, we have

Definition 3.3 Let Γ = (H,S,C, (≻h)h∈H , (≻c)c∈C) be a matching market with couples. If the

set C contains n elements, the rank list of preference P ci contains li effective preferences, the

number of blocking coalitions of matching µ is m, then the unstable degree of µ is denoted by

θ(µ) = m/N , where N =
∑n

i=1 li.

Definition 3.3 implies that unstable degree is a function from the set of all the matchings

in matching market Γ onto the unit interval. The null matching µ0 has N =
∑n

i=1 li blocking

coalitions6 and each stable matching µ1 has no blocking coalition, so θ(µ0) = 1 and θ(µ1) = 0.

Thus, for any matching µ, if it has m blocking coalitions, obviously 0 ≤ m ≤ N , and thus the

degree of instability θ(µ) ∈ [0, 1]. Intuitively, the more blocking coalitions a matching has, the

more unorderly it is. Thus, the lower the unstable degree of a matching is, the more orderly

and stable it is.

Definition 3.4 Let {Γk}∞k=1 be a sequence of matching markets with couples where Γk =

(Hk, Sk, Ck, (≻h)h∈Hk , (≻c)c∈Ck), and let µk be a matching of Γk, k = 1, 2, · · · . The matching

sequence {µk}∞k=1 is said to be asymptotically stable if limk→∞{θ(µk)}∞k=1 = 0. {Γk}∞k=1 is said

to be asymptotically stable if there exists a matchings sequence {µk}∞k=1 that is asymptotically

stable.

Based on some common features of large matching markets in reality, Kojima and Pathak

(2009) first presented the notion of regular markets. Kojima et al. (2013) then defined the

regular markets for matchings with couples, and demonstrated that for a regular sequence of

markets with couples, the probability that a stable matching exists converges to 1 as the market

6Each blocking coalition {c, (h, h′)} of the null matching µ0 contains a couple and one of its effective preferences;

conversely, for any c ∈ C and any of its effective preferences (h, h′), {c, (h, h′)} must be a blocking coalition of

the null matching µ0. Thus, the null matching µ0 has exactly N =
∑n

i=1 li blocking coalitions.

11



size approaches infinity whereas the number of couples relative to the market size does not grow

rapidly.

Here we introduce the notion of simple regular markets with couples. Consider a sequence

of markets of different sizes. For a sequence of matching markets with couples, {Γk}∞k=1 with

Γk = (Hk, Sk, Ck, (≻h)h∈Hk , (≻c)c∈Ck), there are
∣∣Ck

∣∣ = nk, mk real couples, and lc effective

preference in P c.

Definition 3.5 A sequence of markets {Γk}∞k=1 is said to be simple regular if it satisfies the

following conditions:

(1) mk = o(nk);

(2) There exists a number q such that for any c ∈ C with s′ ̸= ϕ, lc ≤ q;

(3) (Participation Restriction) For any c ∈ C, lc > 0.

Condition (1) implies the fact that the number of real couples is small relative to the number

of singletons. Condition (2) requires that the numbers of effective preferences of real couples is

bounded by q. Condition (3) is actually a participation restriction. For any couple c, if lc = 0,

then for any individually rational matching µ, µ(c) = (ϕ, ϕ), so it will not participate in the

matching market. In fact, provided the number of real couples that satisfy the participation

restriction is small relative to that of singletons satisfying the participation restriction, the first

and third conditions can be omitted. We then have the following theorem.

Theorem 3.4 (Asymptotic Stability) Suppose that {Γk}∞k=1 is a sequence of simple regular

markets with couples and strict preferences where Γk = (Hk, Sk, Ck, (≻h)h∈Hk , (≻c)c∈Ck). Then

there exists a matching sequence {µk}∞k=1 that is asymptotically stable when nk tends to infinity,

that is, {Γk}∞k=1 is asymptotically stable.

The theorem indicates that there almost always exist some stable matchings when the size

of a simple regular market tends to infinity. As the simple regularity conditions are weaker than

the regularity conditions proposed in Kojima et al. (2013), their result that the probability that

a stable matching exists converges to 1 as the market size approaches infinity can be regarded

as a special case of our asymptotic stability theorem.

3.4 NRMP Puzzle Revisit

In the past two decades, NRMP’s practice has shown that the clearinghouse seldom fails to

find a stable matching. Kojima et al. (2013) pointed out that it is a puzzle. In fact, the reason
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is that the NRMP’s market has many special features, which are described as eight stylized facts

by them. Here are the first four stylized facts.

Fact 1: Applicants who participate as couples constitute a small fraction of all participating

applicants.

Fact 2: The length of single applicants’ rank lists is small relative to the number of possible

programs.

Fact 3: Applicants who participate as couples rank more programs than single applicants.

However, the number of distinct programs ranked by a couple member is small relative to the

number of possible programs.

Fact 4: The most popular programs are ranked as a top choice by a small number of appli-

cants.

Kojima et al. (2013) pointed out that, in the data of NRMP during 1992-2009, applicants

who participated as couples are on average 4.4% of all applicants, the length of single applicants’

preference lists is on average about 7-9 programs, which is about 0.3% of the number of all

possible programs, and the length of couple applicants’ rank lists is about 81 on average.

Since a matching of which the unstable degree is zero must be stable, the asymptotic stability

theorem indicates that there almost always exist a stable matching when the size of simple

regular markets approaches infinity. Facts 1, 2 and 3 imply that the NRMP’s practice satisfies

the simple regularity conditions, so the asymptotic stability theorem is a good interpretation for

the puzzle of NRMP.

Considering the stylized fact 4 of NRMP’s market, most of popular jobs are placed at the

top of their preference rank lists by only a small number of medical students, which contradicts

the intuition that popular jobs ought to be preferred by most medical students. This indicates

that the first preferences of most students are not their most preferred choices. If all real couples

play reservation strategies, i.e., they place one of their reservation preferences at the top of their

rank order list (ROL) of preferences, then there exists a stable matching by Theorem 3.3. In

fact, real couples have more incentives to play reservation strategies than singletons do due to

couple-complementarity, that is, although one wants some popular jobs, the pair of popular jobs

may not be the most preferred for couples as they may not be at the same hospital or in the

same city.

From the statistical data in Table 1, we can see that the fraction of rank order list where both

members rank the same region, i.e., the preference having couple-complementarity, is 72.7%. It

shows that the pair of jobs having couple-complementarity surely provides the couple with extra
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welfare, so it gives couples more incentives than singletons to play reservation strategies. Real

couples play reservation strategies, which coincides with Fact 4 that the most popular programs

are ranked as a top choice by a small number of applicants. This actually shows that not only

most real couples but also most singletons play reservation strategies.

Total
Mean length for

rank-order list (ROLL)

Geographic similarity

for preference

single doctors 3010 7.6

♯ Regions ranked 2.5

couples

♯ Regions ranked 19 81.2 4%

Fraction of ROLL where

with members Rank same Region
72.7%

Table 1: Summary statics of Psychology Labor Market

Notes: The data are from Kojima et al. (2013). This table reports descriptive information

from the Association of Psychology Postdoctoral and Internship Centers match, averaged over

1999-2007. Single doctors’ rank order lists consist of a ranking over hospital jobs, while couples’

indicate rankings over pairs of hospital jobs.

Mathcing Market Doctor Type
Doctor’s Choice Received

1st 2nd 3rd 4th 5th unassigned

without couples single 36.8% 16.9% 10.1% 6.4% 11.2% 18.9%

with couples single 36.0% 16.6% 10.1% 6.2% 11.6% 19.5%

couple 18.0% 10.6% 8.7% 5.1% 52.5% 5.2%

Table 2: Summary statics of Psychology Labor Market

Notes: The data are from Kojima et al. (2013). This table reports the choice received in

the doctor-optimal stable matching in a market with single doctors and without couples versus

a stable matching in the market with couples in the Association of Psychology Postdoctoral and

Internship Centers match, averaged over 1999-2007. A doctor is counted as unassigned even if

being unassigned is among her top five choices.

Intuitively, if the first preference of a couple or singleton is successfully matched, then the
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preference may be seen as one of its reservation preferences. The data in Table 2 show that the

fractions of the first preference of singletons that is successfully matched are respectively 36.8%

and 36.0% in markets without couples and with couples. If the second preference of singletons

that is successfully matched is also seen as their reservation preference, then the fractions of

singletons that play reservation strategies are respectively 53.7% and 52.6%. Although the

fraction of the first and second preferences7 of couples that are successfully matched is only

28.6% and it is 42.4% plus the third and fourth preferences, as couples have more incentives

than singletons to play reservation strategies, we can conclude that there is a larger fraction

of couples than 53.7% to place their reservation preferences at the top of their rank order list.

It can be partly explained by the fractions of couples and singletons unassigned. On average,

about 19% of all singletons are unassigned but it is 5.2% for couples, that is, about 81% of all

singletons and 94.8% of all couples are assigned. It may be interpreted as a larger fraction of

couples than singletons play reservation strategies.8

Theorem 3.3 indicates that if all real couples play reservation strategies, then there must

exist a stable matching. In fact, the condition of Theorem 3.3 can be weakened. Provided the

preferences in front of real couples’ first reservation preference are not pairs of popular jobs,

then there exists a stable matching. Since the number of couples is very small relative to the

number of singletons, we may consider that all popular jobs are assigned to singletons. The data

in Table 1 show that the number of singletons is 3010 whereas the number of couples is 19, and

the fraction of singletons whose first preferences are successfully assigned is over 36% (which

means more than 1000 jobs, and we may consider that almost all popular jobs are among the

1000 jobs). The following theorem shows that there exist a stable matching in such markets. It

is another strong interpretation for the puzzle of NRMP.

Theorem 3.5 (Sufficient Condition II for the Existence of Stable Matching) Let Γ =

(H,S,C, (≻h)h∈H , (≻c)c∈C) be a matching market with strict preferences. Suppose that

(1) for any c ∈ C with s′ ̸= ϕ, the first reservation preference in P c is (h, h′);

(2) for any preference (h, h′) before (h, h′), (h, ϕ) ̸= (ϕ, ϕ) or (h′, ϕ) ̸= (ϕ, ϕ) implies

that it is not only a reservation preference item but also the first preference of a

singleton.

7Since the preference of couples is a pair of jobs, two jobs can constitute two preferences, such as (a,b) and

(b,a).
8Of course, it also has another interpretation that, originally, jobs a and b are not to be accepted by each

member of a couple, yet both jobs are at the same hospital or in the same city, so as a couple they may accept

the pairs of jobs (a,b) or (b,a). Thus, the probability that the couple is assigned is increased.
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Then, there exists a stable matching.

It can be easily seen that, when the conditions of theorem 3.3 are met, the conditions of

theorem 3.5 must also be satisfied. Thus, theorem 3.5 is a generalization of theorem 3.3.

4 Persistent Improvement Algorithm (PI-Algorithm)

Hatfield and Milgrom (2005) presented the generalized Gale-Shapley algorithm for matching

with contracts. Ostrovsky (2008) studied the more generalized problem about supply chain

networks with same-side substitutability and cross-side complementarity. He presented the T-

Algorithm that generalizes the result of Hatfield and Milgrom (2005) and also the Gale-Shapley

algorithm for one-to-one matching. However, the problem of matching with couples is different

from that of cross-side complementarity where the agents of same-couple are complements.

As such, these algorithms cannot be applied to matching markets with couples. This section

provides a new algorithm, called PI-Algorithm, which fits the matching markets with couples.

The PI-Algorithm not only generalizes but is also more efficient than the Gale-Shapley algorithm,

by which we can find a semi-stable matching according to the steps described in the proof of

Theorem 3.1.

4.1 PI-Algorithm

Given a matching market with couples Γ = (H,S,C, (≻h)h∈H , (≻c)c∈C), let P h and P c be

h’s and c’s preferences rank list. Following Hatfield and Milgrom (2005), we denote the space

of contracts X = S × H. A contract x = (xS , xH) ∈ X denotes a pair of matching between

medical student xS and job xH , and a medical student can sign only one contract with any

given jobs of hospitals. Thus, each contract is a binary relation so that it is associated with

one medical student and one job. The running steps of PI-Algorithm are a sequential process

in which contracts are chosen by jobs of hospitals and medical students.

Given a set of contracts X ′ j X, if there does not exist any acceptable contract for h, h’s

choice set is empty; otherwise, it just contains h’s most preferred contract. For students’ choices,

it is more complicated. The couple c = (s, s′) makes an optimal choice by its preferences rank

list in which it may choose two contracts simultaneously, one contract or no contract. If c does

not choose any contract, the choice sets of s and s′ are empty; if c only chooses one contract

(s, h), s’s choice set is {(s, h)} and s′’s choice set is empty; if c chooses two contracts (s, h) and

(s′, h′), s’s choice set is {(s, h)} and s′’s choice set is {(s′, h′)}. Formally, the choice mappings
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Chh(·) and Chs(·) of jobs in hospitals and medical students are defined as follows:

Chh(X
′) =

 ∅ if {(x′S , h) ∈ X ′ : x′S ≻h ϕ} = ∅

{(xS , h)} otherwise

where xS = max ≻h {x′S : (x′S , h) ∈ X ′}.

For c = (s, ϕ), s ∈ S,

Chs(X
′) =

 ∅ if {(s, x′H) ∈ X ′ : (x′H , ϕ) ≻c (ϕ, ϕ)} = ∅

{(s, xH)} otherwise

where (xH , ϕ) = max ≻c {(x′H , ϕ) : (s, x′H) ∈ X ′}.

For c = (s, s′) with s, s′ ∈ S,

Chs(X
′) =

 ∅ if h = ϕ

{(s, h)} otherwise

and

Chs′(X
′) =

 ∅ if h′ = ϕ

{(s′, h′)} otherwise

where (h, h′) = max ≻c {(h, h′) : h = ϕ or (s, h) ∈ X ′, h′ = ϕ or (s′, h′) ∈ X ′}.

Denote by ChS(X
′) = ∪s∈SChs(X

′) the choice set for all medical students and ChH(X ′) =

∪h∈HChh(X
′) the choice set for all hospital jobs .

PI-Algorithm starts from the initial matching µ0 at which matched objects of all the medical

students are ϕ. After running each round, a new matching µt is created, which is a Pareto

improvement on µt−1 for all couples, i.e., all couples c weakly prefer µt(c) to µt−1(c) with at

least one strictly preferring µt(c). PI-Algorithm ends if there is no further Pareto improvement

for all couples.

In round 0 of PI-Algorithm, it produces preferences rank list P c(0) of each couple c through

the method that all such items (h, h′) of P c will be removed whenever s or s′ is unacceptable to

job h or job h′ respectively. PI-Algorithm consists of repeated rounds of calculation. There are

four steps in each round except round 0. Step 1 determines preferences rank list P c(t) of each

couple c where all the items of P c(t − 1) behind µt−1(c) will be removed. Step 2 determines

the set of contracts X(t) submitted by medical students. Step 3 determines the choice set

ChH(X(t)) for all of the hospital jobs. Step 4 determines the choice set ChS(ChH(X(t))) for all

medical students. All of the contracts in the choice set ChS(ChH(X(t))) form a matching µt in

round t. Running round-by-round calculation, when ChS(ChH(X(t))) = ChS(ChH(X(t− 1))),

PI-Algorithm ends and all of the contracts in the choice set ChS(ChH(X(t))) form the last

matching µE . Formally, we have
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Round 0, for all c ∈ C, P c(0) = P c \ {(h, h′) ∈ P c : s /∈ P h or s′ /∈ P h′}, t = 1.

Round t, for all c ∈ C,

Step 1: P c(t) = P c(t− 1) \ {(h, h′) ∈ P c(t− 1) : µt−1(c) ≻c (h, h
′)};

Step 2: X(t) = X1(t) ∪X2(t) where

X1(t) = ∪c∈C{(s, h) ∈ X : h ∈ H, exist h′ ∈ (H ∪ {ϕ}) such that (h, h′) ∈ P c(t)},

X2(t) = ∪c∈C{(s′, h′) ∈ X : h′ ∈ H, exist h ∈ (H∪{ϕ}) such that (h, h′) ∈ P c(t)};

Step 3: ChH(X(t));

Step 4: ChS(ChH(X(t))), if ChS(ChH(X(t))) = ChS(ChH(X(t − 1))), then end,

else t = t+ 1 and goto Round t.

We will illustrate these steps of PI-Algorithm by the following example.

4.2 PI-Algorithm: An Example

The running procedures of PI-Algorithm for Example 1 are specified as in Table 3.

Example 1: c1 = (s1, s2) and c2 = (s3, s4) are couples, c3 = (s5, ϕ) and c4 = (s6, ϕ) are

singletons. There are five hospital jobs h1, h2, h3, h4 and h5. Their preferences rank lists are as

follows:

c1 : {(h1, h2), (h3, h4), (h1, ϕ), (h3, ϕ), (ϕ, h2), (ϕ, h4), (ϕ, ϕ)};

c2 : {(h1, h2), (h3, h5), (h1, ϕ), (h3, ϕ), (ϕ, h2), (ϕ, h5), (ϕ, ϕ)};

c3 : {(h1, ϕ), (h2, ϕ), (h3, ϕ), (h5, ϕ), (ϕ, ϕ)};

c4 : {(h1, ϕ), (h2, ϕ), (h3, ϕ), (h4, ϕ), (ϕ, ϕ)};

h1 : {s1, s3, s5, ϕ}; h2 : {s2, s4, s6, ϕ}; h3 : {s1, s3, s5, ϕ};

h4 : {s2, s4, s6, ϕ}; h5 : {s2, s4, s5, ϕ}.

In round 0, it removes all the items of preferences rank lists of all couples that cannot be

acceptable to hospital jobs. After round 1 and round 2, it has actually produced the last

matching. Round 3 repeats round 2 and thus PI-Algorithm ends. We obtain the following

matching.

µ(c1) = (h1, h2), µ(c2) = (h3, h5), µ(c3) = (ϕ, ϕ), µ(c4) = (h4, ϕ).

We can easily verify the matching obtained is stable. The matching object of c1 is the most

preferred and therefore there do not exist any blocking coalition containing c1. As h1 and h2

also obtain their most preferred objects, there do not exist any blocking coalitions containing

h1 or h2. Thus, possible blocking coalitions must contain {s1, h3}, {s2, h4}, {s4, h4} or {s2, h5}.

However, such blocking coalition does not exist because there is no participation incentive for

c1 and c2. Hence there does not exist any blocking coalition.
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Round 0

P c1(0) = {(h1, h2), (h3, h4), (h1, ϕ), (h3, ϕ), (ϕ, h2), (ϕ, h4), (ϕ, ϕ)};

P c2(0) = {(h1, h2), (h3, h5), (h1, ϕ), (h3, ϕ), (ϕ, h2), (ϕ, h5), (ϕ, ϕ)};

P c3(0) = {(h1, ϕ), (h3, ϕ), (h5, ϕ), (ϕ, ϕ)};

P c4(0) = {(h2, ϕ), (h4, ϕ), (ϕ, ϕ)}.

Round 1

step 1 P c1(1) = P c1(0), P c2(1) = P c2(0), P c3(1) = P c3(0), P c4(1) = P c4(0)

step 2
X(1) = {(s1, h1), (s1, h3), (s2, h2), (s2, h4), (s3, h1), (s3, h3),

(s4, h2), (s4, h5), (s5, h1), (s5, h3), (s5, h5), (s6, h2), (s6, h4)}

step 3 ChH(X(1)) = {(s1, h1), (s2, h2), (s1, h3), (s2, h4), (s4, h5)}

step 4 Chs(ChH(X(1))) = {(s1, h1), (s2, h2), (s4, h5)}

Round 2

step 1 P c1(2) = {(h1, h2)}, P c2(2) = P c2(1)\{ϕ, ϕ}, P c3(2) = P c3(1), P c4(2) = P c4(1)

step 2
X(2) = {(s1, h1), (s2, h2), (s3, h1), (s3, h3), (s4, h2), (s4, h5), (s5, h1),

(s5, h3), (s5, h5), (s6, h2), (s6, h4)}

step 3 ChH(X(2)) = {(s1, h1), (s2, h2), (s3, h3), (s6, h4), (s4, h5)}

step 4 ChS(ChH(X(2))) = {(s1, h1), (s2, h2), (s3, h3), (s6, h4), (s4, h5)}

Round 3

step 1
P c1(3) = {(h1, h2)}, P c2(3) = {(h1, h2), (h3, h5)},

P c3(3) = P c3(2), P c4(3) = {(h2, ϕ), (h4, ϕ)};

step 2
X(3) = {(s1, h1), (s2, h2), (s3, h1), (s3, h3), (s4, h2), (s4, h5), (s5, h1),

(s5, h3), (s5, h5), (s6, h2), (s6, h4)}

step 3 ChH(X(3)) = {(s1, h1), (s2, h2), (s3, h3), (s6, h4), (s4, h5)}

step 4
ChS(ChH(X(3))) = {(s1, h1), (s2, h2), (s3, h3), (s6, h4), (s4, h5)}

Since ChS(ChH(X(3))) = ChS(ChH(X(2))), END.

Table 3: PI-Algorithm Running Procedures

4.3 Properties of PI-Algorithm

Suppose PI-Algorithm ends in round T. Denote the matching produced in round k by µk

and the last matching by µE . Then PI-Algorithm implies the following two lemmas.

Lemma 4.1 µT−1 = µT = µE; P
c(t+ 1) j P c(t), X(t+ 1) j X(t) for any c ∈ C, 0 < t < T .

Lemma 4.2 µt(c) ≻c µt−1(c) or µt(c) = µt−1(c) for all c ∈ C, and µt(c) ≻c µt−1(c) for some

c ∈ C, 0 < t < T .

Lemma 4.2 implies that PI-Algorithm brings a Pareto improvement in each round except

round 0 and the last round. In addition, Lemma 4.2 implies that PI-Algorithm must end in

finite rounds. Suppose there exist n couples and li + 1 preferences in couple ci’s preferences list
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P ci . Since at least one couple gets strict improvement in each round except round 0 and the last

round, PI-Algorithm ends at most T =
∑n

i=1 li+1 rounds. We then have the following theorem.

Theorem 4.1 For any matching market with couples and strict preferences Γ = (H,S,C, (≻h

)h∈H , (≻c)c∈C), the matching µE obtained by running PI-Algorithm is a stable matching for all

c ∈ C and h ∈ H provided µE(h) ̸= ϕ.

The theorem implies that PI-Algorithm converges to a matching µE that is a stable matching

for a subset (C∪H) of (C∪H) with µE(h) ̸= ϕ for all h ∈ H. In fact, the matching µN found by

the NRMP’s present algorithm9 is also a stable matching for a subset (C ∪H) of (C ∪H) with

µN (c) ̸= (ϕ, ϕ) for all c ∈ C.10 However, the NRMP’s present algorithm does not necessarily

converge, which will encounter an infinite loop when no stable matching exists. Even so, we

cannot assert that there does not exist any stable matchings by this argument because infinite

loop may also occur when there exist some stable matchings. Compared with the NRMP’s

present algorithm, PI-Algorithm must end after finite rounds.

Theorem 4.2 For any matching market with couples and strict preferences Γ = (H,S,C, (≻h

)h∈H , (≻c)c∈C), the matching µE obtained by running PI-Algorithm is a stable matching when

the market contains no real couples, i.e., for any c ∈ C, s′ = ϕ.

The theorem indicates that PI-Algorithm also finds a stable matching when a matching

market only contains single medical students. It simplifies the matching process of the Gale-

Shapley algorithm and thus is more efficient. To compare the two algorithms, we first briefly

state the running process of the Gale-Shapley algorithm in Gale and Shapley (1962).

The running procedures of the Gale-Shapley algorithm that jobs first propose to medical

students are as follows: each job h proposes to medical students of its preference list starting

from its first choice (if it has some acceptable choices); each medical student “holds” the most

preferred job offer and rejects all others; any job rejected at some steps makes a new proposal

9See Roth and Peranson (1999) for detailed description of the algorithm. In order to avoid the infinite loop

that may occur, Kojima et al. (2013) presented the sequential couples algorithm similar to the Roth-Peranson

algorithm, which are slightly different in two aspects. Firstly, where the sequential couples algorithm fails, the

Roth-Peranson algorithm proceeds and tries to find a stable matching. Secondly, in the Roth-Peranson algorithm,

when a couple is added to the market with single doctors, any single doctor who is displaced by the couple is

placed before another couple is added. By contrast, the sequential couples algorithm holds any displaced single

doctor without letting her apply, until it processes applications by all couples.
10When the NRMP’s present algorithm stops at an infinite loop, or when the sequential couples algorithm

ends, the matching obtained is stable if not considering the unmatched medical students. See Roth and Peranson

(1999) and Kojima et al. (2013) for details.
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by sequential order to the next preferred medical student who has not yet rejected it; when no

further proposals are made, the job finally accepted by medical students (if any) forms the last

matching.

As for PI-algorithm, in round 1, each medical student proposes to all of his or her acceptable

choices, and each job chooses its most preferred contract and sends back to the student. The

result is identical to that each job selects its most preferred student from its preference rank list

because its most preferred student must have proposed to it.11 As such, each medical student’s

choice by the two algorithms in round 1 is perfectly identical. After round 1, PI-Algorithm is

varied from the Gale-Shapley algorithm, as medical students do not propose to those jobs to

which they prefer their current matched objects. The procedure is that each job proposes to

medical students from more preferred to less preferred ones, but not in strict sequential order.

In other words, it will skip those medical students who will reject its proposals. Compared

with the Gale-Shapley algorithm, PI-Algorithm obviously accelerates the matching process and

improves the efficiency of algorithm.

For a matching market without couples, similar to the Gale-Shapley algorithm, PI-Algorithm

may not only begin with proposals by medical students, but also begin with proposals by jobs.

That is, PI-Algorithm can begin from the set S to the set H, or similarly from the set H to

the set S, and obtain stable matchings µE
S and µE

H . The following theorem shows that they

are respectively identical to µH and µS that are obtained by Gale-Shapley algorithm. Thus,

PI-Algorithm can be seen as the generalization of Gale-Shapley algorithm which also fits the

matching market with couples.

Theorem 4.3 For any matching market containing only singletons with strict preferences Γ =

(H,S,C, (≻h)h∈H , (≻c)c∈C), the matchings µE
S and µE

H obtained by running PI-Algorithm are

respectively identical to µH and µS obtained by Gale-Shapley algorithm.

5 Market Design

In the practice of matching markets, stable matching mechanisms play an important role.

However, in some special markets, theoretically there may not exist any stable matching mecha-

nisms, such as roommate allocation problem (Gale and Shapley,1962) and matching with couples,

etc. For matching markets with couples, if we employ semi-stable matching mechanisms, The-

11Assume that each preference of hospital jobs is acceptable to couples; otherwise, this preference item cannot

be considered effective, which does not affect any individually rational matching and can be deleted from the

preference lists of hospital jobs.
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orem 3.1 guarantees the existence of semi-stable matching mechanisms, and PI-Algorithm also

ensures that semi-stable matching mechanisms are computationally feasible.

Let Γ = (H,S,C, (≻h)h∈H , (≻c)c∈C) be a matching market with couples, and let Q =

{P c
1 , P

c
2 , ..., P

c
m, P h

1 , P
h
2 , ..., P

h
n } be the set of stated preference lists, one for each couple and

hospital job, where each P c and P h are couple’s and job’s preferences.

Definition 5.1 A matching mechanism induced by the matching market Γ is a function h

whose range is the set of all possible inputs (C,H,Q), and whose output h(Q) is a matching

between C and H. If h(Q) is always stable with respect to Q, it will be called a stable matching

mechanism; If h(Q) is always semi-stable with respect to Q, it will be called a semi-stable

matching mechanism.12

For any matching market without couples, stable mechanisms have the following properties:

1) at every stable matching, the set of unassigned agents is the same (cf. McVitie and Wilson

(1970)); 2) there exist weakly Pareto efficient stable matchings for one side of agents (cf. Roth

(1982a)); 3) stable mechanisms in general are not strategy-proof (cf. Dubins and Freedman

(1981), Roth (1982, 1982a, 1985), Sonmez (1997), Martinez et al. (2004), Abdulkadiroglu (2005),

Hatfield and Milgrom (2005), Klaus and Klijn (2005)). For matching markets with couples, in

general, there does not exist a stable matching mechanism, but Theorem 3.1 guarantees the

existence of a semi-stable matching mechanism.

Let µE denote a semi-stable matching obtained by PI-Algorithm following the steps described

in the proof of Theorem 3.1, then when h(Q) = µE , Theorem 3.1 ensures that the mechanism is

a semi-stable matching revelation mechanism, which is called PI-Algorithm mechanism. For a

matching market Γ = (H,S,C, (≻h)h∈H , (≻c)c∈C), let F be the set of all semi-stable matchings.

Define a correspondence K : F → 2F by K(µ) = {ν : ν(c) = µ(c) for all c = (s, s′) ∈ C with

s′ ̸= ϕ}, i.e., the matched objects to real couples are the same in every matching of K(µ).

For marriage matching markets with strict preferences, McVitie and Wilson (1970) shows

that the set of unmatched men and women is the same at every stable matching. The following

theorem generalizes the result of McVitie and Wilson (1970), which shows that for any matching

market with couples, the subset of semi-stable matchings K(µE) coincides with the set of all

stable matchings.

Theorem 5.1 Let Γ = (H,S,C, (≻h)h∈H , (≻c)c∈C) be a matching market with couples and strict

preferences. Suppose that µ is a semi-stable matching of Γ. Then, the set of unmatched medical

12This definition follows Roth and Sotomayor (1990). Mechanisms in which players must state their preferences

are called revelation mechanisms, and the mechanism h is called a revelation mechanism in the literature.
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students and hospital jobs is the same in every semi-stable matching of K(µ).

Theorem 5.2 Let Γ = (H,S,C, (≻h)h∈H , (≻c)c∈C) be a matching market with couples and strict

preferences. Then, the semi-stable matching µE obtained by PI-Algorithm mechanism is weakly

Pareto efficient on K(µE) for the side of hospital jobs.

Theorem 5.2 implies that we have an optimal result for the side of hospital jobs in matching

markets with couples. It then can be regarded as a generalization of the optimal theorem

on marriage matching markets in Roth (1982a). Also, by Theorem 4.3, for a matching market

without couples,K(µE) coincides with the set of stable matchings, and thus we have the following

corollary.

Corollary 5.1 For matching markets containing singles only with strict preferences Γ = (H,S,C, (≻h

)h∈H , (≻c)c∈C), the stable matching µE obtained by running PI-Algorithm is weakly Pareto effi-

cient for the side of jobs of hospitals.

While Theorem 5.2 shows that the PI-Algorithm mechanism results in weak Pareto op-

timality with respect to hospital jobs, the following theorem, however, shows that it is not

strategy-proof.

Theorem 5.3 Let Γ = (H,S,C, (≻h)h∈H , (≻c)c∈C) be a matching market with couples and strict

preferences. Then PI-Algorithm mechanism is not strategy-proof.

For any matching market with strict preferences Γ = (H,S,C, (≻h)h∈H , (≻c)c∈C), Theorem

3.2 shows that the set of semi-stable matchings forms a partition13, that is, F = ∪m
r=1K(µr),

where F is the set of all semi-stable matchings and K(µi)∩K(µj) = Φ, 1 ≤ i ≤ j ≤ m. Without

loss of generality, assume that semi-stable matching µr is the optimal matching in K(µr) for

the side of hospital jobs. Although Theorem 5.3 is a negative result on strategy-proof of the PI-

Algorithm mechanism in the whole domain, the following theorem is relatively positive, which

shows that the PI-Algorithm mechanism is strategy-proof on every distributive lattice.

Theorem 5.4 Let Γ = (H,S,C, (≻h)h∈H , (≻c)c∈C) be a matching market with couples and

strict preferences. Suppose that the PI-Algorithm mechanism is restricted in K(µr). Then it is

a dominant strategy for every job of hospitals to state its ture preferences on K(µr).

Since the matching market without couples is a special case of the matching market with

couples, Theorem 5.4 generalizes the result in (Dubins and Freedman,1981; Roth,1982a).

13For details, see the proof of Theorem 3.2 in Appendix.
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In PI-Algorithm mechanism, the outcome will be a random one among µ1, µ2, · · ·, µm. Exam-

ple 5.1 below is an instance that the outcome is completely random. For hospital jobs, though

their welfare may be different among µ1, µ2, · · · , µm, they cannot anticipate which µr will be

obtained by the algorithm. Therefore, every hospital job still has incentive to tell the truth in

PI-Algorithm mechanism. The reason is that every µr is the optimal semi-stable matching in

K(µr) for hospital jobs, and thus, when the outcomes of mechanism are restricted in K(µr),

truth-telling is a dominant strategy for every hospital job.

Example 5.1 Consider a matching market with two couples c1 = (s1, s2) and c2 = (s3, s4), one

singleton c3 = (s5, ϕ), and four jobs of hospitals. Their rank lists of preferences are as follows:

P c1 : {(h1, h2), (h3, h1), (h3, ϕ), (ϕ, ϕ)}; P c2 : {(h1, h2), (ϕ, h4), (ϕ, ϕ)}; P c3 : {(h1, ϕ), (h2, ϕ), (ϕ, ϕ)};

P h1 : {s3, s2, s5, ϕ}; P h2 : {s2, s4, s5, ϕ}; P h3 : {s1, ϕ}; P h4 : {s4, ϕ}.

By PI-Algorithm mechanism, after processing PI-A1, we get a matching µ is as follows:

µ(c1) = (h3, ϕ), µ(c2) = (ϕ, h4), µ(c3) = (ϕ, ϕ).

In the process of PI-A2, if the blocking coalition {c3, (h1, ϕ)} is stochastically obtained first,

we finally get the semi-stable matching µ1 with µ1(c1) = (h3, ϕ), µ1(c2) = (ϕ, h4), µ1(c3) =

(h1, ϕ).

In the process of PI-A2, if the blocking coalition {c3, (h2, ϕ)} is stochastically obtained first,

we finally get the semi-stable matching µ2 with µ2(c1) = (h3, h1), µ2(c2) = (ϕ, h4), µ2(c3) =

(h2, ϕ).

In the two semi-stable matching µ1 and µ2, for couple c1 , singleton c2 , job h1 and job h2,

their welfare is changed.

6 Conclusion

This paper studies the problem of matching with couples, which can be seen as an instance

of problems with same-side complementarity. One of the typical characteristics of such problems

is that stable matching may not exist. To overcome this defect, we introduce the notion of semi-

stable matching and considers it as a generalized solution, which is a natural generalization of,

and identical to, the conventional stability for matching without couples. It is shown that there

always exists a semi-stable matchings for matching markets with couples and strict preferences,

and futher the set of semi-stable matchings can be partitioned into subsets, each of which

forms a distributive lattice. When the matching market with couples is specialized as the single

market, semi-stable matchings of the market become stable matchings. We also provide sufficient
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conditions for the existence of stable outcomes. If the first preference of all real couples is exactly

one of their reservation preferences, then there exist some stable matchings.

We also discuss the puzzle of NRMP introduced by Kojima et al. (2013). For a matching

market with couples, if all couples play reservation strategies, i.e., they place their reservation

preferences at the top of their rank order list of preferences, which is consistent with the stylized

fact 4 of NRMP’s market described by Kojima et al. (2013), then the semi-stable matching

obtained by PI-Algorithm is a stable matching. We introduce the notion of simple regularity

market, which simplifies the regularity market presented by Kojima et al. (2013). The stylized

facts imply that NRMP’s market satisfies the conditions of simple regularity market. For a

sequence of simple regularity market with couples, when the size of market tends to infinity, the

sequence of semi-stable matchings found by PI-Algorithm is asymptotically stable. This gives a

new interpretation for the puzzle of NRMP from another perspective.

Another remarkable contribuation of this paper is that we have provided a uniform algorithm,

called PI-Algorithm for matching with couples, which ensures to find a semi-stable matching

and a stable matching on a subset of the domain that exists. Moreover, if a matching is not

a semi-stable matching during the process, PI-Algorithm goes on processing by canceling some

items from some couples’ rank list of preferences until it converges to a semi-stable matching.

This approach ensures to find a semi-stable matching in matching markets with couples for strict

preferences.

Moreover, this paper studies the welfare property and incentive issues of PI-Algorithm mech-

anism from the perspective of market design. For a matching market without couples, the result

obtained by PI-Algorithm mechanism is the same with that of Gale-Shapley algorithm mecha-

nism, while PI-Algorithm is more efficient. For a matching market with couples, the semi-stable

matching µE obtained by PI-Algorithm mechanism is the optimal semi-stable matching in a

subset K(µE) of the set of all semi-stable matchings for the side of hospital jobs.

This paper also motivates further topics for research. For instance, what are the necessary

and sufficient conditions for the semi-stable matching obtained by PI-Algorithm mechanism

to be stable? In what matching mechanisms will players have incentives to play reservation

strategies? Another important future research is to study similar issues for matching markets

with couples and weak preferences.
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Appendix: proofs

Proof of Theorem 3.1. We prove the theorem by finding a semi-stable matching through

PI-Algorithm. To do so, we first prove the following two lemmas.

Lemma 6.1 Let Γ = (H,S,C, (≻h)h∈H , (≻c)c∈C) be a matching market with couples and strict

preferences, and let the matching obtained by PI-Algorithm be µE. Suppose that PI-Algorithm

ends in round T and {(s, s′), (h, h′)} is a blocking coalition of µE. Then, we have (1) whenever

h ̸= ϕ and µE(h) ̸= s, µE(h) = ϕ; and (2) whenever h′ ̸= ϕ and µE(h
′) ̸= s′, µE(h

′) = ϕ.

Proof: We only show statement (1), the proof of (2) is similar. Since PI-Algorithm ends

in round T , we have µT−1 = µT = µE by Lemma 4.1. Suppose, by way of contradiction, that

µE(h) ̸= ϕ for h ̸= ϕ and µE(h) ̸= s. There are two cases to be considered.

Case 1: h′ = ϕ. Since {(s, s′), (h, ϕ)} is a blocking coalition of µE , we have s ≻h µE(h) and

(h, ϕ) ≻c µE(c). Also, since µT−1 = µT = µE , we have s ≻h µT−1(h) and (h, ϕ) ≻c µT−1(c).

Thus (h, ϕ) ∈ P c(T ), and so (s, h) ∈ X(T ). We then have (s, h) /∈ ChH(X(T )). Indeed, if

(s, h) ∈ ChH(X(T )), then µT (c) ≻c (h, ϕ) or µT (c) = (h, ϕ), which contradicts the fact that

(h, ϕ) ≻c µE(c) = µT (c). Therefore, there exists s ̸= ϕ such that (s, h) ∈ X(T ) and (s, h) ∈

ChH(X(T )). Thus Chh(X(T )) = {(s, h)}. Now, if (s, h) /∈ ChS(ChH(X(T ))), then µT (h) = ϕ,

contradicting µT (h) = µE(h) ̸= ϕ. Thus, we must have (s, h) ∈ ChS(ChH(X(T ))), and therefore

µT (h) = s. But, (s, h) /∈ ChH(X(T )), and (s, h) ∈ ChH(X(T )) implies µE(h) = µT (h) = s ≻h s,

which contradicts to s ≻h µE(h). Hence, we must have µE(h) = ϕ.

Case 2: h′ ̸= ϕ. Obviously, it implies s′ ̸= ϕ. Since {(s, s′), (h, h′)} is a blocking coali-

tion of µE , (h, h′) ≻c µE(c), s ≻h µE(h) or s = µE(h), s′ ≻h′ µE(h
′) or s′ = µE(h

′). As

(h, h′) ≻c µE(c) = µT−1(c), we have (h, h′) ∈ P c(T ). Thus, (s, h) ∈ X(T ) and (s′, h′) ∈ X(T ).

If (s, h) ∈ ChH(X(T )) and (s′, h′) ∈ ChH(X(T )), then µT (c) ≻c (h, h′) or µT (c) = (h, h′),

which contradicts to (h, h′) ≻c µE(c) = µT (c). Thus, either (s, h) /∈ ChH(X(T )) or (s′, h′) /∈

ChH(X(T )). Without loss of generality, suppose (s, h) /∈ ChH(X(T )). Then, there exists

s ̸= ϕ such that (s, h) ∈ X(T ) and (s, h) ∈ ChH(X(T )). As µT (h) = µE(h) ̸= ϕ, µT (h) = s.

(s, h) /∈ ChH(X(T )) and (s, h) ∈ ChH(X(T )) imply µE(h) = µT (h) = s ≻h s, which contradicts

to s ≻h µE(h) or s = µE(h). Hence, we must also have µE(h) = ϕ.

Thus, in either case, we have proved that whenever h ̸= ϕ and µE(h) ̸= s, we must have

µE(h) = ϕ. Q.E.D.

Lemma 6.2 Let Γ = (H,S,C, (≻h)h∈H , (≻c)c∈C) be a matching market with couples and strict

preferences, and let the matching finally obtained by PI-Algorithm be µE. Suppose that for
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c = (s, ϕ) ∈ C, s ̸= ϕ, h ∈ H, {c, (h, ϕ)} is a blocking coalition of the matching µE. Then there

exist c = (s, s′), s′ ̸= ϕ and h ∈ H such that (h, h) ≻c µE(c).

Proof: Since PI-Algorithm ends in round T , we have µT−1 = µT = µE by Lemma 4.1.

Also, since {c, (h, ϕ)} is a blocking coalition of µE , we have s ≻h µE(h) and (h, ϕ) ≻c µE(c).

Thus (h, ϕ) ≻c µT−1(c) and (h, ϕ) ∈ P c(T ). Therefore, (s, h) ∈ X(T ). Then we must have

(s, h) /∈ ChH(X(T )). Indeed, if (s, h) ∈ ChH(X(T )), we have µT (c) ≻c (h, ϕ) or µT (c) = (h, ϕ),

contradicting to (h, ϕ) ≻c µE(c) = µT (c). Thus, there is s ̸= ϕ such that (s, h) ∈ X(T ) and

(s, h) ∈ ChH(X(T )).

We show s must be a member of real couple. Suppose not. s is then a singleton. Let

c1 = (s, ϕ). (s, h) ∈ ChH(X(T )) implies µT (c1) = (h, ϕ) or µT (c1) ≻c1 (h, ϕ). Then we have

µT−1(c1) = µT (c1) ≻c1 (h, ϕ), which implies (h, ϕ) /∈ P c1(T ). (Indeed, if µT (c1) = (h, ϕ),

µT (h) = s, which contradicts to µT (h) = ϕ by lemma 6.1.) Therefore, (s, h) /∈ X(T ), but this is

impossible by noting that (s, h) ∈ X(T ). Hence, we must have s is a member of real couple.

Let c̄ = (s̄, s̄′) with s′ ̸= ϕ. We now show (h, ϕ) /∈ P c̄(T ). Note that (s, h) ∈ ChH(X(T ))

implies µT (c̄) ≻c̄ (h, ϕ) or µT (c̄) = (h, ϕ). We then have µT−1(c̄) = µT (c̄) ≻c̄ (h, ϕ), which

implies (h, ϕ) /∈ P c̄(T ). To see this, suppose µT (c̄) = (h, ϕ). Then µT (h) = s̄, which is impos-

sible by noting that µT (h) = ϕ. Thus (s, h) ∈ X(T ) implies the existence of h ∈ H such that

(h, h) ∈ P c̄(T ), which in turn implies (h, h) ≻c̄ µT−1(c̄) = µT (c̄) or µT (c̄) = µT−1(c̄) = (h, h). If

µT (c̄) = (h, h), µT (h) = s̄, which contradicts to µT (h) = ϕ. Therefore, (h, h) ≻c̄ µT (c̄) = µE(c̄).

Q.E.D.

With these two lemmas, we are now ready to prove the theorem. The process of PI-Algorithm

can be divided into two stages as follows:

Process PI-A1: For any matching market with couples and strict preferences Γ = (H,S,C, (≻h

)h∈H , (≻c)c∈C), operating the procedures described in section IV, and supposing PI-Algorithm

ends at round T , the matching finally obtained is µE . If µE is a semi-stable matching, we

complete the searching, and otherwise go on to the second stage.

Process PI-A2: There is a blocking coalition {(s, ϕ), (h, ϕ)} of µE . By Lemma 6.2, there

exist c = (s, s′), s′ ̸= ϕ and h ∈ H such that (h, h) ≻c µE(c) or (h, h) ≻c µE(c). For each c,

deleting all of preferences before µE(c) containing h from the preference list of c, and letting

P c(T + 1) = P c(T ) \ {(h1, h2) ∈ H × H : h1 = h, or, h2 = h}, PI-Algorithm continues on the

basis of the round T . Letting the new process start from round T +1 to round T1, the matching

obtained at the new ending is µ1
E .
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We first prove for any c ∈ C, µT+1(c) ≻c µT (c) or µT+1(c) = µT (c). In round T+1, obviously

X(T + 1) ⊂ X(T ). Then, for any h̃ ∈ H, if µT (h̃) = s̃ ̸= ϕ, we have (s̃, h̃) ∈ X(T + 1), and

Ch
h̃
(X(T + 1)) = Ch

h̃
(X(T )). This implies for any c̃ ∈ C, if µT (c̃) ̸= (ϕ, ϕ), µT (c̃) can be

selected by c̃ at round T + 1. Therefore, µT+1(c̃) ≻c̃ µT (c̃) or µT+1(c̃) = µT (c̃).

We then prove there is at least one c ∈ C, such that µT+1(c) ≻c µT (c). Let c1 = (s1, s
′
1)

with s′1 = ϕ. Since {c1, (h, ϕ)} is a blocking coalition of µE , (h, ϕ) ≻c1 µE(c1) = µT (c1), and

(h, ϕ) ∈ P c1(T ) = P c1(T +1), and (s1, h) ∈ X(T +1). Suppose Chh(X(T +1)) = {(s, h)}. Then

s ≻h s1 or s = s1. If s = s1, then µT+1(c1) ≻c1 (h, ϕ) or µT+1(c1) = (h, ϕ), and thus µT+1(c1) ≻c1

µT (c1); if s ≻h s1, µT (h) = µE(h) ̸= s1 because {c1, (h, ϕ)} is a blocking coalition of µE . Thus

we have µT (h) = µE(h) = ϕ by Lemma 6.1, which implies µT (s) ̸= h. Chh(X(T +1)) = {(s, h)}

implies (s, h) ∈ X(T +1). And for any real couple c, we have already deleted all the preferences

before µE(c) containing h from the preference list of c, so s must be a singleton. Let c = (s, ϕ),

then (s, h) ∈ X(T + 1), which means (h, ϕ) ∈ P c(T + 1). µT (s) ̸= h implies µT (c) ̸= (h, ϕ),

and (h, ϕ) ≻c µT (c). As Chh(X(T + 1)) = {(s, h)}, µT+1(c) ≻c (h, ϕ) or µT+1(c) = (h, ϕ), and

µT+1(c) ≻c µT (c). Thus we have shown there is a c ∈ C such that µT+1(c) ≻c µT (c).

By Lemma 4.2, for any c ∈ C, µ1
E(c) ≻c µT+1(c) or µ

1
E(c) = µT+1(c). Thus µ1

E(c) ≻c µT (c)

or µ1
E(c) = µT (c) and least one c ∈ C makes µ1

E(c) ≻c µT (c). If µ1
E is a semi-stable matching,

the process ends, otherwise goes on with PI-A2. Repeating this process, we can get matchings

µ1
E , µ

2
E , · · ·, µm

E until there is no blocking coalition of µm
E , {(s, ϕ), (h, ϕ)}. The repetition is

to be terminated, because the terms of the preference list of all c ∈ C is finite, and for all of

c ∈ C, the new matching is a Pareto improvement after each repetition. As this repetition is

always in process, each single medical students will obtain his/her most favorite jobs, that is to

say, the first item in his/her preference list. In this case, there is no exist blocking coalitions

{(s, ϕ), (h, ϕ)} of µm
E .

Obviously, PI-Algorithm indicates that the matchings µE and µ1
E , µ

2
E , · · ·, µm

E are also in-

dividually rational. Thus we have shown that the matching finally obtained µm
E is a semi-stable

matching of the matching market Γ = (H,S,C, (≻h)h∈H , (≻c)c∈C). Q.E.D.

Proof of Theorem 3.2: Define a correspondence K : F → 2F so that every matching µ in

F corresponds with K(µ), a subset of F . All the matchings in K(µ) respectively match the same

objects to real couples, i.e., for any µ ∈ F , K(µ) = {ν : ∀c = (s, s′) ∈ C, s′ ̸= ϕ,¬ν(c) = µ(c)}.

All of K(µ) constitute a partition of F because F = ∪µ∈EK(µ), and K(µ1) ∩ K(µ2) = ∅ for

K(µ1) ̸= K(µ2). If we can show that operators ∨C and ∧C are closed in K(µ), it is easy to
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verify that they meet the requirements of idempotent law, commutative law, associative law,

absorption law and distributive law, and then, by the definition of distributive lattice,14 K(µ)

constitutes a distributive lattice for operators ∨C and ∧. Consequently, the theorem is proved.

To show that operator ∨Cand ∧C is indeed closed in K(µ), i.e., λ = µ1 ∨C µ2 ∈ K(µ)

and υ = µ1 ∧C µ2 ∈ K(µ), consider any c = (s, s′) ∈ C. If s′ ̸= ϕ, by the definition of

K(µ), µ1(c) = µ2(c), thus λ(c) = υ(c) = µ1(c) = µ2(c); if s′ = ϕ, when µ1(c) = µ2(c),

λ(c) = υ(c) = µ1(c) = µ2(c); when µ1(c) ≻c µ2(c), λ(c) = µ1(c) and υ(c) = µ2(c); when

µ2(c) ≻c µ1(c), λ(c) = µ2(c) and υ(c) = µ1(c).

We now show that λ ∈ K(µ). We first show that λ is a matching. To do so, we need to show

that for any c1 ∈ C, c2 ∈ C, c1 ̸= c2, (1) λ(s1) ̸= λ(s2); (2) λ(s′1) ̸= λ(s′2); (3) λ(s′1) ̸= λ(s2),

and (4) λ(s1) ̸= λ(s′2):

(1) λ(s1) ̸= λ(s2). Suppose not. There are two cases to be considered.

Case 1: s′1 ̸= ϕ or s′2 ̸= ϕ, without loss of generality, suppose s′1 ̸= ϕ.

Since λ(c1) = µ1(c1) = µ2(c1), λ(s1) = µ1(s1) = µ2(s1). If λ(c2) = µ1(c2), λ(s2) = µ1(s2),

then µ1(s1) = µ1(s2), which contradicts that µ1 is a matching; if λ(c2) = µ2(c2), λ(s2) = µ2(s2),

then µ2(s1) = µ2(s2), which contradicts µ2 being a matching.

Case 2: s′1 = ϕ and s′2 = ϕ.

Case A: λ(c1) = µ1(c1) and λ(c2) = µ1(c2). It implies λ(s1) = µ1(s1) and λ(s2) = µ1(s2).

Then, µ1(s1) = µ1(s2), which contradicts that µ1 is a matching.

Case B: λ(c1) = µ2(c1) and λ(c2) = µ2(c2). It implies λ(s1) = µ2(s1) and λ(s2) = µ2(s2).

Then, µ2(s1) = µ2(s2), which contradicts that µ2 is a matching;

Case C: λ(c1) = µ1(c1) and λ(c2) = µ2(c2). It implies λ(s1) = µ1(s1) and λ(s2) = µ2(s2).

Then, µ1(s1) = µ2(s2). Let h = µ1(s1) = µ2(s2), µ1(h) = s1 and µ2(h) = s2. Since s′1 = ϕ

and s′2 = ϕ, µ1(c1) = (h, ϕ) and µ2(c2) = (h, ϕ). λ(c1) = µ1(c1) and λ(c2) = µ2(c2) respectively

implies that (h, ϕ) = µ1(c1) ≻c1 µ2(c1) and (h, ϕ) = µ2(c2) ≻c2 µ1(c2). c1 ̸= c2 implies s1 ̸= s2.

Therefore, if s1 ≻h s2, {c1, (h, ϕ)} is a blocking coalition of µ2, which contradicts that µ2 is a

semi-stable matching; if s2 ≻h s1, {c2, (h, ϕ)} is a blocking coalition of µ1, which contradicts

that µ1 is a semi-stable matching.

Case D: λ(c1) = µ2(c1) and λ(c2) = µ1(c2). It can also be proved as the same way of Case

C.

Thus, in the light of case 1 and case 2, if c1 ̸= c2, we must have λ(s1) ̸= λ(s2).

14From Birkhoff and Mac Lane (2007), a lattice is a set L of elements, with two binary operations ∧ and ∨

which are idempotent, commutative, and associative and which satisfy the absorption law. If in addition the

distributive laws hold, L is called a distributive lattice.
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(2) λ(s′1) ̸= λ(s′2). As λ(s′1) ̸= ϕ and λ(s′2) ̸= ϕ, we have s′1 ̸= ϕ and s′2 ̸= ϕ, and thus

λ(c1) = µ1(c1) = µ2(c1) and λ(c2) = µ1(c2) = µ2(c2). Since c1 ̸= c2 implies µ1(s
′
1) ̸= µ1(s

′
2),

λ(s′1) ̸= λ(s′2).

(3) λ(s′1) ̸= λ(s2). Since λ(s′1) ̸= ϕ implies s′1 ̸= ϕ, λ(c1) = µ1(c1) = µ2(c1). Also, c1 ̸= c2

implies µ1(s
′
1) ̸= µ1(s2) and µ2(s

′
1) ̸= µ2(s2), but λ(s′1) = µ1(s

′
1) = µ2(s

′
1) and λ(s2) = µ1(s2)

or µ2(s2), thus λ(s
′
1) ̸= λ(s2).

(4) λ(s1) ̸= λ(s′2). The proof is similar to that of (3).

Therefore, for all c1 ∈ C, c2 ∈ C, if c1 ̸= c2, then λ(s1) ̸= λ(s2), λ(s
′
1) ̸= λ(s′2), λ(s1) ̸= λ(s′2)

and λ(s′1) ̸= λ(s2). Hence λ = µ1 ∨C µ2 is a matching.

Next, we prove λ = µ1 ∨C µ2 is semi-stable matching.

Let C = C1 ∪ C2, where ∀c1 ∈ C1, then s′1 = ϕ, and ∀c2 ∈ C2, then s′2 ̸= ϕ. Obviously,

C1 ∩ C2 = ∅. Let HC(µ) = {h ∈ H,∃c2 ∈ C2,¬µ(h) = s2, or, µ(h) = s′2}. For any α ∈ K(µ),

let α̃ denote a restricted matching which is denoted in C1 ∪ [H \HC(µ)], where ∀c1 ∈ C1 then

α̃(c1) = α(c1). Since α is a semi-stable matching, α̃ is a stable matching. Otherwise, there exists

a blocking coalition {c1, (h1, ϕ)} of α̃, and obviously {c1, (h1, ϕ)} is also a blocking coalition of

α, which contradicts that α is a semi-stable matching.

For any µ1 ∈ K(µ) and µ2 ∈ K(µ), µ̃1 and µ̃2 are stable matchings denoted in C1 ∪ [H \

HC(µ)]. By Conway’s lattice theorem for singleton matching markets, λ̃ = µ̃1 ∨C µ̃2 is also a

stable matching denoted in C1 ∪ [H \HC(µ)]. Therefore, λ = µ1 ∨C µ2 must be a semi-stable

matching. Otherwise, there exists a blocking coalition {c1, (h, ϕ)} of λ, where c1 ∈ C1. If

h ∈ H \ HC(µ), {c1, (h, ϕ)} must be a blocking coalition of λ̃, which contradicts that λ̃ is a

stable matching; if h ∈ HC(µ), λ(h) = µ1(h) = µ2(h). Since λ(c1) = µ1(c1) or λ(c1) = µ2(c1).

And {c1, (h, ϕ)} is a blocking coalition of λ implies s1 ≻h λ(h) and (h, ϕ) ≻c1 λ(c1). Therefore,

{c1, (h, ϕ)} is a blocking coalition of µ1 or µ2, which contradicts that µ1 and µ2 are semi-stable

matchings. So, λ = µ1 ∨C µ2 must be a semi-stable matching. Thus λ = µ1 ∨C µ2 ∈ K(µ).

Similarly, we can prove that υ = µ1 ∧C µ2 ∈ K(µ). Thus, the theorem is proved. Q.E.D.

Proof of Theorem 3.3: Let the matching obtained by PI-Algorithm be µE . We show it

must be a stable matching under the imposed conditions. Obviously, PI-Algorithm implies that

µE must be an individually rational matching. We first show µE(c) = (h, h′) for any c ∈ C

with s′ ̸= ϕ. Indeed, at round 1 of PI-Algorithm, the first preference item in P c, (h, h′) is c’s a

reservation preference item. If h ̸= ϕ , then (s, h) ∈ X(T ) and (s, h) ∈ ChH(X(T )); if h′ ̸= ϕ,

then (s′, h′) ∈ X(T ) and (s′, h′) ∈ ChH(X(T )). Thus, (h, h′) is selectable for c, and it is the
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first item of P c. Therefore, µ1(c) = (h, h′). By Lemma 4.2, µE(c) ≻c µ1(c) or µE(c) = µ1(c).

As (h, h′) is the first item of P c, (h, h′) ≻c µE(c) or (h, h
′) = µE(c), and consequently we have

µE(c) = (h, h′).

We then show that µE is stable. If not, there exists at least a blocking coalition {c1, (h1, h′1)}

with c1 = (s1, s
′
1). If s′1 ̸= ϕ, (h1, h

′
1) ≻c µE(c1), which contradicts that µE(c1) equals to the

first preference of c1. If: s
′
1 = ϕ, then by Lemma 6.2, there is c = (s, s′) with s′ ̸= ϕ and h ∈ H

such that (h1, h) ≻c µE(c) or (h, h1) ≻c µE(c), which also contradicts that µE(c) equals to the

first preference of c. Thus, µE must be stable. Q.E.D.

Proof of Theorem 3.4: By theorem 3.1, for any k = 1, 2, . . ., there is a semi-stable matching

µk
E in market Γk. By the definition of the semi-stable matching, any blocking coalition {c, (h, h′)}

of µk
E contains a real couple c = (s, s′), and (h, h′) must be its an effective preference. By Con-

dition 2 for simple regularity, the number of blocking coalitions of µk
E must be less than q ·mk.

For the null matching µ0, the number of its blocking coalitions is N =
∑

c∈Ck lc. By Condition 3

for simple regularity, we have N ≥ nk. Thus, the unstable degree is θ(µk
E) = m/N ≤ q ·mk/nk.

By Condition 1 for simple regularity, mk = o(nk). Thus θ(µk
E) = o(1), that is, as nk tend to

infinity, the sequence of unstable degree {θ(µk
E)}∞k=1 tends to zero. Therefore, the matching

sequence {µk
E}∞k=1 is asymptotically stable, that is, {Γk}∞k=1 is asymptotically stable. Q.E.D.

Proof of Theorem 3.5: Let the semi-stable matching obtained by the algorithm described

in Section 4 be µE . We want to show µE must be a stable matching. It is clear that PI-Algorithm

indicates that µE must be individually rational.

We first show that for any c ∈ C with s′ ̸= ϕ, µE(c) = (h, h′). Indeed, at round 1 of PI-

Algorithm, (h, h′) is c’s a reservation preference, which implies that if h ̸= ϕ, then (s, h) ∈ X(T )

and (s, h) ∈ ChH(X(T )); if h′ ̸= ϕ, then (s′, h′) ∈ X(T ) and (s′, h′) ∈ ChH(X(T )). Thus, (h, h′)

is selectable for c at round 1, and µ1(c) ≻c (h, h
′) or µ1(c) = (h, h′).

We now show µ1(c) = (h, h′). Suppose, by way of contradiction, that µ1(c) ̸= (h, h′). Then

we must have µ1(c) = (h, h
′
) ≻c (h, h

′). Thus, (h, ϕ) ̸= (ϕ, ϕ) or (h′, ϕ) ̸= (ϕ, ϕ) implies that it is

not only a reservation preference but also the first preference of a singleton. Therefore, if h ̸= ϕ,

there exists c = (s, ϕ) such that (s, h) ∈ X(T ) and (s, h) ∈ ChH(X(T )), and µ1(c) = (h, ϕ)

because (h, ϕ) is the first preference of c; if h
′ ̸= ϕ, there exists c̃ = (s̃, ϕ) such that (s̃, h

′
) ∈ X(T )

and (s̃, h
′
) ∈ ChH(X(T )), and µ1(c̃) = (h′, ϕ) because (h

′
, ϕ) is the first preference of c̃. This

contradicts µ1(c) = (h, h
′
). Hence µ1(c) = (h, h′).
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For any preference (h, h
′
) of c before (h, h′), if h ̸= ϕ, there exists c = (s, ϕ) such that

µ1(c) = (h, ϕ). The process of the PI-algorithm for finding semi-stable matching µE implies

that µE(c) ≻c µ1(c) for any c ∈ C. But, since (h, ϕ) is the first preference of c, µE(c) = (h, ϕ).

Likewise, if h
′ ̸= ϕ, there exists c̃ = (s̃, ϕ) such that µE(c̃) = (h′, ϕ). Thus µE(c) = µ1(c) = (h, h′)

by noting that it cannot be matched a object which is better than (h, h′) for c.

Now, if the semi-stable matching µE is not a stable matching, there exists at least a block-

ing coalition {c1, (h1, h′1)} with s′1 ̸= ϕ. As such, we have (h1, h
′
1) ≻c µE(c1). Moreover,

s1 ≻h1 µE(h1) if h1 ̸= ϕ, and s′1 ≻h′
1
µE(h

′
1) if h′1 ̸= ϕ. However, as shown above, if h1 ̸= ϕ,

then there exists c1 = (s1, ϕ) such that µE(c1) = (h1, ϕ), which contradicts s1 ≻h1 µE(h1) = s1.

Indeed, since (h1, ϕ) is a reservation preference of c1 implies that s1 ≻h1 s1, if h
′
1 ̸= ϕ, then there

exists c̃1 = (s̃1, ϕ) such that µ1(c̃1) = (h′1, ϕ), which contradicts s′1 ≻h′
1
µE(h

′
1) = s̃1 by noting

that (h′1, ϕ) is a reservation preference of c̃1 implies that s̃1 ≻h′
1
s′1. Thus µE must be a stable

matching. Q.E.D.

Proof of Lemma 4.1: PI-Algorithm ends when the matching of the current round repeats

the one of the previous round. Obviously, µT−1 = µT = µE . The process of PI-Algorithm indi-

cates that the preference list of each round is derived from the previous one by deleting a part

of elements. Deleting the items after µt(c) from P c(t+1) results in P c(t+1) j P c(t). And X(t)

and X(t+1) are respectively derived from P c(t) and P c(t+1). As such, X(t+1) j X(t). Q.E.D.

Proof of Lemma 4.2: In the light of X(t) j X(t − 1) by Lemma 4.1, for any h ∈ H,

provided (s, h) ∈ X(t), we have (s, h) ∈ X(t − 1). Thus, if Chh(X(t − 1)) = {(s, h)} and

(s, h) ∈ X(t), then we must have Chh(X(t)) = {(s, h)}.

Consider two cases: (1) µt−1(c) = (ϕ, ϕ). Then µt(c) ≻c µt−1(c) or µt(c) = µt−1(c). (2)

µt−1(c) = (h, h′) ̸= (ϕ, ϕ). Since (h, h′) ∈ P c(t), in the round t, we have (s, h) ∈ X(t) and

(s, h) ∈ Chh(X(t)) if h ̸= ϕ, also (s′, h′) ∈ X(t) and (s′, h′) ∈ Chh′(X(t)) if h′ ̸= ϕ. Hence,

(h, h′) is selectable for c. Thus, we also have µt(c) ≻c µt−1(c) or µt(c) = µt−1(c). When

0 < t < T , there exists some c ∈ C such that µt(c) ≻c µt−1(c), otherwise, PI-Algorithm ends

before round T, which contradicts the fact that it ends in round T. Q.E.D.

Proof of Theorem 4.1: It is clear that PI-Algorithm implies the matching µE is an indi-

vidually rational matching. Suppose, by way of contradiction, that µE is not a stable matching.

Then there exists a blocking coalition {(s, s′), (h, h′)} with µE(h) ̸= ϕ and µE(h
′) ̸= ϕ. But,
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by Lemma 6.1, µE(h) = ϕ = µE(h
′) when h ̸= ϕ, µE(h) ̸= s, h′ ̸= ϕ, µE(h

′) ̸= s′. As such,

µE(h) ̸= ϕ and µE(h
′) ̸= ϕ imply µE(h) = s and µE(h

′) = s′ , which contradicts {(s, s′), (h, h′)}

being a blocking coalition of µE . Q.E.D.

Proof of Theorem 4.2: Again, PI-Algorithm clearly implies that the matching µE must

be an individually rational matching. Suppose that µE is not a stable matching, there exists

at least a blocking coalition {(s, s′), (h, ϕ)} of µE . By Lemma 6.2, there exist c = (s, s′) with

s′ ̸= ϕ and h ∈ H such that (h, h) ≻c µE(c) or (h, h) ≻c µE(c), which contradicts that Γ has no

real couples. Q.E.D.

Proof of Theorem 4.3: For any matching market containing only singletons Γ =

(H,S,C, (≻h)h∈H , (≻c)c∈C), the subset K(µE
S ) of the set of semi-stable matchings is just the

set of stable matchings. By Theorem 5.2, the matching µE
S is the optimal stable matching for

the side of jobs of hospitals. The optimal theorem of marriage matching markets (Roth,1982a)

implies that µH is the optimal stable matching for the side of jobs of hospitals. Since the optimal

matching is unique, we have µE
S = µH . For any matching market containing only singletons, µE

H

and µE
S are logically symmetrical, likewise, we have µE

H = µS . QED.

Proof of Theorem 5.1: Since matched object of each real couple is the same for all semi-

stable matchings in K(µ), the set of unmatched real couples is the same at every semi-stable

matching of in K(µ). After excluding all real couples and their matched objects, the semi-stable

matching is actually a stable matching for all singletons and all remaining jobs of hospitals. By

McVitie and Wilson theorem, the set of unmatched single medical students and remaining jobs

of hospitals is the same for every stable matching. Q.E.D.

Proof of Theorem 5.2: To prove the theorem, we need the following lemma:

Lemma 6.3 Let Γ = (H,S,C, (≻h)h∈H , (≻c)c∈C) be a matching market with couples and strict

preferences, and let the outcome obtained by PI-Algorithm mechanism be µE. Suppose that for

every µ ∈ K(µE), there exists h ∈ H such that s = µ(h) ≻h µE(h). Then s must be a singleton

and h1 = µE(s) ̸= ϕ, µ(h1) ≻h1 µE(h1).

Proof: Since µ and µE are semi-stable matchings, they are both individually rational, and

µE(h) ≻h ϕ or µE(h) = ϕ. Since s = µ(h) ≻h µE(h), s = µ(h) ≻h ϕ, which implies µ(s) = h ̸=

ϕ. By Theorem 5.1, the set of unmatched medical students is the same for every semi-stable
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matching in K(µE), which implies that the set of matched medical students is also the same

for every semi-stable matching in K(µE). Thus, h1 = µE(µ(h)) = µE(s) ̸= ϕ, s = µE(h1).

Let s1 = µ(h1), µ(h) ≻h µE(h) implies s = µ(h) ̸= µE(h). Thus h1 = µE(s) ̸= h, and

s1 = µ(h1) ̸= µ(h) = s. We show s must be a singleton. If not, s is then a member of a real

couple c, then µ(c) = µE(c) because µ ∈ K(µE). Thus h = µ(s) = µE(s) = h1, contradicting to

h1 ̸= h. Next, we show that h1 ≻s h = µ(s).

Since µ and µE are individually rational and h1 ̸= ϕ ̸= h, we have h1 = µE(s) ≻s ϕ and

h = µ(s) ≻s ϕ. Thus, at step1 of round 1 in the process of PI-Algorithm, we have (s, h) ∈ X(1)

and (s, h1) ∈ X(1). Noting PI-Algorithm ends at round T and letting s = µE(h), we have

(s, h) ∈ X(T ) and (s, h) ∈ Chh(X(T )). Since s = µ(h) ≻h µE(h) = s, we have (s, h) /∈ X(T ),

otherwise, it contradicts (s, h) ∈ Chh(X(T )). Since (s, h) /∈ X(T ), h1 = µE(s) = µE
T−1(s) ≻s h.

If s ≻h1 s1 = µ(h1), as h1 ≻s h = µ(s), {(s, ϕ), (h1, ϕ)} constitutes a blocking coalition of

matching µ, which contradicts that µ is a semi-stable matching. Hence µ(h1) = s1 ≻h1 s =

µE(h1). Q.E.D.

Now we begin to prove the theorem. Suppose, by way of contradiction, that µE is not an

optimal semi-stable matching in K(µE) for the side of jobs of hospitals, there exists a matching

µ ∈ K(µE) such that for all h ∈ H, µ(h) ≻h µE(h) or µ(h) = µE(h); and there exists a h ∈ H

such that µ(h) ≻h µE(h) . Let s1 = µ(h) and h1 = µE(s1). By Lemma 6.3, s1 must be a

singleton, and h1 ̸= ϕ and µ(h1) ≻h1 µE(h1). Repeatedly applying Lemma 6.3, we can obtain

two sequences, one is the sequence of medical students {s1, s2, · · · }, and the other is the sequence

of jobs of hospitals {h1, h2, . . . , }, where sk+1 = µ(hk) and hk = µE(sk) for any k > 0. Due to

the limited number of medical students, there exists the least k and r, such that sk+r = sk. Thus

k = 1, otherwise hk+r−1 = µ(sk) = hk−1, and sk+r−1 = µE(hk−1) = sk−1, which contradicts

that k is the least. Therefore, k = 1, that is, s1 = sr+1, and h0 = hr. It is easy to deduce that

sl = sl+r and hl = hl+r for any l > 0. Thus, we obtain twin circulating sequences, the sequence

of medical students {s1, s2, · · · , sr}, and the sequence of jobs of hospitals {h1, h2, · · · , hr}, such

that sk+1 = µ(hk) and hk = µE(sk) and sk+1 ≻hk
sk for any k > 0. We now show that there

are no such twin circulating sequences. As a result, the theorem is proved.

Denote by H ⊆ H the set of all jobs meeting the condition µ(h) ≻h µE(h). We consider two

cases.

Case 1: H = {h1, h2, · · · , hr}. For any 2 ≤ k ≤ r + 1, µ and µE are both semi-stable

matchings, which implies that they are both individually rational matchings, and thus hk =
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µE(sk) ≻sk ϕ and hk−1 = µE(sk−1) ≻sk−1
ϕ. At the step 1 of round 1 in the process of PI-

Algorithm, (sk, hk) ∈ X(1) and (sk−1, hk−1) ∈ X(1). Since PI-Algorithm ends at round T and

gives the temporary matching µt at round t, we have (sk−1, hk−1) ∈ X(T ) and (sk−1, hk−1) ∈

ChH(X(T )). Also, since sk = µ(hk−1) ≻hk−1
µE(hk−1) = sk−1, (sk, hk−1) /∈ X(T ) (otherwise,

(sk, hk−1) ∈ X(T ), contradicting to (sk−1, hk−1) ∈ ChH(X(T ))). Thus, (sk, hk−1) ∈ X(1)

and (sk, hk−1) /∈ X(T ) imply that there exists 1 < tk < T such that (sk, hk−1) ∈ X(tk) and

(sk, hk−1) /∈ X(tk + 1). Without loss of generality, suppose tk is the least one. Then h ≡

µtk(sk) ≻sk hk−1 = µ(sk). Thus h /∈ H (otherwise, µtk(sk) = h = hj = µE(sj). Then,

(sj , hj) ∈ ChH(X(tk)), and (sj+1, hj) /∈ X(tk) by noting that sj+1 = µ(hj) ≻hj
µE(hj) = sj .

Thus we have tj < tk, which contradicts the hypothesis that tk is the least). So h /∈ H.

Let s = µ(h). Then s ̸= ϕ. Suppose not. Since h = µtk(sk) ≻sk hk−1 = µ(sk), sk ≻h ϕ, and

sk is a singleton, {(sk, ϕ), (h, ϕ)} forms a blocking coalition of matching µ, which contradicts the

fact that µ is a semi-stable matching. So we must have s ̸= ϕ. Then, by Theorem 5.1, we have

s̃ ≡ µE(h) ̸= ϕ. Therefore, s, s̃ and sk are all acceptable medical students for h. Since h has

chosen sk before the final matching s̃, we have sk ≻h s̃. If s̃ ≻h s or s̃ = s, then sk ≻h s = µ(h).

Consequently, {(sk, ϕ), (h, ϕ)} is a blocking coalition of the matching µ, which contradicts that

µ is a semi-stable matching. Thus s ≻h s̃, that is, µ(h) ≻h µE(h), and h ∈ H. But, this

contradicts h /∈ H. Hence µE must be an optimal semi-stable matching in K(µE) for the side

of jobs of hospitals when H = {h1, h2, · · · , hr}.

Case 2: H ̸= {h1, h2, · · ·, hr}. By repeating the above proof, we can obtain the circulating

sequence of medical students {s1, s2, · · · , sr} and the circulating sequence of jobs of hospitals

{h1, h2, · · · , hr} such that sk+1 = µ(hk) and hk = µE(sk) and sk+1 ≻hk
sk for any k > 0. The

prerequisite of twin circulating sequences is that there exists at least one h /∈ {h1, h2, · · · , hr}

such that µ(h) ≻h µE(h). Applying Lemma 6.3 again, we obtain another twin circulating

sequences satisfying the same conditions. By repeating the proving process in Case 1, the pre-

requisite of this new twin circulating sequences is another new twin circulating sequences. It

similarly show that these different twin circulating sequences do not intersect with each other,

and so on. Since H is a finite set, all these twin circulating sequences are bound to constitute

a causal circle, that is, the prerequisite of the first twin circulating sequences is the existence

of the second twin circulating sequences, and the prerequisite of the second twin circulating

sequences is the existence of the third twin circulating sequences, and so on, which leads to a

contradiction. Thus, µE also must be an optimal semi-stable matching in K(µE) for the side of

jobs of hospitals when H ̸= {h1, h2, · · · , hr}. Q.E.D.
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Proof of Theorem 5.3: To prove the theorem, it is sufficient to domonstate some matching

markets such that truthtell is not the best response for some agent even though all others state

their preferences truthfully.

Consider a matching market with one couple c1 = (s1, s2) and one single c2 = (s3, ϕ), and

four jobs of hospitals. Their rank lists of preferences are as follows:

P c1 : {(h1, h2), (h2, h1), (h3, ϕ), (ϕ, ϕ)}; P c2 : {(h1, ϕ), (h4, ϕ), (h2, ϕ), (ϕ, ϕ)};

P h1 : {s2, s1, s3, ϕ}; P h2 : {s3, s1, s2, ϕ}; P h3 : {s1, ϕ}; P h4 : {s3, ϕ}.

After processing PI-A1 in PI-Algorithm mechanism, we get a matching µ with µ(c1) = (h3, ϕ)

and µ(c2) = (h4, ϕ). {c2, (h1, ϕ)} is the only blocking coalition containing singleton. Thus, after

deleting the preference containing h1 in P c1 , in the process of PI-A2, we get a semi-stable

matching µ1 with µ1(c1) = (h3, ϕ) and µ1(c2) = (h1, ϕ) by continuing PI-Algorithm.

Even all others state their ture preferences, c1 can be better off by manipulating their own

preferences by reporting P
′c1 : {(h1, h2), (ϕ, ϕ)}. As such, we obtain another semi-stable match-

ing µ2 with µ2(c1) = (h1, h2) and µ2(c2) = (h4, ϕ) by PI-Algorithm mechanism, resulting in

µ2(c1) = (h1, h2) ≻c1 (h3, ϕ) = µ1(c1). Therefore, PI-Algorithm mechanism is not strategy-

proof.

We can also provide an exmple of market in which a job has incentive not to state its true

preferences. To see this, consider another matching marekt with two couples c1 = (s1, s2) and

c2 = (s3, s4), and four jobs of hospitals. Their rank lists of preferences are as follows:

P c1 : {(h1, h2), (h3, ϕ), (ϕ, ϕ)}; P c2 : {(h1, h2), (h4, ϕ), (ϕ, ϕ)};

P h1 : {s1, s3, ϕ}; P h2 : {s4, s2, ϕ}; P h3 : {s1, ϕ}; P h4 : {s3, ϕ}.

After processing PI-A1 in PI-Algorithm mechanism, we get a semi-stable matching µ1 with

µ1(c1) = (h3, ϕ) and µ1(c2) = (h4, ϕ).

Supposing that all others state their true preferences, h1 can be better off by manipulating

its own preferences by reporting P
′h1 : {s3, ϕ}. After processing PI-A1 in PI-Algorithm mech-

anism, we get another semi-stable matching µ2 with µ2(c1) = (h3, ϕ) and µ2(c2) = (h1, h2).

µ2(h1) = s3 ≻h1 ϕ = µ1(h1). Again, this shows PI-Algorithm mechanism is not strategy-proof.

Q.E.D.

Proof of Theorem 5.4: Since matched objects of real couples are the same for every

semi-stable matching in K(µr), the welfare is unchanged for all real couples and their matched

jobs. Thus, truthtelling is a dominant strategy for all of real couples and their matched jobs.
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After excluding all real couples and their matched objects, the semi-stable matching is actually

a stable matching for all singletons and remaining hospital jobs. By Theorem 4.3, for any

matching market containing only singletons and with strict preferences, the matching obtained

by PI-Algorithm is identical to µH which are obtained by jobs optimal Gale-Shapley algorithm.

By the dominant strategy theorem on marriage matching markets in Dubins and Freedman

(1981) and Roth (1982a), telling the truth is a dominant strategy for each remaining job of

hospitals. Q.E.D.
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