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an algorithm for computing SNE. The results are illustrated with applications to
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1. Introduction

This paper studies the existence of strong Nash equilibrium (SNE) in general economic games. Although
Nash equilibrium is probably the most important central behavioral solution concept in game theory, it
has some drawbacks. The main drawback is that Nash equilibrium is a strictly noncooperative notion and
is only concerned with unilateral deviations from which no one can be improved. No cooperation among
agents is allowed. As such, although a Nash equilibrium may be easy to reach, it may not be stable in the
sense that there may exist a group of agents that can be improved by forming a coalition. Then it is natural
to call for an equilibrium concept that allows possible cooperation or coalitions among agents.

The solution concept of strong Nash equilibrium introduced by Aumann [4] overcomes this shortcoming.
SNE is defined as a strategy profile for which no subset of players has a joint deviation that strictly benefits
all of them, while all other players are expected to maintain their equilibrium strategies. A SNE is then not
only immune to unilateral deviations, but also to deviations by coalitions.

However, the existence of SNE is a largely unsolved problem. Ichiishi [13] introduced the notion of social
coalitional equilibrium and proved its existence under a set of assumptions. The concept of social coalitional
equilibrium extends the notion of social equilibrium introduced by Debreu [8] to prevent deviations by
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coalitions. It can also be specialized to SNE. Then, the sufficient conditions for the existence of social
coalitional equilibria are also sufficient for the existence of SNE. However, the assumptions imposed in [13]
are difficult to verify. Although there are several other studies on the existence of SNE in various specific
environments such as those in [12,11,9,14,15], there is no general theorem on the existence of SNE.

This paper fills the gap by proposing some existence results on SNE in general games. We show that the
coalition consistency property introduced in the paper, together with concavity and continuity of payoffs,
permits the existence of SNE in games with compact and convex strategy spaces. We also characterize the
existence of SNE by providing necessary and sufficient conditions. Moreover, we suggest an algorithm that
can be used to compute SNE. The results are illustrated with applications to economies with multilateral
environmental externalities and to the simple static oligopoly model.

The remainder of the paper is organized as follows. Section 2 presents the notions, definitions, and
some properties. Section 3 establishes sufficient conditions for the existence of a strong Nash equilibrium.
Section 4 provides characterization for the existence of strong Nash equilibrium and also a method for
its computation. Section 5 is dedicated to the applications of the main new results to economies with
multilateral environmental externalities and the simple static oligopoly model. Section 6 concludes.

2. Preliminaries

Consider a game in normal form G = 〈Xi, ui〉i∈I where I = {1, . . . , n} is the finite set of players, Xi is the
set of strategies of player i which is a subset of a Hausdorff locally convex topological vector space, and ui is
player i’s payoff function from the set of strategy profiles X =

∏
i∈I Xi to R. Denote by u = (u1, u2, . . . , un)

the profile of utility functions.
Let � denote the set of all coalitions (i.e., nonempty subsets of I). For each coalition S ∈ �, denote by

−S = {i ∈ I: i /∈ S} the remaining of coalition S. If S is reduced to a singleton {i}, we denote simply by
−i all other players rather than player i. We also denote by XS =

∏
i∈S Xi the set of strategies of players

in coalition S.
We say that a game G = (Xi, ui)i∈I is compact, concave, and continuous, respectively if, for all i ∈ I,

Xi is compact and convex, and ui is concave and continuous on X, respectively.
We say that a strategy profile x∗ ∈ X is a Nash equilibrium of a game G if for all i ∈ I,

ui

(
x∗) � ui

(
yi, x

∗
−i

)
for all yi ∈ Xi.

Definition 2.1. A strategy profile x ∈ X is said to be a strong Nash equilibrium (SNE) of a game G if ∀S ∈ �,
there does not exist any yS ∈ XS such that

ui(yS , x−S) > ui(x) for all i ∈ S. (2.1)

Definition 2.2. A strategy profile x ∈ X of a game G is said to be weakly Pareto efficient if there does not
exist any y ∈ X such that ui(y) > ui(x) for all i ∈ I.

A strategy profile is a SNE means no coalition (including the grand coalition, i.e., all players collectively)
can profitably deviate from the prescribed profile. This immediately implies that any SNE is both weakly
Pareto efficient and a Nash equilibrium. Also, it is stable with regard to the deviation of any coalition.

It is worth pointing out that all the following solution concepts are implied by SNE.

Definition 2.3 (The weak α-core). A strategy profile x ∈ X is in the weak α-core of a game G if for all S ∈ �
and all xS ∈ XS , there exists a y−S ∈ X−S such that

ui(x) � ui(xS , y−S) for at least some i ∈ S.
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A strategy profile x is in the weak α-core means that for any coalition S and any deviation xS of xS , the
coalition of the remaining players (−S) can find a strategy y−S such as in the new strategy (xS , y−S), the
payoffs of at least one player in coalition S cannot be better than those in the strategy x (for all the players
of the coalition S at the same time).

Definition 2.4 (The weak β-core). A strategy profile x ∈ X is in the weak β-core of a game G if for all
S ∈ �, there exists a y−S ∈ X−S such that for every xS ∈ XS ,

ui(x) � ui(xS , y−S) for at least some i ∈ S.

A strategy profile x is in the weak β-core means that for any coalition S, the coalition of players −S

possesses a strategy y−S which prevents all deviations of the coalition S of the strategy x. Thus the stability
property of an outcome in the weak β-core is stronger than that of the weak α-core: a deviating coalition S

can be countered by the complement coalition −S even if the players of S keep secret their joint strategy XS .

Definition 2.5 (The k-equilibrium). A strategy profile x ∈ X is said to be a k-equilibrium (k ∈ I) of a game
G if for all coalitions S with |S| = k, there does not exist any yS ∈ XS such that

ui(yS , x−S) > ui(x) for all i ∈ S.

No k-players’ coalition can make all these players better off at the same time by deviating from the
strategy x.

The following lemma characterizes SNE of a game G.

Lemma 2.1. The strategy profile x ∈ X is a SNE of a game G = 〈Xi, ui〉i∈I if and only if for each S ∈ �,
the strategy xS ∈ XS is weakly Pareto efficient for the sub-game 〈Xj , uj(., x−S)〉j∈S which is obtained by
fixing x−S.

Proof. It is a straightforward consequence of Definition 2.1. �
3. Existence results

In this section we investigate the existence of strong Nash equilibria in general games. We first provide
some sufficient conditions for the existence of SNE. To do so, we use the following g-fixed point theorem
given by Nessah and Chu [17].

Denote by cl(A) the closure of set A and by ∂A its boundary. Letting Y0 be a nonempty convex subset of
a convex set Y in a vector space and y ∈ Y0, we denote by ZY0(y) the following set: ZY0(y) = [cl(

⋃
h>0[Y0 −

{y}]/h) + {y}] ∩ Y . Note that cl(
⋃

h>0[Y0 − {y}]/h) is called tangent cone to Y0 at the point y.
A correspondence F : X → 2Y is upper hemi-continuous at x if for each open set U containing F (x),

there is an open set N(x) containing x such that if x′ ∈ N(x), then F (x′) ⊂ U . A correspondence
F : X → 2Y is upper hemi-continuous if it is upper hemi-continuous at every x ∈ X, or equivalently, if
the set {x ∈ X: F (x) ⊂ V } is open in X for every open subset V of Y . The definition of hemi-continuity for
a correspondence was introduced by Browder [6] and often used in the study of non-linear set-valued analysis
(e.g., see Aubin and Frankowska [3], Aliprantis and Chakrabarti [1,2] and related references therein).

Lemma 3.1. (See Nessah and Chu [17].) Let X be a nonempty compact set in a metric space E, and Y

a nonempty convex and compact set in a locally convex Hausdorff vector space F . Let g : X → Y be a
continuous function and C : X → 2Y an upper hemi-continuous correspondence with nonempty closed and
convex values. Suppose that the following conditions are met:
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(a) g(X) is convex in Y ;
(b) for each g(x) ∈ ∂g(X), C(x) ∩ Zg(X)(g(x)) 
= ∅.

Then, there exists x ∈ X such that g(x) ∈ C(x).

Let

ΔS =
{
λS = (λ1, . . . , λ|S|) ∈ R|S|

+ :
∑
j∈S

λj = 1
}

be the unit simplex of R|S| (S ∈ �), and let

Δ =
∏
S∈�

ΔS and X̂ =
∏
S∈�

XS .

For each coalition S, define the S-weighted best-reply correspondence CS : X−S × ΔS → 2XS by

CS(x−S , λS) =
{
zS ∈ XS : sup

yS∈XS

∑
i∈S

λi,Sui(yS , x−S) �
∑
i∈S

λi,Sui(zS , x−S)
}
,

and then the �-weighted best-reply correspondence C : X × Δ → 2X̂ by

x �→ C(x, λ) =
{
ẑ =

∏
S∈�

zS ∈ X̂: zS ∈ CS(x−S , λS)
}
,

where
∏

S∈� zS is the Cartesian product of zS over � for the notational convenience.2
Define the function φ : X → X̂ by

φ(x) =
∏
S∈�

xS .

We then have the following lemma.

Lemma 3.2. Suppose that for all i ∈ I, Xi is convex and compact. Then we have:

(a) The function φ is continuous on X.
(b) The set φ(X) is convex and compact.

Proof. The continuity of function φ is a consequence of its definition and the construction of the set X̂. Also,
by the Weierstrass Theorem, we know that φ(X) is compact if φ is continuous and X is compact (cf. Tian
and Zhou [19]). The convexity of φ(X) is a consequence of the linearity of φ, which is easily verified. �

To show the existence of strong Nash equilibrium, we assume the �-weighted best-reply correspondence
C(x, λ) satisfies the following coalition consistency property:

Definition 3.1 (Coalition consistency property). A game G = (Xi, ui)i∈I is said to satisfy the coalition
consistency property if there exists λ ∈ Δ such that for each x ∈ X, there exists z ∈ X such that

zS ∈ CS(x−S , λS) for all S ∈ �. (3.1)

2 We can do so by imaging zS as a single-element set.
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The coalition consistency property implies the existence of λ ∈ Δ such that, for each x ∈ X, there is
a point z ∈ X with zS being the best reply of every coalition S, given strategies of players in −S. In
particular, when the point z turns out to be a fixed point of �-weighted best-reply correspondence C(·, λ),
it is a strong Nash equilibrium. We then need to provide conditions so that a fixed-point theorem can be
applied. Theorem 3.1 below will provide such conditions.

Remark 3.1. The coalition consistency property is relatively easy to check, much easier than those given
in [13]. Indeed, by the definition of the �-weighted best-reply correspondence C(x, λ), zS ∈ CS(x−S , λS) for
all S ∈ � implies that zS is the maximum of utilitarian social welfare function, i.e., the weighted average
of payoff functions, of individuals in S for every S ∈ �, and consequently, is weakly Pareto efficient to
the sub-game 〈Xj , uj(., x−S)〉j∈S for all S ∈ �. As such, when ui are differentiable for all i, to guarantee
that the first order conditions for the social maximization are also sufficient, we need to assume that payoff
functions of players are concave, which is also needed to guarantee the existence of strong Nash equilibrium
as shown in Theorem 3.1 below. Then, to check if the coalition consistency property is satisfied is reduced
to checking if there exists a suitable weight λ ∈ Δ such that every component zi,S of zS is equal to z{i} that
is obtained for singleton coalition S = {i}. If so, z is a strategy profile as required in (3.1), i.e., z ∈ X and
zS ∈ CS(x−S , λS) for all S ∈ �, which means the coalition consistency property is satisfied.

We now establish the following existence theorem on SNE.

Theorem 3.1. Suppose the game G = (Xi, ui)i∈I is compact, concave, continuous, and satisfies the coalition
consistency property. Then, it possesses a strong Nash equilibrium.

Proof. We prove step by step that the functions φ and C defined by φ(x) =
∏

S∈� xS and C(x, λ) = {ẑ =∏
S∈� zS ∈ X̂: zS ∈ CS(x−S , λS)}, respectively, satisfy the conditions of Lemma 3.1:

(1) For all x ∈ X and λ ∈ Δ, C(x, λ) 
= ∅. Indeed, for any x ∈ X, the function yS �→
∑

j∈S λj,Suj(yS , x−S),
S ∈ � is continuous on compact set XS and then by the Weierstrass Theorem, there exists zS ∈ XS

such that

max
yS∈XS

∑
j∈S

λj,Suj(yS , x−S) =
∑
j∈S

λj,Suj(zS , x−S), i.e., zS ∈ CS(x−S , λS).

Hence ẑ =
∏

S∈� zS ∈ C(x, λ) and consequently C(x, λ) is nonempty and further compact for all x ∈ X

and λ ∈ Δ by the Weierstrass Theorem.
(2) For all x ∈ X and λ ∈ Δ, C(x, λ) is convex in X̂. Indeed, let x ∈ X, λ ∈ Δ, z =

∏
S∈� zS and

z =
∏

S∈� z be two elements of C(x, λ) and θ ∈ [0, 1]. We want to prove that θz + (1 − θ)z ∈ C(x, λ).
Since zS and zS are both the maximum of

∑
j∈S λj,Suj(yS , x−S), we must have:

∑
j∈S λj,Suj(zS , x−S) =∑

j∈S λj,Suj(zS , x−S) and thus, by the concavity of function ui, we have

max
yS∈XS

∑
j∈S

λj,Suj(yS , x−S) �
∑
j∈S

λj,Suj(zS , x−S) =
∑
j∈S

λj,Suj(zS , x−S) (3.2)

�
∑
j∈S

λj,Suj

(
θzS + (1 − θ)zS , x−S

)
, θ ∈ [0, 1]. (3.3)

Therefore, θz + (1 − θ)z ∈ C(x, λ).
(3) C is upper hemi-continuous over X. Note that X is compact, and thus X̂ is compact (Tychonoff

Theorem). Thus, to prove that C is upper hemi-continuous on X, it suffices to prove that Graph(C) ⊂
X × X̂ is closed.
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To see this, let (x, ẑ) ∈ cl(Graph(C)). Then there exists a sequence {(xp, ẑp)}p�1 in Graph(C) that
converges to (x, ẑ).
Thus, we have ẑp ∈ C(xp, λ) for all p � 1, i.e.,

max
yS∈XS

∑
j∈S

λj,Suj

(
yS , x

p
−S

)
�
∑
j∈S

λj,Suj

(
zpS , x

p
−S

)
for all S ∈ �.

Then, by the continuity of functions ui, as p → ∞, we have

max
yS∈XS

∑
j∈S

λj,Suj(yS , x−S) �
∑
j∈S

λj,Suj(zS , x−S) for all S ∈ �,

i.e., ẑ ∈ C(x, λ), hence (x, ẑ) ∈ Graph(C), which means that Graph(C) is closed in X × X̂. Thus the
function C is upper hemi-continuous on X.

(4) For each φ(x) ∈ ∂φ(X), C(x, λ) ∩ Zφ(X)(φ(x)) 
= ∅ where Zφ(X)(φ(x)) = [cl(
⋃

h>0
φ(X)−{φ(x)}

h ) +
{φ(x)}] ∩ X̂ = [cl(

⋃
h>0{h[φ(u) − φ(x)], u ∈ X}) + {φ(x)}] ∩ X̂.

Indeed, by the coalition consistency property, there exists λ ∈ Δ such that for each x ∈ X with
φ(x) ∈ ∂φ(X), there exists z ∈ X such that

zS ∈ CS(x−S , λS) for all S ∈ �.

For each a � 1, let yS = 1
azS + a−1

a xs. Since 1
a > 0, a−1

a � 0 and 1
a + a−1

a = 1, we have yS ∈ XS by
the convexity of X, and ayS + (1 − a)xS = zS ∈ CS(x−S) for all S. Thus, φ(ay + (1 − a)x) = aφ(y) +
(1 − a)φ(x) ∈ C(x, λ) (because φ is linear). Since a[φ(y) − φ(x)] ∈ φ(X)−{φ(x)}

1/a ⊂ cl(
⋃

h>0
φ(X)−{φ(x)}

h ),
then aφ(y) + (1 − a)φ(x) = a[φ(y) − φ(x)] + φ(x) ∈ Zφ(X)(φ(x)). Therefore, aφ(y) + (1 − a)φ(x) ∈
C(x, λ) ∩ Zφ(X)(φ(x)), i.e., C(x, λ) ∩ Zφ(X)(φ(x)) 
= ∅.

Also, by Lemma 3.2, φ is continuous on X and φ(X) is convex and compact. Thus, all the conditions
of Lemma 3.1 are satisfied. Consequently, there exists x ∈ X such that φ(x) ∈ C(x, λ), i.e., for all S ∈ �,
xS ∈ CS(x−S , λS). Therefore, for all S ∈ � and yS ∈ XS , we have:∑

j∈S

λj,Suj(yS , x−S) �
∑
j∈S

λj,Suj(xS , x−S) =
∑
j∈S

λj,Suj(x). (3.4)

Now we prove that xS is weakly Pareto efficient to the sub-game 〈Xj , uj(., x−S)〉j∈S for all S ∈ �.
Suppose that there exists S0 ∈ � such that xS0 is not weakly Pareto efficient to the sub-game

〈Xj , uj(., x−S0)〉j∈S0 . Then, there exists ỹS0 ∈ XS0 such that:

uj(ỹS0 , x−S0) > uj(x) for all j ∈ S0. (3.5)

System (3.5), together with λ ∈ Δ, implies that
∑

j∈S0
λj,Suj(ỹS0 , x−S0) >

∑
j∈S0

λj,Suj(x). This con-
tradicts inequality (3.4) for S = S0 and yS = ỹS0 . Hence xS is weakly Pareto efficient to the sub-game
〈Xj , uj(., x−S)〉j∈S for all S ∈ �, and consequently, by Lemma 2.1 it is a strong Nash equilibrium. The
proof is completed. �
Remark 3.2. The above theorem on the existence of SNE requires much stronger conditions than the
existence of Nash equilibrium does. First, note that, in order to apply a fixed-point theorem, we need
to impose the quasi-concavity of weighted individual payoff functions so that the �-weighted best-reply
correspondence is convex-valued. This can be ensured by the concavity of individual payoffs. Of course, we
can slightly weaken the condition to that: for each coalition S ∈ � and each weight λS ∈ ΔS , the function
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yS �→
∑

i∈S λi,Sui(yS , x−S) is quasi-concave on XS , for each x−S ∈ X−S . Unfortunately, we cannot further
weaken ui to be quasi-concave on X since a weighted average of payoff functions may not be quasi-concave.
Thus, to apply a fixed-point theorem, one may have to impose the concavity of individual payoffs, and thus
it is an appealing condition for the existence of SNE. This is different from the case of Nash equilibrium, in
which the quasi-concavity of payoffs is an appealing condition for the existence of Nash equilibrium.

Remark 3.3. The coalition consistency property is a condition that cannot be dispensed with for the existence
of SNE, which requires that for every strategy profile x and every coalition S, there is a z such that zs is a
weighted best-reply strategy in coalition S. As such, the coalition consistency property can be checked, say,
by using the same methods for finding the maximum of utilitarian social welfare function for every coalition
and then checking if there exists a suitable weight such that every component of such coalitions is the
same as those obtained from single individual deviations. Nevertheless, this condition imposes a significant
restriction on the existence of SNE, and in fact, as argued by Bernheim et al. [5] and Dubey [10], the solution
concept of SNE is “too strong”, which requires to be weakly Pareto efficient. As a result, SNE does not
exist for general economic games. However, as Peleg [18] indicated, certain important economic games such
as voting games do possess SNE.

The following example shows that a game without satisfying the coalition consistency condition may not
possess a strong Nash equilibrium even if it is compact, continuous and concave.

Example 3.1. Consider a game with n = 2, I = {1, 2}, X1 = X2 = [0, 1] and

u1(x) = −x1 + 2x2,

u2(x) = 2x1 − x2.

It can be easily seen that the game is compact, continuous and concave. Moreover, it possesses a unique
Nash equilibrium that is (0, 0). However, there is no strong Nash equilibrium. One can see this by showing
the failure of coalition consistency. Indeed, notice that the efficient profile is (1, 0) if the weight λ to player
1 in the coalition (1, 2) is less than 1/3, is (1, 1) if λ ∈ (1/3, 2/3), and is (0, 1) if λ = 2/3. Also, if λ = 1/3,
the set of efficient profiles is the convex hull of (1, 0) and (1, 1) and if λ = 2/3, it is the convex hull of (0, 1)
and (1, 1). Thus, for x = (0, 0), the coalition consistency property cannot be satisfied. As such, the failure
of coalition consistency leads to the non-existence of SNE.

As such, an additional condition, such as the coalition consistency property, should be imposed. The
following example shows this.

Example 3.2. Consider a game with n = 2, I = {1, 2}, X1 = [1/3, 2], X2 = [3/4, 2], and

u1(x) = −x2
1 + x2 + 1,

u2(x) = x1 − x2
2 + 1.

Since X is compact and convex and payoff functions are continuous and concave on X, we only need to
show that the coalition consistency property is also satisfied so that we know there exists a strong Nash
equilibrium by Theorem 3.1.

Thus, to check the coalition consistency property, we need to find a λ ∈ Δ such that, for each x ∈ X,
there exists z ∈ X such that zS ∈ CS(x−S , λS) for all S ∈ �. Indeed, for � = {{1}, {2}, {1, 2}}, letting
λ = (1, 1, (0.6, 0.4)), we have:
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(1) for S = {1} and λS = 1, maxy1∈X1 u1(y1, x2) = maxy1∈X1(−y2
1 + x2 + 1) = −(1/3)2 + x2 + 1, which

means that z1 = 1/3 is the maximum;
(2) for S = {2} and λS = 1, maxy2∈X2 u2(x1, y2) = maxy2∈X2(x1 − y2

2 + 1) = x1 − (3/4)2 + 1, which means
that z2 = 3/4 is the maximum;

(3) for S = {1, 2} and λS = (0.6, 0.4), max(y1,y2)∈X [0.6u1(y1, y2) + 0.4u2(y1, y2)] = max(y1,y2)∈X [−0.6y2
1 +

0.4y1 − 0.4y2
2 + 0.6y2 + 1] = [−0.6(1/3)2 + 0.4(1/3) − 0.4(3/4)2 + 0.6(3/4) + 1], which means that

z = (z1, z2) = (1/3, 3/4) is the maximum.

Thus, for all x ∈ X, there exists z = (1/3, 3/4) ∈ X such that

zS ∈ CS(x−S , λS) for all S ∈ �.

Therefore, the coalition consistency property is satisfied, and thus by Theorem 3.1, the game has a strong
Nash equilibrium.

Example 3.3. Let I0 = {1, 2, . . . , n− 1} be the set of agents. The set of all coalitions of I0 is denoted by ℵ.
There are m commodities. For each agent i, his strategy space is Xi, a subset of Rm×Rm×Ei where Ei is
a vector space over Rm, and ui :

∏
h∈I0

Xh → R is the expected utility function of the i-th agent. A generic
element xi ∈ Xi is denoted by (xi

1, x
i
2, x

i
3) with xi

1, x
i
2 ∈ Rm and xi

3 ∈ Ei. The total excess demand for the
marketed commodities is

∑
i∈I0

(xi
1 + xi

2).3
x ∈

∏
h∈I0

Xh is an equilibrium for this market economy E = (Xi, ui)i∈I0 if

(i) x is a strong Nash equilibrium of E ;
(ii)

∑
i∈I0

(xi
1 + xi

2) � 0.

Let P be the market price domain {p ∈ Rm
+ :
∑m

h=1 ph = 1}. Also, let I = I0∪{n}, Xn = P , X =
∏

i∈I X
i

and un(x, p) = p.
∑n−1

i=1 (xi
1 + xi

2), where x ∈
∏

i∈I0
Xi.

The market economy E is said to satisfy the weak form of Walras’ law if

for every (x, p) ∈
( ∏

i∈I0

Xi

)
× P, p.

n−1∑
i=1

(
xi

1 + xi
2
)

� 0.

Corollary 3.1. Suppose that the market economy game E = (Xi, ui)i∈I0 is convex, compact, continuous,
concave and satisfies the weak form of Walras’ law. If the game G′ = (Xi, ui)i∈I satisfies the coalition
consistency property, then E has an equilibrium.

4. Characterization of strong Nash equilibria

In the following, we characterize the existence of SNE by providing a necessary and sufficient condition.
To do so, define a function � : X × Δ × X̂ → R by

�(x, λ, ŷ) =
∑
S∈�

∑
i∈S

λi

{
ui(yS , x−S) − ui(x)

}
,

where X̂ =
∏

S∈� XS .

3 For more details, see the book of Ichiishi (Ref. [14]).
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Note that, by the definition of �, we have

max
ŷ∈X̂

�(x, λ, ŷ) � 0 for all x ∈ X and λ ∈ Δ. (4.1)

Indeed, for x ∈ X and λ ∈ Δ, letting ŷ = φ(x) = (xS , S ∈ �),4 we have �(x, λ, ŷ) = 0, and consequently,
maxŷ∈X̂ �(x, λ, ŷ) � 0 for all (x, λ) ∈ X × Δ.

Let

α = inf
λ∈Δ

inf
x∈X

sup
ŷ∈X̂

�(x, λ, ŷ).

We will use the following result given by Moulin et al. [16, p. 162].

Lemma 4.1. Suppose that X is convex in a vector space and the functions ui, i ∈ I, are concave on X.
Then, x ∈ X is a weakly Pareto efficient strategy profile of the game G = 〈Xi, ui〉i∈I if and only if there
exists λ ∈ ΔI such that supy∈X

∑
i∈I λi,Iui(y) =

∑
i∈I λi,Iui(x).

We then have the following theorem.

Theorem 4.1 (Necessity Theorem). Suppose that Xi is a nonempty convex subset of a topological vector space
and ui is concave on X for all i ∈ I. If the game G = 〈Xi, ui〉i∈I has a strong Nash equilibrium, then α = 0.

Proof. Let x ∈ X be a strong Nash equilibrium of the game G = 〈Xi, ui〉i∈I . According to Lemma 2.1,
xS is weakly Pareto efficient to the sub-game 〈Xj , uj(., x−S)〉j∈S for all S ∈ �. Since Xi is nonempty
and convex, and ui is concave on X for all i ∈ I, then by Lemma 4.1, there exists λS ∈ ΔS such as
supyS∈XS

∑
i∈S λi,S{ui(yS , x−S) − ui(x)} = 0 for all S ∈ �. This equality implies:

sup
ŷ∈X̂

�(x, λ, ŷ) = 0.

Thus, we have:

α = inf
x∈X

inf
λ∈Δ

sup
ŷ∈X̂

�(x, λ, ŷ) � sup
ŷ∈X̂

�(x, λ, ŷ) = 0. (4.2)

Inequalities (4.1) and (4.2) imply α = 0. This proves the necessity. �
Theorem 4.2 (Sufficiency Theorem). Suppose that for all i ∈ I, Xi is a nonempty compact subset of a
Hausdorff topological space, and ui is continuous on X. If α = 0, then the game G = 〈Xi, ui〉i∈I possesses
a strong Nash equilibrium.

Proof. By the assumptions of Theorem 4.2, for all x ∈ X and λ ∈ Δ, the maximum of the function �(x, λ, .)
over X̂ and minx∈X minλ∈Δ maxŷ∈X̂ �(x, λ, ŷ) exist.

Suppose that α = 0. Since the functions x �→ �(x, λ, ŷ) and λ �→ �(x, λ, ŷ) are continuous over compact
X and Δ, respectively, then the Weierstrass Theorem implies that there exist x ∈ X and λ ∈ Δ such that
α = maxŷ∈X̂ �(x, λ, ŷ) = 0, and this equality implies �(x, λ, ŷ) =

∑
S∈�

∑
i∈S λi,S{ui(yS , x−S)−ui(x)} � 0

for all ŷ ∈ X̂.

4 The function φ is defined in the last section.
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For any arbitrarily fixed S ∈ �, we have for all ŷ ∈ X̂,

�(x, λ, ŷ) =
∑
i∈S

λi,S

{
ui(yS , x−S) − ui(x)

}
+

∑
K∈�, K �=S

∑
i∈K

λi,S

{
ui(yK , x−K) − ui(x)

}
� 0.

For ŷ ∈ X̂ such that yS is arbitrarily chosen in XS and yK = xK for all K 
= S, we have∑
K∈�, K �=S

∑
i∈K λi,S{ui(yK , x−K) − ui(x)} = 0. Then, from the last inequality, we deduce that∑

i∈S λi,Sui(yS , x−S) �
∑

i∈S λi,Sui(x) for all yS ∈ XS . Since S is arbitrarily chosen in �, then for all
yS ∈ XS , ∑

i∈S

λi,Sui(yS , x−S) �
∑
i∈S

λi,Sui(x) for all S ∈ �. (4.3)

Now we prove that xS is weakly Pareto efficient for the sub-game 〈Xj , uj(., x−S)〉j∈S for all S ∈ �.
Suppose that there exists S0 ∈ � such that xS0 is not weakly Pareto efficient for the sub-game

〈Xj , uj(., x−S0)〉j∈S0 . Then, there exists ỹS0 ∈ XS0 such that:

uj(ỹS0 , x−S0) > uj(x) for all j ∈ S0. (4.4)

System (4.4) implies that
∑

j∈S0
λj,S0uj(ỹS0 , x−S0) >

∑
j∈S0

λj,S0uj(x) with λj,S0 � 0 and
∑

j∈S0
λj,S0 = 1.

This contradicts inequality (4.3) for S = S0 and yS = ỹS0 . Hence, xS is weakly Pareto efficient for the sub-
game 〈Xj , uj(., x−S)〉j∈S for all S ∈ �. Consequently, by Lemma 2.1, xS is a strong Nash equilibrium. �

Theorems 4.1 and 4.2 actually provide a method of finding a SNE of a game under certain conditions
(see Algorithm 1).

Algorithm 1 Procedure for determining SNE
Require: Suppose that all the conditions of Theorems 4.1 and 4.2 are satisfied.
Require: Calculate the value α = minx∈X minλ∈Δ maxŷ∈X̂ �(x, λ, ŷ).

if α > 0, then
the game G = (Xi, ui)i∈I has no SNE.

else
any strategy profile x ∈ X such that minλ∈Δ maxŷ∈X̂ �(x, λ, ŷ) = 0 is a SNE of the game G = 〈Xi, ui〉i∈I .

end if

The following example illustrates the application of Algorithm 1.

Example 4.1. Consider a game with n = 2, I = {1, 2}, X1 = X2 = [−1, 1], x = (x1, x2), and

u1(x) = 3x1 − x2
2 + 4x2,

u2(x) = −x2
1 + x1 − 2x2.

It is obvious to see that the functions ui are concave over the convex X, i = 1, 2.
In this example, we have X̂ = X1 ×X2 × (X1 ×X2), and put ŷ = (a, b, (c, d)) ∈ X1 ×X2 × (X1 ×X2)

and x = (u, v).
We have

α = min
(x,λ)∈X×Δ

max
ŷ∈X̂

�(x, ŷ) = min
λ∈[0,1]

min
u,v∈[−1,1]

max
a,b,c,d∈[−1,1]

{[
u1(a, v) − u1(u, v)

]
+
[
u2(u, b) − u2(u, v)

]
+
[
λ
(
u1(c, d) − u1(u, v)

)
+ (1 − λ)

(
u2(c, d) − u2(u, v)

)]}
= min

u,v∈[−1,1]
min

λ∈[0,1]
max

a,b,c,d∈[−1,1]

{
[3a− 2b] +

[
−(1 − λ)c2 + (1 + 2λ)c

]
+
[
−λd2 + 2(3λ− 1)d

]
+
[
(1 − λ)u2 − 2(2 + λ)u

]
+
[
λv2 + (4 − 6λ)v

]}
.
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Fig. 1. The graph of function h.

Let us consider the following function:

h : [0, 1] → R

defined by λ �→ h(λ) = minu,v∈[−1,1] maxa,b,c,d∈[−1,1]{[3a− 2b] + [−(1 − λ)c2 + (1 + 2λ)c] + [−λd2 + 2(3λ−
1)d] + [(1 − λ)u2 − 2(2 + λ)u] + [λv2 + (4 − 6λ)v]}.

We recall that α = minλ∈[0,1] h(λ).
The minimum and maximum of function � are attained respectively from: ã = ũ = 1, b̃ = −1,

c̃ =
{ 1+2λ

2(1−λ) , if 0 � λ � 1/4,
1, if 1/4 � λ � 1,

d̃ =

⎧⎨⎩
−1, if 0 � λ � 1/4,
3λ−1

λ , if 1/4 � λ � 1/2,
1, if 1/2 � λ � 1

and

ṽ =
{−1, if 0 � λ � 1/2,

3λ−1
λ , if 1/2 � λ � 1/2.

We then obtain:

h(λ) =

⎧⎪⎨⎪⎩
16λ2−8λ+1

4(1−λ) , if 0 � λ � 1/4,
16λ2−8λ+1

λ , if 1/4 � λ � 1/2,
−4λ2+12λ−4

λ , if 1/2 � λ � 1.

We see that α = minλ∈[0,1] h(λ) = h(1/4) = 0 (Fig. 1). According to Algorithm 1, the considered game
has a strong Nash equilibrium which is x = (ũ, ṽ) = (1,−1).

5. Applications

In this section we show how our main existence result is applied to some important economic games.
We provide two applications: one is to games in an economy with multilateral environmental externalities,
which is intensively studied by Chander and Tulkens [7], and the other is to a simple oligopoly game.

5.1. Games in an economy with multilateral environmental externalities

Consider an economy with multilateral externalities and n agents, indexed by i ∈ I = {1, . . . , n}.
A consumption good yi � 0 is produced from an input ei ∈ [0, e0

i ]. The technology is described by a
production function yi = gi(ei), and each agent’s preference is presented by a quasilinear utility function
ui(yi, z) = yi − vi(z) where vi(z) is i’s disutility function of the externality given by z =

∑
h∈I eh.
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Define an n-person noncooperative game G = 〈Xi, ui〉i∈I as follows. Let

Xi =
{
ei ∈ R: 0 � ei � e0

i

}
be the strategy set of each player i, and XS the space of joint strategies of players in S ∈ �. Let X denote
the space of joint strategies of all players, i.e., X = XI . For a strategy profile [(e1, . . . , en)] ∈ X, we choose
ui(yi, z) = yi − vi(z) with z =

∑
i∈I ei as the payoff for player i. Let u = (u1, . . . , un).

By Lemma 2.1, we know that e ∈ X is a strong Nash equilibrium of the game G = 〈Xi, ui〉i∈I if and
only if eS ∈ XS is weakly Pareto efficient for the sub-game GS(e) = 〈Xj , uj(., e−S)〉j∈S . By Lemma 4.1,
eS ∈ XS is weakly Pareto efficient for the sub-game GS(e) if and only if there exists λS ∈ ΔS such that

sup
dS∈XS

∑
i∈S

λi,S

[
gi(di) − vi(dS + e−S)

]
=
∑
i∈S

λi,S

[
gi(ei) − vi(e)

]
,

where dS + e−S =
∑

j∈S dj +
∑

j∈−S ej and e =
∑

j∈I ej .
To characterize weak Pareto efficiency for the sub-game GS(e), we get the first order conditions

λj,Sg
′
j(dj) =

∑
h∈S

λh,Sv
′
h

(∑
i∈S

di +
∑
i∈−S

ei

)
, j ∈ S, λS ∈ ΔS . (5.1)

Consider two coalitions S1, S2 ∈ � and player j such that j ∈ S1 ∩ S2. Then, (5.1) implies:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1) λj,S1g

′
j

(
d1
j

)
=
∑
h∈S1

λh,S1v
′
h

(∑
i∈S1

d1
i +

∑
i∈−S1

ei

)
, λS1 ∈ ΔS1 ;

(2) λj,S2g
′
j

(
d2
j

)
=
∑
h∈S2

λh,S2v
′
h

(∑
i∈S2

d2
i +

∑
i∈−S2

ei

)
, λS2 ∈ ΔS2 .

(5.2)

For e ∈ X to be a strong Nash equilibrium, it is necessary that d1
j = d2

j = · · · = dkj = ej , for each
j ∈ S1 ∩ S2 ∩ · · · ∩ Sk.

While we can use Theorems 4.1 and 4.2 to provide necessary and sufficient conditions for the existence
of strong Nash equilibrium for this problem, here we provide sufficient conditions for the existence of strong
Nash equilibrium by applying Theorem 3.1. To do so, we make the following assumptions.

Assumption 1. gi(ei) − vi(z) is concave and differentiable over an interval [0, e0
i ].

Assumption 2. There exist λ ∈ Δ and e ∈ X such that

λj,Sg
′
j(ej) =

∑
h∈S

λh,Sv
′
h

(∑
i∈I

ei

)
for all j ∈ S and S ∈ �. (5.3)

Then, by Theorem 3.1, we have the following result.

Proposition 5.1. Suppose Assumptions 1 and 2 are satisfied.5 Then, the game G = 〈Xi, ui〉i∈I possesses a
strong Nash equilibrium.

5 The solutions of the following system are within the set
∏

i∈S [0, e0
i ], j ∈ S and λS ∈ ΔS :

λj,Sg
′
j(ej) =

∑
h∈S

λh,Sv
′
h

(∑
i∈I

ei

)
.
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Example 5.1. Consider the game G = 〈Xi, ui〉i∈I with I = {1, 2, . . . , n}, e = (e1, . . . , en), z =
∑n

i=1 ei, and

gi(ei) = aie
2
i − biei + ci, ui(yi, z) = yi − vi(z),

vi(z) = az2 − bz + c with ai, bi, a, b > 0, c � 0 and b2i − 4aici < 0.

Assume that ui(e) = gi(ei)−vi(z) is concave over
∏

i∈I [0, e0
i ] with e0

i � bi
2ai

. We now show that Assumption 2
is satisfied. Consider λ ∈ Δ and e ∈ X defined as follows:

λi,S = 1
|S| for all S ∈ � and ei = bi

2ai
for all i ∈ I.

If z =
∑n

i=1
bi
2ai

= b
2a , then e = ( b1

2a1
, . . . , bn

2an
) is a strong Nash equilibrium. Indeed, we have gi(ei) =

aie
2
i − biei + ci and vi(z) = az2 − bz + c, then g′i(ei) = 0 and v′i(z) = 0. Thus (5.3) holds.

5.2. Simple static oligopoly game

This subsection is dedicated to examining a simple oligopoly game. We first recall the Cournot model in
which the firms are quantity choosers producing a homogeneous good.

Let p be the market price of a perfectly homogeneous good produced by the n firms of an industry
(I = {1, . . . , n}), qi be the sales of the i-th firm, q = (q1, . . . , qn), and Q =

∑n
i=1 qi be the total sales in the

market. The inverse demand function is p = F (Q). The cost for the i-th firm is given by Ci(qi). The profit
of the i-th firm is then given by ψi(q) = qiF (Q) − Ci(qi).

Define a noncooperative game G = 〈Xi, ψi〉i∈I as follows. Let Xi = [0, qi], X =
∏

i∈I [0, qi], XS =∏
i∈S [0, qi], for each S ∈ �, and ψ = (ψ1, . . . , ψn).
Again, we want to provide some sufficient conditions that guarantee the existence of SNE. To do so, we

make the following assumptions.

Assumption 3. F (Q) and Ci(qi) are continuous and nonnegative on Q ∈ [0,+∞) and qi ∈ [0,+∞), respec-
tively.

Assumption 4. There exists qi > 0, i = 1, . . . , n such that ψi(q) is concave over
∏

i∈I [0, qi].

Assumption 5. There exist λ ∈ Δ and q ∈ X such that

λj,SC
′
j(qj) = λj,SF

(∑
i∈I

qi

)
+ F ′

(∑
i∈I

qi

)∑
h∈S

λh,Sqh for all j ∈ S and S ∈ �. (5.4)

Then, by Theorem 3.1, we have the following proposition.

Proposition 5.2. Suppose Assumptions 3, 4 and 5 are satisfied.6 Then, the game G = 〈Xi, ψi〉i∈I possesses
a strong Nash equilibrium.

6 The solutions of the following system are within the set
∏

i∈S [0, e0
i ], j ∈ S and λS ∈ ΔS :

λj,SC
′
j(qj) = λj,SF

(∑
i∈I

qi

)
+ F

′
(∑

i∈I

qi

) ∑
h∈S

λh,Sqh.
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Example 5.2. Consider a game with I = {1, 2, . . . , n}, q = (q1, . . . , qn), Q =
∑n

i=1 qi, and

F (Q) =

⎧⎪⎨⎪⎩
aQ2 − bQ + c, if 0 � Q � b

2a ,
−b2+2b+4ac

4a −Q, if b
2a < Q � −b2+2b+4ac

4a ,

0 if Q > −b2+2b+4ac
4a ,

and

Ci(qi) = θiq
2
i for i = 1, . . . , n,

where b2 − 4ac < 0 and a, b, θi > 0 for i = 1, . . . , n, and the inverse demand F (Q) is non-increasing in Q.
Suppose that ψi(q) = qiF (Q) − Ci(qi) is concave over

∏
i∈I [0, q0

i ] with q0
i � 4ac−b2

8aθi .
If (4ac− b2)

∑n
i=1

1
θi

= 4b, then there exists q = (4ac−b2

8aθ1 , . . . , 4ac−b2

8aθn ) such that Assumption 5 is satisfied.
To see this, let λi,S = 1

|S| for all S ∈ � and qi = 4ac−b2

8aθi for all i ∈ I. Then Q =
∑n

i=1 qi = b
2a , i.e., F ′(q) = 0.

Since F ′(q) = 0, then system (5.4) becomes:

2θiqi = 4ac− b2

4a for all i ∈ I.

Thus, qi = 4ac−b2

8aθi , i ∈ I such that F ′(q) = 0. This condition is equivalent to (4ac − b2)
∑n

i=1
1
θi

= 4b.
Therefore, q = (4ac−b2

8aθ1 , . . . , 4ac−b2

8aθn ) is a strong Nash equilibrium.

6. Conclusion

In the present paper we provide some existence results on strong Nash equilibria in general games.
We introduce a condition, called coalition consistency property which, together with the concavity and
continuity of payoffs, permits the existence of strong Nash equilibria in games with compact and convex
strategy spaces. The coalition consistency property is a general condition that cannot be dispensed with
for the existence of strong Nash equilibrium. It is satisfied in many economic games and relatively easy to
check.

We also characterize the existence of strong Nash equilibria by providing a necessary and sufficient
condition. Moreover, we suggest a procedure that can be used to compute strong Nash equilibrium. Our
results would be useful for solving theoretical and practical problems from various domains. The results are
illustrated with applications to economies with multilateral environmental externalities and to the simple
static oligopoly model.

Strong Nash equilibrium implicitly considers only pure strategies, excluding mixed/correlated strategies.
However, by making reasonable restrictions, the set of all probability measures over product of pure strategies
can satisfy the conditions imposed in our existence results. For instance, compactness would obtain if one
assumes the weak∗ topology and each pure strategy set Xi is a compact metric space, endowing each product
of sets with the product topology.
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