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This paper provides a new explanation for the dominance of the low-powered incentive
contract over the high-powered incentive contract using a hybrid model of moral hazard
and adverse selection. We first show that unobservable risk aversion or cost leads to
low-powered incentives. We then consider the case where both risk aversion and cost
of the agent are unobservable to the principal. This multidimensional mechanism design
problem is solved under two assumptions with regard to the structures of performance
measurement system and wage contract. It is shown that if the deterministic and stochastic
components of performance measures vary proportionally, the principal is inclined to
provide a low-powered incentive contract. Moreover, it is shown that if the base wage
depends on a quadratic function rather than the direction of the performance wage
vector, no incentive is provided for most of the performance measures in an orthogonal
performance measurement system.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The central topic of moral hazard problem is to provide incentive contracts to motivate the agent’s effort. Higher incentive
pay will induce the agent to work harder and consequently bring higher surplus to the principal. However, the arrangements
employers typically reach with their employees in reality look quite different from the incentive contracts derived by eco-
nomic theorists. Low-powered incentives are very common in practice, especially within organizations. Many firms prefer
to pay fixed compensation and offer continued employment to all but clearly unsatisfactory employees. Good examples are
the government agencies and public firms, which are generally blamed for poor performance because their managers and
workers lack high-powered incentives. Based on the standard transaction–cost and principal–agent economics, several the-
ories have been provided to explain why low-powered incentives are employed even if objective performance measures are
available and agents are highly responsive to incentive pay.

Williamson (1985) argues that weak incentive arises from opportunism and incompleteness of contracts. He shows that
the use of high-powered incentives would raise undesirable side problems such as exploitation, inefficient asset utilization
and accounting manipulations. For example, if supplying a single large customer would require a firm to make a large
investment in an asset that cannot be used readily for other purposes, the supplier may reasonably fear exploitation by the
customer: once the investment is made, the customer could force a lower price on the supplier. The problem is not simply
that one party to the transaction may end up being treated unfairly. The bigger problem is that as people will anticipate this
possibility, the transaction may not take place at all. Even if the manufacturer intends to keep his commitment, a transaction
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beneficial to both sides may be aborted because the supplier cannot trust him. One possible solution to this problem is to
write a court enforceable contract specifying how each party must behave under a number of different contingencies.
Unfortunately, as Williamson points out, contracts are not always effective in preventing opportunism in that due to limits
to human information-processing abilities, it is often impossible to anticipate all possible contingencies, let alone specify
them in a contract. This leaves scope for opportunism, so the supplier and manufacturer have to replace the high-powered
market transaction with low-powered incentive inside firms.

Holmstrom and Milgrom (1991) show that the power of incentives on some tasks relies on the principal’s ability to mon-
itor other aspects of the agent’s performance. The agents may shift their effort from some activities where their individual
contributions are poorly measured to the better-measured and well-compensated activities. For this reason, high-powered
incentive may be dysfunctional in multi-task environment.

The conclusion of Holmstrom and Milgrom (1991) relies largely on the assumptions that agent is risk averse and the
tasks are substitute. On the contrary, Baker (1992) shows that low-powered incentive might arise even with risk neutral
agent when the performance measure used and the principal’s true objective are weakly correlated. That means if the
performance measure does not respond to the agent’s actions in the same way that the principal’s objective responds to
these actions, the firm will reduce the intensity of the incentive contract.

Aside from piece rates or commissions, another way that firms use to compensate agent is by relative performance evalu-
ation such as awarding promotions to a member of a work group who performs best. In fact, in some political organizations
such as government agencies, the agents are rewarded mainly on relative performance measures rather than on their in-
dividual output. One function of relative performance evaluation is allowing the principal to use flatter incentives.1 In this
sense, the literature justifying relative performance evaluations also gives partial explanations on the arising of low-powered
incentive.

Lazear and Rosen (1981) show in a standard single moral hazard framework that the promotion-based incentive scheme
can achieve the same results as other incentive schemes can. They argue that the dominance of the promotion-based
incentive scheme over the piece-rate linear scheme and the standard bonus scheme arises from the fact that obtaining
ordinal measures generally requires less resources than obtaining cardinal measures. Green and Stokey (1983) and Nalebuff
and Stiglitz (1983) show also in the single moral hazard framework that the relative performance evaluation incentive
scheme may dominate the absolute performance evaluation scheme when the agents are risk averse and there are shocks
that are common to all the agents. Obviously, the promotion-based incentive scheme, by filtering out common randomness,
can reduce the risk that would otherwise be imposed on the agents and requires compensation. Therefore, the relative
performance evaluation improves the principal’s efficiency.

Another class of literature closely related to the present paper is in the area of multidimensional mechanism design. The
multidimensional mechanism design problem arises when the agent possesses multiple characteristics. Its implementability
is much more complicated than that in the unidimensional mechanism design problem because of the lack of a natural
order on types.

The studies on this topic can be traced back to Laffont et al. (1987), Rochet (1987), and Wilson (1993), etc.2 The most
notable publications in this field include Armstrong (1996), Rochet and Choné (1998) and Basov (2001) among many others.
Armstrong (1996) formulates this problem in a multiproduct nonlinear pricing setting. In this seminal paper, he develops
an integration along rays technique and characterizes the pricing contract for the case with cost-based tariff. Rochet and
Choné (1998) analyze a general multidimensional screening model. They show that, in general, the monopolist will use
mechanisms in which there is bunching, i.e., different consumer-types will be treated equally. They develop a methodology
– sweeping technique, for dealing with bunching in multiple dimensions. Basov (2001) takes advantage of control theoretic
tools and develops a “generalized Hamiltonian approach” for solving the multidimensional mechanism design problem.

In this paper, we provide a new explanation for the dominance of low-powered over high-powered incentives. Our
contributions are two-fold. First, in contrast to most of the existing literature dealing with the power-of-incentive issue in
the framework of pure moral hazard, our analysis is made in a hybrid model of both moral hazard and adverse selection.3

The standard moral hazard model concerns only the trade-off between insurance and incentives. In these environments, the
compensation based on certain “risky” performance measure serves the dual functions of increasing both profits and risk.
A tension between these two functions arises when the agent is risk averse. Higher pay induces the agent to exert a higher

1 Rank order tournaments is a simple and widely used form of relative performance evaluation. This classical form of relative performance compensation
has the particularity of using only an ordinal ranking of performance. By awarding high and low prizes based on relative performance, a principal can elicit
a higher effort level than with a scheme that involves the same wage bill but equal wages. An agent’s performance is increasing in the spread between the
winner and loser prize, ceteris paribus, rather than the absolute payment levels. It therefore allows the principal to elicit a higher effort level using lower
performance pay.

2 We thank one of the anonymous referees for reminding us of these papers.
3 Laffont and Tirole (1986), Picard (1987), Guesnerie et al. (1989), Melumad and Reichelstein (1989), Caillaud et al. (1992), Basov and Bardsley (2005),

among many others, discuss the welfare losses issue in the joint presence of moral hazard and adverse selection. Their main conclusion is that under risk
neutrality, if the noise in production technology is independent of the agent’s type, and the effort is unidimensional, hidden action does not create any
additional welfare loss, comparatively to the models with observable actions. Basov and Danilkina (2010) show that hidden action will generically lead to
a welfare loss even if both parties are risk neutral and production technology is independent of the agent’s type, provided that both effort and private
information are multidimensional. Our model, however, is trying to answer a different question: with risk-averse agent, whether hidden information leads
to a flatter wage contract comparatively to the model with observable information? We are thankful to a referee for bringing our attention to these papers.
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level of effort and thus increases the principal’s profit. On the other hand, high wage also exposes the agent to unwanted
risk, which requires an extra risk premium as compensation. Consequently, when choosing contract, the principal trades
off the benefits of more effort against higher wage costs. Most of the existing studies assume that only the agent’s actions
are unobservable. In contrast, our paper assumes that the agent is privately informed about both his actions and types.
The principal therefore is faced with an additional tradeoff – the tradeoff between efficiency and rent extraction. We show
that the incentive contract is inclined to be flatter in the hybrid model than in the pure moral hazard model. Furthermore,
it is worth noting that if the agent owns multidimensional private information and the base wage depends only on the
Σ-norm of the performance wage, the efficient linear compensation rule contains no incentive component for most of the
performance measures.

Secondly, we develop a “delegating” method for the complex multidimensional mechanism design problem. The intuition
behind this method is a tradeoff between authority and complexity. As a centralized way of resource allocation, an incentive
mechanism vests all the decision-making authority in the principal, but it needs to process information transmitted by the
agent. The multidimensional information increases the principal’s information processing cost and complexity of writing
a contract. The more authority the principal owns, the more information he has to process. Therefore, in order to save
information processing cost and avoid complexity of writing a multidimensional contract, the principal may choose to
delegate part of his authority to the agent. Two extreme cases of this tradeoff in practice are a decentralized market
economy which distributes all the decision-making authority to individual agents so that their communications requirements
can be minimal (see Hurwicz, 1972, 1979, 1986; Mount and Reiter, 1974; Walker, 1977; Osana, 1978; Tian, 1994, 2004, 2006,
among others for detailed discussion); and socialist economy in which a central planner has almost all the authority but a
great amount of information has to be processed. In this paper, part of the principal’s authority is delegated to the agent
under the assumption that the fixed component of compensation bases only on a quadratic form (Σ-norm) of the vector
of incentive compensation coefficients. This assumption deprives some of the principal’s degrees of freedom but decreases
drastically the amount of information required. The multidimensional mechanism design problem is therefore relatively
easily solved.

The remainder of the paper is organized as follows. The basic multi-task principal–agent model is specified in Section 2,
along with a characterization of the pure moral hazard contract. The results with unobservable risk aversion are examined in
Section 3. The results with unobservable cost are discussed in Section 4. Section 5 considers the optimal incentive contract
in a general environment where risk aversion and cost are both unobservable. Finally, in Section 6, some concluding remarks
are given.

2. Basic model

Consider a principal–agent relationship in which the agent controls n activities that influence the principal’s payoff. The
principal is risk neutral and her gross payoff is a linear function of the agent’s effort vector e:

V (e) = β ′e + η, (1)

where the n-dimensional vector β characterizes the marginal effect of the agent’s effort e on V (e), and η is a noise term
with zero mean. The agent chooses a vector of efforts e = (e1, . . . , en)

′ ∈ Rn+ at quadratic personal cost e′Ce
2 , where C is a

symmetric positive definite matrix. The diagonal element Cii reflects the agent’s task-specific productivities, while the sign of
off-diagonal elements Cij indicates the relationship between two tasks i and j, which are substitute (resp. complementary,
independent) if Cij > 0 (resp. < 0, = 0). The agent’s preferences are represented by the negative exponential utility function
u(x) = −e−rx , where r is the agent’s absolute risk aversion and x is his compensation minus personal cost.

It is assumed that there is a linear relation between the agent’s efforts and the expected levels of the performance
measures:

Pi(e) = b′
ie + εi, i = 1, . . . ,m, (2)

where bi ∈ Rn captures the marginal effect of the agent’s effort e on the performance measure Pi(e); B = (b1, . . . ,bm)
′

is an m × n matrix of performance parameters, and it is assumed that the matrix B has full row rank m so that every
performance measure cannot be replaced by the other measures; and ε = (ε1, . . . , εm)′ is an m × 1 vector of normally
distributed variables with mean zero and variance–covariance matrix Σ .

Definition 1 (Orthogonality). A performance system is said to be orthogonal if and only if b′
i C

−1b j = 0 and Cov(εi, ε j) = 0,
for i �= j, that is, B ′C−1 B and Σ are both diagonal matrices.

Definition 2 (Cost-adjusted correlation). The cost-adjusted correlation between two performance measures i and j is the ratio
of the cost-adjusted inner product of their vectors of sensitivities divided by the covariance of the error terms:

ρc
i j = b′

iC
−1b j

σi j
. (3)
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In single-task agency relationships, the signal-to-noise ratio of performance measure Pi(e) = ωie + εi is given by
ω2

i /var(εi) (see Kim and Suh, 1991). Schnedler (2008) generalizes the signal-to-noise ratio to account for multidimensional
effort. In his definition, the signal-to-noise ratio of performance measure Pi(e)= b′

ie + σi , denoted by γi , is

γi ≡ (∇ Pi(e))′(∇ Pi(e))

var(εi)
= b′

ibi

σ 2
i

.

Performance measures with higher signal-to-noise ratios provide more precise information about the agent’s effort choice
than those with lower signal-to-noise ratios. Clearly, the signal-to-noise ratio does not account for the agent’s task-specific
abilities and interaction among tasks. Furthermore, there is no concept measuring to what degree two performance mea-
sures are aligned with each other in the existing literature. The definition of cost-adjusted correlation given above, however,
captures these ideas. If n tasks are technologically independent and identical, i.e., C = cI , then we use the concept correlation
ρi j ≡ b′

ib j/σi j to measure the degree of alignment between two performance measures, and it is clear that ρii = γi .

Definition 3 (Cost-adjusted congruence). The cost-adjusted congruence of a performance measure Pi = b′
ie + εi is defined as

Γi = b′
iC

−1β√
b′

iC
−1bi

√
β ′C−1β

. (4)

Baker (2002) defines the congruence of a performance measure as cosine of the angle between the vector of payoff
sensitivities and the vector of performance measure sensitivities: Υi ≡ cos(b̂i, β). Also, his definition does not consider the
agent’s task-specific abilities and interaction among tasks. So we adopt a modified measure of congruity given in (4). If C
is a scalar matrix, then Γi = Υi . In this paper, a performance measure with nonzero cost-adjusted congruence is said to be
congruent; a performance measure with unit cost-adjusted congruence is said to be perfectly congruent. We assume in this
paper that there exists at least one congruent measure, i.e., BC−1β �= 0.

The principal compensates the agent’s effort through a linear contract:

W (e) = w0 + w ′ P (e), (5)

where P (e) = (P1(e), . . . , Pm(e))′ , w0 denotes the base wage, and w = (w1, . . . , wm)
′ the performance wage. Under this

linear compensation rule, the principal’s expected profit is Πp = β ′e − w0 − w ′Be, and the agent’s certainty equivalent is

C Ea = w0 + w ′Be − 1

2
e′Ce − r

2
w ′Σw. (6)

The principal’s problem is to design a contract (w0, w) that maximizes her expected profit Πp while ensuring the agent’s
participation and eliciting his optimal effort.

The optimization problem of the principal is thus formulated as:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max{w0, w, e}β
′e − w0 − w ′Be

s.t: I R: w0 + w ′Be − 1

2
e′Ce − r

2
w ′Σw � 0

IC : e ∈ arg max
ẽ

[
w0 + w ′Bẽ − 1

2
ẽ′Cẽ − r

2
w ′Σw

]
.

The I R constraint ensures that the principal cannot force the agent into accepting the contract, and here the agent’s reser-
vation utility is normalized to zero; the IC constraint represents the rationality of the agent’s effort choice.

We now consider the effort choosing problem of the agent for a given incentive scheme (w0, w). Since the objective is
concave by noting that the second-order derivative of C Ea with respect to e is a negative definite matrix −C , the maximizer
can be determined by the first-order condition: Ce = B ′w . After replacing e with e∗ = C−1 B ′w and substituting the I R
constraint written with equality into the principal’s objective function, the principal’s optimization problem simplifies to:

max
w∈Rn

[
β ′C−1 B ′w − 1

2
w ′(BC−1 B ′ + rΣ

)
w

]
.

The optimal wage contract and effort to be elicited are therefore:

w p = [
BC−1 B ′ + rΣ

]−1
BC−1β, (7)

w p
0 = rw p′

Σw p − w p′
BC−1 B ′w p

2
, (8)

ep = C−1 B ′w p . (9)
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The resulting surplus of the principal is4

Π p = 1

2
β ′C−1 B ′[BC−1 B ′ + rΣ

]−1
BC−1β. (10)

A higher incentive pay could induce the agent to implement a higher effort, but it will also expose the agent to a
higher risk. It therefore requires a premium to compensate the risk-averse agent for the risk he bears. The optimal power of
incentive is therefore determined by the tradeoff between incentive and insurance. Moreover, the results above show that
in multi-task agency relationships, the degree of congruity of available performance measures and the agent’s task-specific
abilities also affects the power and distortion of incentive contract, which is in line with many previously known studies
such as those of Feltham and Xie (1994), Baker (2002) and Thiele (2010).

3. The optimal contract with unobservable risk aversion

The pure moral hazard incentive contract stated above relies crucially on the agent’s attitude towards risk. In the fol-
lowing, we assume that risk aversion r is private information of the agent, and its distribution function F (r) and density
function f (r) supported on [r, r] are common knowledge to all parties. This assumption is different to most of the previous
studies in which risk aversion is regarded as a publicly observed variable. The principal then has to offer a contract menu
{w0(r̂), w(r̂)} contingent on the agent’s reported “type” r̂ to maximize her expected payoff.

The timing of this hybrid model is as follows. At date 0, nature determines r, only the agent knows it. At date 1 the
principal offers the agent an employment contract (w0(r̂), w(r̂)) based upon the agent’s report r̂. If this contract guarantees
at least the same expected utility as his reservation wage (which is normalized to zero), the agent accepts the contract and
reports r̂. At date 2, after accepting his contract and reporting his type r̂, the agent implements an effort vector e. At date 3,
the agent’s performance measure P (e) as well as his contribution to firm value, V (e), are realized. At date 4, the payment
is made.

A contract {w0(r̂), w(r̂)} is said to be implementable if the following incentive compatibility condition is satisfied:

w0(r)+ 1

2
w(r)′

[
BC−1 B ′ − rΣ

]
w(r) � w0(r̂)+ 1

2
w(r̂)′

[
BC−1 B ′ − rΣ

]
w(r̂). (11)

Let U (r, r̂) ≡ w0(r̂)+ 1
2 w(r̂)′[BC−1 B ′ − rΣ]w(r̂),5 and U (r) ≡ U (r, r), then the implementability condition of {U (r), w(r)} is

stated equivalently as:

∃w0 : [r, r] → R+, ∀(r, r̂) ∈ [r, r]2, U (r) = max
r̂

{
w0(r̂)+ 1

2
w(r̂)′

[
BC−1 B ′ − rΣ

]
w(r̂)

}
. (12)

The “Taxation Principle” (cf. Guesnerie, 1981; Hammond, 1979 and also Rochet, 1985) states that (12) is equivalent to the
following very similar condition

∃w0 : Rm → R+, ∀r ∈ [r, r], U (r) = max
w

{
w0(w)+ 1

2
w ′[BC−1 B ′ − rΣ

]
w

}
. (13)

It is possible to show that U (·) is continuous, convex6 (thus almost everywhere differentiable), and satisfies the envelop
condition:

U ′(r) = −1

2
w ′Σw. (14)

Conversely, if (14) holds and U (r) is convex, then

U (r) � U (r̂)+ (r − r̂)U ′(r̂) = U (r̂)− 1

2
(r − r̂)w ′(r̂)Σw(r̂),

which implies the incentive compatibility condition U (r) � U (r, r̂). Formally, we have

Lemma 1. The surplus function U (r) and performance wage function w(r) are implementable if and only if :

(1) envelop condition (14) is satisfied;
(2) U (r) is convex in r.

4 Superscript “p” denotes “pure moral hazard”.
5 Substituting e∗ = C−1 B ′ w into expression (6) yields U = w0 + 1

2 w ′(BC−1 B ′ − rΣ)w .
6 One way to define the convex functions is through representing them as maximum of the affine functions, that is, s(x) is convex if and only if

s(x)= max
a,b∈Ω

(a · x + b)

for some a ∈ Rn , b ∈ R and some Ω ⊂ Rn+1. In this example a = − 1
2 w ′Σw , b = w0(w) + 1

2 w ′ BC−1 B ′ w , and thus U (r) = max(a,b)∈R−×R+ (ar + b) is a
convex function in r.
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Substituting U (r) into the principal’s expected payoff, we get

Π =
r∫

r

[
β ′e∗ − w0(r)− w(r)′Be∗] f (r)dr

=
r∫

r

{
β ′C−1 B ′w(r)− 1

2
w(r)′

[
BC−1 B ′ + rΣ

]
w(r)− U (r)

}
f (r)dr.

The principal’s optimization problem is therefore:

max
U (r), w(r)

Π, s.t.: U (r) � 0, U ′(r) = −1

2
w(r)′Σw(r), U (r) is convex. (15)

The following proposition summarizes the solution of the principal’s problem:

Proposition 1. If Φ(r) is nondecreasing,7 then the optimal wage contract is given by

wh(r) = [
BC−1 B ′ +Φ(r)Σ

]−1
BC−1β, (16)

wh
0(r) = 1

2

r∫
r

wh(r̃)′Σwh(r̃)dr̃ − 1

2
wh(r)′

[
BC−1 B ′ − rΣ

]
wh(r), (17)

where Φ(r) ≡ r + F (r)
f (r) .8

Proof. See Appendix A. �
The following conditions prove to be sufficient for the emergence of low-powered incentives:

Condition 3.1. Σ is diagonal.

Condition 3.2. Matrix BC−1 B ′ is diagonal.

Condition 3.3. Matrices BC−1 B ′ and Σ commute: BC−1 B ′Σ = ΣBC−1 B ′ .9

Condition 3.4. The following inequality holds:

2rλ2
m + ρ > 0, (18)

where

ρ = max

{
min

i=1,m
λiμm

(
√

kλ + 1)2 − kμ(
√

kλ − 1)2

2
√

kλ
, min

i=1,m
μiλm

(
√

kμ + 1)2 − kλ(
√

kμ − 1)2

2
√

kμ

}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

λmμm
(
√

kλ+1)2−kμ(
√

kλ−1)2

2
√

kλ
if
√

kμ �
√

kλ+1√
kλ−1

, kμ � kλ,

λmμm
(
√

kμ+1)2−kλ(
√

kμ−1)2

2
√

kμ
if
√

kμ �
√

kλ+1√
kλ−1

, kμ < kλ,

λ1μm
(
√

kλ+1)2−kμ(
√

kλ−1)2

2
√

kλ
if
√

kμ >
√

kλ+1√
kλ−1

, kμ � kλ,

λmμ1
(
√

kμ+1)2−kλ(
√

kμ−1)2

2
√

kμ
if
√

kμ >
√

kλ+1√
kλ−1

, kλ < kλ.

λi , μi are the i-th eigenvalues of Σ , BC−1 B ′ respectively in a descending enumeration. kλ = λ1
λm

and kμ = μ1
μm

denote the

spectral condition number of Σ and BC−1 B ′ respectively.

Condition 3.5. There exists a positive number λ such that BC−1 B ′ = λΣ .

7 This condition is weaker than and could be implied by the monotone hazard rate property: d
dr [ F (r)

f (r) ] � 0.
8 Superscript “h” denotes “hybrid model of moral hazard and adverse selection”.
9 That is, BC−1 B ′Σ is symmetric.
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Condition 3.1 requires that the error terms of performance measures are stochastically independent. It assumes off the
possibility that different measures are affected by common stochastic factor. Condition 3.2 states that b′

i C
−1b j = 0 for all

i �= j. Intuitively, it requires that different performance measures respond in distinct ways to the agent’s effort when cost
is incorporated. Condition 3.4 holds when agent is sufficiently risk averse or when either matrix BC−1 B ′ or Σ is well-
conditioned.10 Several important special cases are:

• the performance measures system is orthogonal. In this case Conditions 3.1 to 3.3 are all satisfied;
• Σ is a scalar matrix, in which case Conditions 3.1, 3.3 and 3.4 are satisfied;
• BC−1 B ′ is a scalar matrix, in which case Conditions 3.2, 3.3 and 3.4 are satisfied.

Condition 3.5 emphasizes that the covariance matrix Σ is a transformation of the measure-cost efficiency matrix BC−1 B ′ .
That is to say, correlation between any pair of performance measures i and j is constant: ρi j = λ.

By comparing the wage contract obtained in the hybrid model to the benchmark pure moral hazard model, we find that
the principal will reduce the power of incentives offered to the agent.

Theorem 1.

1. Given any one of Conditions 3.1 to 3.4, there exists an i ∈ {1 · · ·m}, such that |wh
i (r)| < |w p

i (r)| for all r ∈ (r, r̄].
2. If both Condition 3.1 and Condition 3.2 are satisfied, then |wh

i (r)| < |w p
i (r)| for all r ∈ (r, r̄] and all i ∈ {1 · · ·m}.

3. Let ωi , i ∈ K ≡ {1,2, . . . ,k} denote k distinct generalized eigenvalues of BC−1 B ′ relative to Σ , Vi ≡ N (BC−1 B ′ − ωiΣ) be
the eigenspace corresponding to ωi , and V⊥

i be its orthogonal complement. Suppose that BC−1β /∈ ⋃
i∈K V⊥

i , then there exists

a positive number k ∈ (0,1) such that wh = kw p if and only if Condition 3.5 is met.

Proof. See Appendix A. �
When the risk aversion parameter is unobservable to the principal, the less risk-averse agent gains information rent

by mimicking the more risk-averse one. The amount of information rent gained by an agent depends on the performance
wage of agents with larger risk aversion, and therefore the basic tradeoff between efficiency and rent extraction leads to
low-powered incentive for all but the least risk-averse types. Under Conditions 3.1 to 3.4, wage vector w is shortened
in different quadratic-form norms compared with the pure moral hazard case. Under Condition 3.5, the wage vector that
minimizes the cost of effort e′Ce = w ′BC−1 B ′w points in the same direction as the wage vector that minimizes the risk
premium rw ′Σw . Consequently, the efficiency-rent tradeoff alters only the overall intensity of wage vector, not its relative
allocation among performance measures. The opposite of this result is true under the premise BC−1β /∈ ⋃

i∈K V⊥
i . To see

this, consider the following example with diagonal matrices BC−1 B ′ and Σ :

BC−1 B ′ =

⎡
⎢⎢⎢⎣

b′
1C−1b1

b′
2C−1b2

. . .

b′
mC−1bm

⎤
⎥⎥⎥⎦ , Σ =

⎡
⎢⎢⎢⎣
σ 2

1
σ 2

2
. . .

σ 2
m

⎤
⎥⎥⎥⎦ .

The i-th generalized eigenvalue of BC−1 B ′ relative to Σ is ωi = ρii ≡ b′
i C

−1bi

σ 2
i

, the associated normalized generalized eigen-

vector ei has its i-th entry one and every other entry zero. V⊥
i = {v = (v1, v2, . . . , vm) ∈ Rm | vi = 0}. BC−1β /∈ ⋃

i∈K V⊥
i

requires that b′
i C

−1β �= 0 for all i ∈ {1,2, . . . ,m}. That means any performance measure is congruent, i.e., Γi �= 0 (though not
necessarily be perfectly congruent). It follows from wh = kw p that

b′
iC

−1β

b′
iC

−1bi + rσ 2
i

= k
b′

iC
−1β

b′
i C

−1bi +Φ(r)σ 2
i

, ∀i.

Consequently, we get BC−1 B ′ = Φ(r)−kr
k−1 Σ . In summary, for an orthogonal system with congruent measures, wage vectors w p

and wh have the same direction if and only if all the performance measures share the same cost-adjusted signal-to-noise
ratio.

It may be remarked that adverse selection is followed by moral hazard in our hybrid model. As such, it is reasonable
for us to choose pure moral hazard situation as the benchmark and a starting point, and thus it enables us to analyze
this model via backward induction. Also, note that the order of analysis matters. If we start from a pure adverse selection
model, we may not get a result similar to Theorem 1. To see this, we make the following simple calculation. The principal’s
optimization problem under pure adverse selection (e is observable, r is unobservable) is

10 Matrices with condition numbers near 1 are said to be well-conditioned, while matrices with high condition numbers are said to be ill-conditioned.
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max
e, w0(r), w(r)

r̄∫
r

(
β ′e − w0 − w ′Be

)
f (r)dr

s.t.: I R: w0(r)+ w ′(r)Be − 1

2
e′Ce − r

2
w ′(r)Σw(r) � 0,

IC : r = arg max
r̃

[
w0(r̃)+ w ′(r̃)Be − 1

2
e′Ce − r

2
w ′(r̃)Σw(r̃)

]
.

This problem could be simplified to

max
e, w(r)

r̄∫
r

[
β ′e − 1

2
e′Ce − 1

2

(
r + F (r)

f (r)

)
w ′(r)Σw(r)

]
f (r)dr.

The optimal wage contract under pure adverse selection entails: e∗ = C−1β, w∗(r) = 0. Comparing it with (16) yields |w∗
i | <

|wh
i | for all i. Therefore, the power of incentives in hybrid model is not lower than that in pure adverse selection model.11

4. The optimal contract with unobservable cost

In this section we assume that the cost parameter is private information of the agent. To avoid the complicated multidi-
mensional mechanism design issue momentarily, we assume that C = cI , that is, the tasks are technologically identical and
independent. δ = 1

c is assumed to be distributed on the support [δ, δ], according to a cumulative distribution function G(δ)
and density g(δ). The timeline of this problem is analogous to that in Section 3 except that the agent is now required to
report δ̂. A contract menu {w0(δ), w(δ)} is said to be implementable if the following incentive compatibility condition is
satisfied:

w0(δ)+ 1

2
w(δ)′

[
δB B ′ − rΣ

]
w(δ) � w0(δ̂)+ 1

2
w(δ̂)′

[
δB B ′ − rΣ

]
w(δ̂), ∀(δ, δ̂) ∈ [δ, δ]2. (19)

Let U (δ, δ̂) ≡ w0(δ̂)+ 1
2 w(δ̂)′[δB B ′ − rΣ]w(δ̂), and U (δ) ≡ U (δ, δ). Then {U (δ), w(δ)} is called implementable if

∃w0 : [δ, δ] → R+, ∀(δ, δ̂) ∈ [δ, δ]2, U (δ) = max
δ̂

{
w0(δ̂)+ 1

2
w(δ̂)′

[
δB B ′ − rΣ

]
w(δ̂)

}
(20)

or equivalently,

∃w0 : R → R+, ∀δ ∈ [δ, δ], U (δ) = max
w∈Rm

{
w0(w)+ 1

2
w ′[δB B ′ − rΣ

]
w

}
. (21)

U (δ) is necessarily continuous, increasing and convex in δ12 and satisfies the envelop condition:

U ′(δ) = 1

2
w ′B B ′w. (22)

Conversely, similar to the case with unobservable risk aversion, the convexity of U (δ) and envelop condition (22) implies

U (δ) � U (δ̂)+ (δ − δ̂)U ′(δ̂) = U (δ̂)+ 1

2
(δ − δ̂)w ′B B ′w = U (δ, δ̂),

which in turn implies the implementability of contract. We summarize the above discussion in the following lemma:

Lemma 2. The surplus function U (δ) and wage function w(δ) are implementable if and only if

(1) U ′(δ) = 1
2 w ′B B ′w;

(2) U (δ) is convex in δ.

The second-best δ-contingent contract solves the following optimization problem:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
w(δ),U (δ)

δ∫
δ

{
δβ ′B ′w(δ)− 1

2
w(δ)′

[
δB B ′ + rΣ

]
w(δ)− U (δ)

}
g(δ)dδ

s.t.: U (δ) � 0, U ′(δ) = w ′B B ′w
2

, U (δ) is convex.

11 We are thankful to a referee for bringing this point to our attention.
12 In this case, let a = 1

2 w ′ B B ′ w , b = w0(w)− 1
2 w ′Σw , then U (δ)= maxa,b(aδ + b) is convex in δ.
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Proposition 2. With unobservable cost, if δH(δ) is nonincreasing,13 then the optimal wage is given by

wh(δ) =
(

H(δ)B B ′ + rΣ

δ

)−1

Bβ, (23)

wh
0(δ) = 1

2

δ∫
δ

wh(δ̃)′B B ′wh(δ̃)dδ̃ − 1

2
wh(δ)′

[
δB B ′ − rΣ

]
wh(δ), (24)

where H(δ) ≡ 1 + 1−G(δ)
δg(δ) .

Proof. See Appendix A. �
The following conditions justify the adoption of low-powered incentives in the case with unobservable cost parameter:

Condition 4.1. B B ′ is a diagonal matrix.

Condition 4.2. Matrices B B ′ and Σ commute: B B ′Σ = ΣB B ′ .14

Condition 4.3. The following inequality holds:

2ν2
m + r

δ
η > 0. (25)

η = max

{
min

i=1,m
λiνm

(
√

kλ + 1)2 − kν(
√

kλ − 1)2

2
√

kλ
, min

i=1,m
νiλm

(
√

kν + 1)2 − kλ(
√

kν − 1)2

2
√

kν

}

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λmνm
(
√

kλ+1)2−kν (
√

kλ−1)2

2
√

kλ
if

√
kν �

√
kλ+1√
kλ−1

, kν � kλ,

λmνm
(
√

kν+1)2−kλ(
√

kν−1)2

2
√

kν
if

√
kν �

√
kλ+1√
kλ−1

, kν < kλ,

λ1νm
(
√

kλ+1)2−kν (
√

kλ−1)2

2
√

kλ
if

√
kν >

√
kλ+1√
kλ−1

, kν � kλ,

λmν1
(
√

kν+1)2−kλ(
√

kν−1)2

2
√

kν
if

√
kν >

√
kλ+1√
kλ−1

, kλ < kλ,

represents the lower bound of eigenvalues of Jordan product B B ′Σ + ΣB B ′; λi , νi are the i-th eigenvalues of Σ and
B B ′ respectively in a descending enumeration. kλ = λ1

λm
and kν = ν1

νm
denote the spectral condition number of Σ and B B ′

respectively.

Condition 4.4. There exists a positive number k such that B B ′ = kΣ .

In the special case where performance measures system is orthogonal, Conditions 3.1, 4.1 and 4.2 are satisfied. If Σ

(resp. B B ′) is a scalar matrix, then Conditions 3.1 (resp. 4.1) and 4.3 are both satisfied. Besides, Condition 4.3 could hold
even for nondiagonal B B ′ and Σ , provided either of them is well-conditioned or r

δ
is sufficiently small.

Theorem 2.

1. Given any of Conditions 3.1, 4.1, 4.2, 4.3, there exists at least one i ∈ {1, . . . ,m}, such that |wh
i (δ)| < |w p

i (δ)| for all δ ∈ [δ, δ̄);
2. If both Conditions 3.1 and 4.1 are satisfied, namely, the performance measure system is orthogonal, then |wh

i (δ)| < |w p
i (δ)| for all

δ ∈ [δ, δ̄) and all i;
3. Let τi , i ∈ L≡ {1,2, . . . , l} denote l distinct generalized eigenvalues of B B ′ relative to Σ , Ui ≡N (B B ′ − τiΣ) be the eigenspace

corresponding to τi , U⊥
i be its orthogonal complement. Suppose that Bβ /∈ ⋃

i∈L U⊥
i , then there exists a positive number s ∈ (0,1)

such that wh = sw p if and only if Condition 4.4 is met.

Proof. The proof of this theorem is similar to that in Theorem 1 and it is omitted here. �
When the agent possesses private information on his own cost, a more efficient agent (the agent with higher δ) would

accrue information rent by mimicking his less efficient counterpart. To minimize agency costs, optimality requires a down-
ward distortion of the power of inefficient types’ incentive wage. Theorem 2 gives various conditions ensuring low-powered

13 This assumption is a bit stronger than the usual monotone inverse hazard rate condition. It holds for any nondecreasing g(·).
14 Again, it is true if B B ′Σ is symmetric.
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incentives. If the performance measure sensitivities are orthogonal to each other (b′
ib j = 0 for i �= j), or error terms are

uncorrelated (σi j = 0 for i �= j), or either B B ′ or Σ is well-conditioned (kν or kλ is close to one), or the agent is nearly risk
neutral (r is very small), or the agent is highly efficient (δ is very large), then the power of incentives will be lowered for at
least one performance measure. For an orthogonal system with all its performance measures congruent (b′

iβ �= 0 for all i),
the wage vector in hybrid model is shorter than but points in the same direction as its pure moral hazard counterpart if
and only if all the measures share the same signal-to-noise ratio (b′

ibi/σ
2
i ≡ k for all i).

5. The optimal contract with both unobservable cost and risk aversion

In this section we assume that both efficiency parameter δ and risk aversion r are unobservable to the principal, their
joint PDF is f (δ, r) supported on a convex region D. Timing of the model is analogous to that in Section 3 and Section 4 ex-
cept that the agent is now required to report both r̂ and δ̂. The multidimensional mechanism design model differs markedly
from and is significantly more complex than its one-dimensional counterpart, essentially because different types of agents
cannot be unambiguously ordered. For lack of methodology in the most general sense, various assumptions and methods
have been used to solve the multidimensional mechanism design models in the existing literature. In a nonlinear pricing
setup, Armstrong (1996) adopts an integration along rays procedure solving the relaxed problem of the principal, but the
envelop condition could be satisfied by the pointwise maximizer only by accident, let alone the convexity condition. In
order for the contract to be implementable, he makes separable assumptions on the indirect utility and density functions.
Rochet and Choné (1998) develop a general technique for dealing with the multidimensional screening problem, but it is
workable only in the case where the dimensionality of type space is the same as the number of the principal’s available
instruments. The generalized Hamiltonian approach developed by Basov (2001) circumvents this difficulty but it obtains the
optimal contract from a system of partial differential equations, which usually has no analytic solution. Therefore, one often
has to rely upon the numerical techniques except for some very special function form.

In the following, we will treat the choosing of optimal performance wage as a multidimensional mechanism design
problem. In order to get an explicit analytic solution, we impose restrictions on the set of implementable allocations by
assuming that the performance evaluation system is such that B B ′ = kΣ or the base wage is based on the Σ-norm of
performance wage vector.

5.1. The performance measurement system with constant correlation

If correlation between any pair of performance measures is constant, i.e., b′
ib j/σi j ≡ k, ∀i, j, then B B ′ = kΣ . This means

the deterministic part of a performance measurement system covaries with its stochastic counterpart. With this assumption,
the agent’s surplus could be represented as a function of a scalar θ1 ≡ kδ − r,

U (δ, r) = max
w

[
w0(w)+ 1

2
θ1 w ′Σw

]
≡ u(θ1). (26)

Then, as in the previous sections, we get the convexity and envelop conditions (u(θ1) is convex in θ1 and u′(θ1) = 1
2 w ′Σw),

which in turn implies the implementability of contract. We also define θ2 ≡ kδ + r. Then the original type vector (δ, r) is
transformed linearly to (θ1, θ2). Notice that θ1 is the only variable affecting the agent’s choice, and the principal may elicit
it using an incentive compatible contract when it is unknown. θ2 has no informative value to the agent since it is irrelevant
to the agent’s decision-making. As such, the principal lacks instrument to elicit it. That means the principal cannot trust the
information about θ2 reported by the agent even if he is telling the truth. Therefore, the wage contract may depend on θ1
whether it is observable or not. However, it may depend on θ2 only when it is observable.

Let Θ denote the support of the transformed types (θ1, θ2), which is defined by θ1 � θ1 � θ1, θ2(θ1) � θ2 � θ2(θ1)

(or θ2 � θ2 � θ2, θ1(θ2) � θ1 � θ1(θ2)). Let ϕ(θ1, θ2) = f ( θ1+θ2
2k , θ2−θ1

2 )|J(θ1, θ2)| = f ( θ1+θ2
2k , θ2−θ1

2 ) 1
2k denote the joint

density of (θ1, θ2), where J(θ1, θ2) ≡ det( ∂(δ,r)
∂(θ1,θ2)

) = 1
2k is the Jacobian determinant of the coordinate transformation.

ϕ1(θ1) ≡ ∫ θ2(θ1)

θ2(θ1)
ϕ(θ1, θ2)dθ2 and Φ1(θ1) ≡ ∫ θ1

θ1
ϕ1(θ1)dθ1 represent the marginal PDF and marginal CDF of θ1. ϕi| j(θi |θ j) and

Φi| j(θi |θ j) = ∫ θi
θ i(θ j)

ϕi| j(θi |θ j)dθi are respectively the conditional PDF and CDF of θi given θ j . Denote by H1(θ1) ≡ 1−Φ1(θ1)
ϕ1(θ1)

the inverse hazard rate of θ1, and H1|2(θ1|θ2) = 1−Φ1|2(θ1|θ2)

ϕ1|2(θ1|θ1)
the conditional inverse hazard rate of θ1 given θ2. Our main

result in this subsection makes use of the following assumptions:

Assumption 1. The inverse hazard rate H1(θ1) is nonincreasing in θ1.

Assumption 2. The conditional inverse hazard rate H1|2(θ1|θ2) is nonincreasing in θ1 for all θ2 ∈ Θ2.

Assumption 3. k � σr
σδ

, σδ and σr are respectively standard deviations of r and δ.

Assumption 4. The PDF of θ1 at left endpoint θ1 is such that θ1ϕ1(θ1) � 1.
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Assumptions 1 and 2 are the familiar monotone inverse hazard rate conditions on the marginal and conditional dis-
tributions. Condition 3 implies Cov(θ1, θ2) � 0. The optimality of wage requires it to be nonincreasing in θ2, while the
implementability constraint requires wage to be increasing in θ1 (note that u(θ1) is convex in θ1 and u′(θ1) = 1

2 w ′Σw), so
we need to assume these two parameters to be negatively correlated. This condition holds if k is small or σr is sufficiently
large relative to σδ . Assumption 4 ensures that the virtual valuation θ1 − H(θ1) is nonnegative everywhere, this assumption
is commonly made in the mechanism design and auction literature.

It turns out that there are four cases (labeled as I to IV) of interest depending on the observabilities of θ1 and θ2:

θ2 observable θ2 unobservable
θ1 observable case I case II
θ1 unobservable case III case IV

Notice that in cases I and III, the wage contract could be written as wi
0(θ1, θ2), wi(θ1, θ2), i ∈ {I, III}. While in cases II and IV,

they can be written as wi
0(θ1), wi(θ1), i ∈ {II, IV}.

The following theorem shows that unobservability of θ1 may lead to low-powered incentives, but it is not necessarily
the case with unobservable θ2:

Theorem 3. Suppose that a performance system P = (B,Σ) has constant correlation, i.e., b′
ib j/σi j ≡ k, ∀i, j, and that Assumptions 1

to 4 are satisfied. Then we have

1. the strength of incentives in the cases with unobservable θ1 is lower than that with observable θ1: |wIII
i (θ1, θ2)| < |w I

i (θ1, θ2)|,
|wIV

i (θ1)| < |wII
i (θ1)| for all i ∈ {1, . . . ,m}, θ2 ∈ Θ2 and θ1 ∈ [θ1, θ1); all wage vectors point in the same direction; the compari-

son between cases with observable and unobservable θ2 is ambiguous;
2. the principal’s expected surpluses in cases with observable and unobservable θ1 are ordered as:

Π III � Π I ,Π IV � Π II. (27)

The efficiency parameter δ and the risk aversion r affect the agent’s payoff in different ways. δ affects his effort provision
(e∗ = δB ′w) and thus term (w0 + w ′Be∗ − 1

2δ e∗′
e∗) in his profit, while r affects his risk premium ( r

2 w ′Σw). Misreport-
ing these two parameters helps the agent get information rents with two degrees of freedom. However, if the correlation
between any pair of performance measures is constant, all the information relevant to the agent’s decision-making is con-
tained in a scalar θ1, and the agent is in fact deprived of one of his degrees of freedom. Therefore, the multidimensional
mechanism design problem simplifies to the traditional one-dimensional problem. The low-powered incentives are resulted
from traditional rent extraction-efficiency trade-off. Note that θ2 is an irrelevant parameter to the agent’s decision-making,
it affects the principal’s payoff by adding uncertainty rather than altering information rents. So the wage contract in cases I
and II (cases III and IV as well) cannot be unambiguously ordered.

It is worth noting that if there is a single performance measure (m = 1), the condition B B ′ = kΣ is clearly satisfied, and
the mechanism design problem of principal is in fact unidimensional. Therefore, the multidimensional mechanism design
problem may arise only in the joint presence of multidimensional types and multiple performance measures.

5.2. The Σ-norm based base wage: w0 = w0(w ′Σw)

In this subsection, we assume that the base wage lies only on the Σ-norm of performance wage vector w , that is,
w0 = w0(w ′Σw), where w0(·) is a function of a scalar variable. That is to say, the employer determines the base wage
solely on the Σ-norm of wage vector w rather than on its direction. There are two reasons for us to make this assumption.

First, this wage structure is very common in reality. It ties the employee’s base wage (w0) with the risk imposed on
him (measured by w ′Σw). In managerial practice, employers usually set positions with varying degrees of importance and
risk inside firms. The position with high pressure and high risk is typically accompanied by high compensation. Agency
theory asserts that business risk will be positively related to base pay in managerial compensation contracts. The agent’s
risk-averse behavior induced by higher strength of incentive compensation might be mitigated by increasing his wealth
through higher base pay levels. This idea, which may goes back to Bernoulli (1954), asserts that people’s reactions to risk
are inversely related to their level of wealth, greater wealth makes losses relatively less painful. Greater base pay increases
the agent’s wealth thereby offsetting some of the potential losses associated with both business risk and high-powered
incentive compensation. Indeed, classic agency theory proposes that insurance will come in the form of higher base pay
(Baiman, 1990). This premise is echoed in internal labor markets theory which asserts that people will require higher base
pay levels in exchange for reduced stability in their employment and future income stream (Osterman, 1992).

Secondly, this assumption is made for tractability. If both δ and r are unknown to the principal, he has to process
multidimensional information reported by the agent and prevent the agent from misreporting either one of them. This is a
very difficult task (this point will be shown later). To reduce the information required by a mechanism and thus make the
model tractable, one may impose this restriction on the structure of wage contract.
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The contract menu (U , w) is called Σ-implementable if it belongs to

MΣ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(U , w) ∈ R+ × Rm | ∃w0 : R+ → R+, such that

U (δ, r) = max
w̃∈Rm

[
w0

(
w̃ ′Σ w̃

)+ 1

2
w̃ ′(δB B ′ − rΣ

)
w̃

]
and

w(δ, r) = arg max
w̃∈Rm

[
w0

(
w̃ ′Σ w̃

)+ 1

2
w̃ ′(δB B ′ − rΣ

)
w̃

]
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (28)

Let

M=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(U , w) ∈ R+ × Rm | ∃w0 : Rm → R+, such that

U (δ, r) = max
w̃∈Rm

[
w0(w̃)+ 1

2
w̃ ′(δB B ′ − rΣ

)
w̃

]
and

w(δ, r) = arg max
w̃∈Rm

[
w0(w̃)+ 1

2
w̃ ′(δB B ′ − rΣ

)
w̃

]
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(29)

be the set of implementable allocations.15 It is obvious that a Σ-implementable mechanism is implementable but it is not
true vice versa: MΣ �M. When (U , w) ∈MΣ , the agent’s information rent accrued is

U (δ, r) = max
w∈Rm

{
w0

(
w ′Σw

)+ 1

2
w ′[δB B ′ − rΣ

]
w

}

= max
x

max
w: w ′Σw=x2

{
w0

(
w ′Σw

)+ 1

2
w ′[δB B ′ − rΣ

]
w

}

= max
x

[
w0

(
x2)+ 1

2

(
δ max

w ′Σw=x2

w ′B B ′w
w ′Σw

− r

)
x2
]

= max
x

[
w0

(
x2)+ 1

2
ϑ1x2

]
≡ u(ϑ1), (30)

where ϑ1 = δλ1 − r,

λ1 = max
w ′Σw=x2

w ′B B ′w
w ′Σw

= λ1
(
Σ−1/2 B B ′Σ−1/2) = λ1

(
B B ′Σ−1)

is the first (largest) eigenvalue of matrix B B ′Σ−1. The corresponding set of optimal wages for the agent is

W(x) = {
w ∈ Rm

∣∣Σ1/2 w ∈N (
Σ−1/2 B B ′Σ−1/2 − λ1 I

)
, w ′Σw = x2},

where N (Σ−1/2 B B ′Σ−1/2 − λ1 I) denotes the eigenspace of matrix Σ−1/2 B B ′Σ−1/2 corresponding to λ1. (See Lemma A.5
in Appendix A for detailed discussion.) As discussed in previous sections, (30) implies the envelop condition u′(ϑ1) = 1

2 x2

and the convexity of u(ϑ1) in ϑ1, which is conversely sufficient for the implementability of contract. We further define
ϑ2 = δλ1 + r, then the principal’s optimization problem is reformulated as:

max
x

∫∫
Dϑ

[
ϑ1 + ϑ2

2λ1
max

w∈W(x)
w ′Bβ − 1

2
ϑ2x2 − u(ϑ1)

]
ψ(ϑ1,ϑ2)dϑ1 dϑ2

s.t.: u′(ϑ1) = 1

2
x2, u(·) is a convex function, u(ϑ1) � 0, (31)

here ψ(ϑ1, ϑ2) ≡ f ( ϑ1+ϑ2
2λ1

, ϑ2−ϑ1
2 )J(ϑ1, ϑ2) = f ( ϑ1+ϑ2

2λ1
, ϑ2−ϑ1

2 ) 1
2λ1

is the joint density function supported on a convex re-

gion Dϑ . Dϑ is defined by ϑ1 � ϑ1 � ϑ1 and ϑ2(ϑ1) � ϑ2 � ϑ2(ϑ1).
For expositional convenience we define the following notations

μ(ϑ1) ≡
ϑ2(ϑ1)∫

ϑ2(ϑ1)

(ϑ1 + ϑ2)ψ(ϑ1,ϑ2)dϑ2,

�(ϑ1) ≡
ϑ2(ϑ1)∫

ϑ2(ϑ1)

ϑ2ψ(ϑ1,ϑ2)dϑ2,

15 Here we abuse notations and still use w0(·) to represent the base wage function.
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ψ1(ϑ1) ≡
ϑ2(ϑ1)∫

ϑ2(ϑ1)

ψ(ϑ1,ϑ2)dϑ2,

Ψ1(ϑ1) ≡
ϑ1∫

ϑ1

ψ1(s)ds,

H(ϑ1) ≡ 1 −Ψ1(ϑ1)

ψ1(ϑ1)
.

Analogous to the previous subsection, we need the following assumptions:

Assumption 5. H(ϑ1) is decreasing in ϑ1.

Assumption 6. λ1 � σr
σδ

, σr and σδ are respectively standard deviations of r and δ.

Assumption 7. The PDF at left endpoint ϑ1 is such that: ϑ1ψ1(ϑ1) � 1.

Assumption 5 is the traditional monotone hazard rate property of parameter ϑ1; Assumption 6 hold if σr is sufficiently
large relative to σδ ; Assumption 7 ensures that the virtual valuation ϑ1 −H1(ϑ1) is nonnegative over the whole interval
[ϑ1, ϑ1]. Under these assumptions, we then get the main result in this subsection:

Theorem 4. Suppose that Assumptions 5 to 7 are satisfied, then the Σ-implementable contract entails

w∗(ϑ1) = 1

2λ1

ϑ1 + Eϑ2(ϑ2|ϑ1)

H(ϑ1)+ Eϑ2(ϑ2|ϑ1)
Σ−1/2 Q k Q ′

kΣ
−1/2 Bβ, (32)

u∗(ϑ1) = β ′B ′Σ−1/2 Q k Q ′
kΣ

−1/2 Bβ

8λ2
1

ϑ1∫
ϑ1

(
ϑ1 + Eϑ2(ϑ2|ϑ1)

H(ϑ1)+ Eϑ2(ϑ2|ϑ1)

)2

dϑ1. (33)

The surplus of the principal is:

Π∗ = 1

8λ2
1

Eϑ1

[
(ϑ1 + Eϑ2(ϑ2|ϑ1))

2

H(ϑ1)+ Eϑ2(ϑ2|ϑ1)

]
β ′B ′Σ−1/2 Q k Q ′

kΣ
−1/2 Bβ. (34)

Q k Q ′
k is the spectral projector of matrix Σ−1/2 B B ′Σ−1/2 corresponding to the first eigenvalue λ1 .

Proof. See Appendix A. �
In the original model, the contract {w0(δ, r), w(δ, r)} is implementable if for all (δ, r, δ̂, r̂) ∈D2, the following incentive

compatibility condition is satisfied:

w0(δ, r)+ 1

2
w(δ, r)′

(
δB B ′ − rΣ

)
w(δ, r) � w0(δ̂, r̂)+ 1

2
w(δ̂, r̂)′

(
δB B ′ − rΣ

)
w(δ̂, r̂). (35)

Let

U (δ, r) ≡ w0(δ, r)+ 1

2
w(δ, r)′

(
δB B ′ − rΣ

)
w(δ, r)

and

U (δ̂, r̂; δ, r) ≡ w0(δ̂, r̂)+ 1

2
w(δ̂, r̂)′

(
δB B ′ − rΣ

)
w(δ̂, r̂).

Then {U (δ, r), w(δ, r)} is implementable if

U (δ, r) = max
(δ̂,r̂)∈D

{
w0(δ̂, r̂)+ 1

2
w(δ̂, r̂)′

[
δB B ′ − rΣ

]
w(δ̂, r̂)

}
. (36)

Applying “taxation principle”, it could be equivalently represented as:

U (δ, r) = max
w∈Rm

{
w0(w)+ 1

2
w ′[δB B ′ − rΣ

]
w

}
.
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It implies that (i) the envelop conditions ∂U
∂δ

= 1
2 w ′B B ′w, ∂U

∂r = − 1
2 w ′Σ ′w hold; (ii) U (δ, r) is convex in (δ, r). Conversely,

given the envelop and convexity conditions, we have the following incentive compatibility condition:

U (δ, r) � U (δ̂, r̂)+ (δ − δ̂)
∂U

∂δ
+ (r − r̂)

∂U

∂r

= U (δ̂, r̂)+ 1

2
(δ − δ̂)w(δ̂, r̂)′B B ′w(δ̂, r̂)− 1

2

(
r − r′)w(δ̂, r̂)′Σw(δ̂, r̂)

= U (δ̂, r̂, δ, r).

The first inequality follows from the convexity condition, and the second is obtained by using the envelop condition.
U (δ, r) and w(δ, r) are therefore implementable. Thus the principal’s optimization problem is

max
U , w

∫∫
D

[
δw ′Bβ − 1

2
w ′(δB B ′ + rΣ

)
w − U (δ, r)

]
dδ dr

s.t.:
∂U

∂δ
= 1

2
w ′B B ′w,

∂U

∂r
= −1

2
w ′Σ ′w, U (δ, r) � 0, U (δ, r) is convex.

Ignoring momentarily the convexity condition, the principal’s relaxed problem could be regarded as an optimal control
problem with multiple controls and double-fold integrals. The generalized Hamiltonian approach offered by Basov (2001)
is applicable to this problem. His method however ensures the existence of solution to the relaxed problem rather than
offers a feasible way for getting it. One often has to rely upon the numerical techniques to get solution from a system of
partial differential equations. A more serious drawback of his approach is that the solution to the relaxed problem usually
cannot solve the complete problem because the convexity condition could only be satisfied by accident. In fact the envelop
and convexity conditions require that the vector field ( 1

2 w ′B B ′w,− 1
2 w ′Σ ′w) has a convex potential function. This puts

severe restrictions on the set of implementable wages and makes the multidimensional problem much more complex than
its unidimensional counterpart because the latter requires only that 1

2 w ′B B ′w or − 1
2 w ′Σw has a convex antiderivative

function.
In order to get an explicit solution to the complete problem, we therefore sacrifice some of the principal’s degrees

of freedom by restricting our attention in the set of Σ-implementable allocations MΣ . We decompose the information
contained in vector w into two aspects: its Σ-norm (

√
w ′Σw = x) and its direction. Meanwhile, the type vector (δ, r)

is transformed linearly to (ϑ1, ϑ2). Notice that, the Σ-norm of wage vector depends only on ϑ1, while its direction is at
free disposal of the agent and depends on neither ϑ1 nor ϑ2. Our Σ-norm-based assumption on the base wage w0 limits
greatly the power of the principal since he now has only the discretion to choose Σ-norm of wage vector contingent on
the agent’s report ϑ̂1. The agent, on the contrary, is vested the right of choosing the direction of wage vector. Therefore,
this procedure is in fact a process of delegating part of the principal’s authority to the agent. Under the assumptions we
made, the multidimensional mechanism problem is solved with the same amount of computational work as in the one-
dimensional screening problem after performing integration with respect to the irrelevant variable ϑ2.

In a special case of orthogonal performance measurement system, we have the following corollary:

Corollary 1. For an orthogonal performance measurement system, there is no incentive in the performance measures with non-largest
signal–noise ratio.

Proof. See Appendix A. �
As mentioned above, the wage vector is determined by two aspects: its overall intensity (Σ-norm) and relative alloca-

tion among performance measures (direction). In our dimensionality-reducing procedure, the authority of choosing relative
allocation is delegated to the agent. Then for an orthogonal system in which performance measures are totally independent
to each other, the agent inclines to allocate the overall intensity to the measures with larger sensitivity (measured by ‖bi‖2)
and smaller randomness (measured by σ 2

i ). Therefore he will put the overall intensity of incentives on the measures with
the largest signal–noise ratio ‖bi‖2/σ 2

i , and the measures with non-largest signal–noise ratios will be assigned zero incen-
tive. The ideas that underlie this analysis have many applications. For example, in partially decentralized political system, if
the central government gives grants to local governments to award themselves, but continues to control their total budgets,
this will certainly weaken incentives of local governments to allocate budgetary resources on relatively nonsensitive and
high-risk measures. It is commonly observed that in many developing countries under decentralization, local governments
are usually enthusiastic about improving their economic performance, but they lack motivations to do the works which
are either highly risky (say purely theoretical research) or cannot bring them notable achievements in the short run (say
environmental protection). Our prediction fits well with these phenomena.

Holmstrom and Milgrom (1991) show that missing incentive clauses are commonly observed in practice, even when
good, objective output measures are available and agents are highly responsive to incentive pay. In their model, there
exist multiple performance measures with varying degrees of accuracy (the tasks and performance measures are one-to-
one corresponding to each other, that is, B = I), and the tasks are substitute to each other. In this setup, employees will
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Fig. 1. Orthogonal system with
b′

1b1

σ 2
1

>
b′

2b2

σ 2
1

.

concentrate their attention (effort) on improving the performance measure tied to high compensation, to the exclusion
of hard-to-measure or even non-observable but important tasks. Therefore an optimal incentive contract can be to pay a
fixed wage independent of measured performance. Corollary 1 here offers a different explanation to the missing incentive
phenomenon. Notice that in this corollary, we assume that the performance measures are orthogonal to each other, which
is quite different to the substitute condition required by Holmstrom and Milgrom’s paper.

Our result is illustrated in Figs. 1 and 2 for the case with m = 2; Figs. 3 and 4 for the case with m = 3. When Σ is
diagonal and the Σ-norm is fixed, w lies on an ellipse (resp. ellipsoid if m = 3) whose axes coincide with the Cartesian
axes. The agent will choose a vector w to maximize w ′B B ′w . If B B ′ is also diagonal, the optimal w must lie on the Cartesian
axes or Cartesian planes.

The following corollary provides a comparison of surpluses obtained using two performance measurement systems with
the same largest signal–noise ratio:

Corollary 2. If two orthogonal performance measurement systems P1 ≡ (B1,Σ11) and P2 ≡ (B2,Σ22) are such that matrices
Σ

−1/2
11 B1 B ′

1Σ
−1/2
11 and Σ

−1/2
22 B2 B ′

2Σ
−1/2
22 have the same first eigenvalues λ1 and the multiplicities of λ1 in these two matrices are,

respectively, k1 and k2 , then Π∗(P1) � Π∗(P2) if and only if the sum of squares of congruences of the first k1 performance measures
in P1 is larger than that of the first k2 performance measures in P2 , i.e.,

∑k1
i=1 Υ

2
i1 �

∑k2
i=1 Υ

2
i2 .

Proof. See Appendix A. �
We next discuss the value of additional performance measures to an existing set. Let P1 = (B1,Σ11) represent a perfor-

mance measurement system that reports m1 measures and let

P ≡ (B,Σ) =
[(

B1
B2

)
,

(
Σ11 Σ12
Σ21 Σ22

)]
represent a system that reports additional m2 measures P2 = (B2,Σ22). P1 and P2 are supposed to be orthogonal to
each other. That is to say, Σ12 = 0, Σ21 = 0, B ′

1 B2 = 0, B ′
2 B1 = 0. Denote the set of eigenvalues of Σ

−1/2
11 B1 B ′

1Σ
−1/2
11

and Σ
−1/2
22 B2 B ′

2Σ
−1/2
22 , respectively, by λi , i = 1, . . . ,m1, and μ j , j = 1, . . . ,m2. The first eigenvalues λ1 = max1�i�m1 λi

and μ1 = max1� j�m2 μ j have multiplicities k1 and k2, respectively. The following corollary provides a specification of the
incremental expected value of the additional performance measures provided by P :

Corollary 3. If λ1 > μ1 , then Π∗(P) = Π∗(P1); if λ1 = μ1 , then Π∗(P) = Π∗(P1) + Π∗(P2) > Π∗(P1); if λ1 < μ1 , then
Π∗(P) = Π∗(P2).

Proof. See Appendix A. �
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Fig. 2. Orthogonal system with
b′

1b1

σ 2
1

<
b′

2b2

σ 2
1

.

Fig. 3. Orthogonal system with
b′

1b1

σ 2
1

= b′
2b2

σ 2
1

>
b′

3b3

σ 2
3

.

In the environment of complete information (with observable costs and risk aversion), Feltham and Xie (1994) show that
the incremental value of additional performance measures is always nonnegative because the principal can always assign
zero incentive to the additional measures. In this case, the principal’s surplus obtained using the original performance
system P1 = (B1,Σ11) is

Π p(P1) = δ

2
β ′B ′

1

(
B1 B ′

1 + r

δ
Σ11

)−1

B1β;

the surplus obtained using the augmented performance measurement system

P = (P1,P2) =
[(

B1
B2

)
,

(
Σ11 Σ12
Σ21 Σ22

)]
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Fig. 4. Orthogonal system with
b′

1b1

σ 2
1

= b′
2b2

σ 2
1

<
b′

3b3

σ 2
3

.

is

Π p(P) = δ

2
β ′B ′

(
B B ′ + r

δ
Σ

)−1

Bβ.

The incremental value of additional performance measures is thus:

�Π = Π p(P)−Π p(P1) = δ

2
β ′(D − D1)β,

where

D1 = B ′
1

(
B1 B ′

1 + r

δ
Σ

)−1

B1,

D = B ′
(

B B ′ + r

δ
Σ

)−1

B

= [
B ′

1, B ′
2

][ B1 B ′
1 + r

δ
Σ11 B1 B ′

2 + r
δ
Σ12

B2 B ′
1 + r

δ
Σ21 B2 B ′

2 + r
δ
Σ22

]−1 [
B1
B2

]

= [
B ′

1, B ′
2

][ H11 H12
H21 H22

]−1 [
B1
B2

]

= [
B ′

1, B ′
2

][ H−1
11 + H−1

11 H12 H−1
22·1 H21 H−1

11 −H−1
11 H12 H−1

22·1
−H−1

22·1 H21 H−1
11 H−1

22·1

][
B1
B2

]

= B ′
1 H−1

11 B1 + B ′
1 H−1

11 H12 H−1
22·1 H21 H11 B1 − B ′

1 H11 H12 H−1
22·1 B2 − B ′

2 H−1
22·1 H21 H−1

11 B1 + B ′
2 H−1

22·1 B2,

Hij = Bi B ′
j + r

δ
Σi j,

H22·1 = H22 − H21 H−1
11 H12.

It follows that D − D1 = B ′
1 H−1

11 H12 H−1
22·1 H21 H11 B1 − B ′

1 H11 H12 H−1
22·1 B2 − B ′

2 H−1
22·1 H21 H−1

11 B1 + B ′
2 H−1

22·1 B2 = [B ′
1 H−1

11 H12 −
B ′

2]H−1
22·1[H21 H−1

11 B1 − B2] is a semi-positive definite matrix. It in turn implies that �Π = δ
2β

′(D − D1)β � 0. As a special

case, if P1 is orthogonal to P2, then D − D1 = B ′
2 H−1

22 B2, therefore, �Π = δ
2β

′B2(B2 B ′
2 + r

δ
Σ22)

−1 B2β = Π p(P2) � 0.
The incremental value then is zero if and only if the measures provided by the original performance measurement system

are a sufficient statistic for the measures provided by the augmented system, with respect to the agent’s effort. (If there
exists a constant matrix Ξ , such that B2 = Ξ B1, Σ21 = ΞΣ11, see Feltham and Xie, 1994 for detailed discussion.) According
to this result, adding a performance measurement system which is orthogonal to the original one will increase the surplus
for sure. Our result, on the contrary, states that the incremental value is zero if λ1 >μ1, positive if λ1 =μ1, and ambiguous
if λ1 < μ1. These new results come from the assumption that w0 is based on the Σ-norm of w . Under this assumption,
the performance measures associated with non-largest eigenvalues will be given zero weights, and the incremental value is
therefore determined by the first eigenvalues of the original and new performance measurement systems.
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6. Conclusion

In this paper, we explain the phenomenon of low-powered incentives from a new perspective. We consider the case
where the agent possesses private information about his own risk aversion and the cost of efforts. Besides the rents moti-
vating the agent’s efforts, the principal has to give up some additional information rents to the agent in order to elicit his
truthtelling. She has to consider two tradeoffs when choosing the optimal incentive contract. One is the tradeoff between
insurance and incentives; the other is the tradeoff between efficiency and rent extraction. The former is the fundamental
issue in moral hazard problem; while the latter lies in the core of adverse selection problem. We show that adverse se-
lection usually leads to a flatter incentive contract comparatively to pure moral hazard situation. We further discuss this
issue in the framework of multidimensionally hidden information. We first assume that the deterministic and stochastic
components of a performance measurement system is proportional to each other. Under this assumption, the agent’s pri-
vate information relevant to his decision-making is contained in a single scalar variable. The power of incentive is lower
than that in the case where this scalar variable is observable. Furthermore, we assume the base wage depends only on the
Σ-norm of performance wage vector, by which the principal reduces the complexity of computation by delegating part of
the principal’s decision-making authority to the agent. In this setup, we find that most performance measures are assigned
to zero incentives. This provides a new explanation for the missing of incentive clauses in contracts.
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Appendix A. Proofs and lemmas

A.1. Proof of Proposition 1

Using the envelop condition U ′(r) = − 1
2 w ′Σw , the participation constraint U (r) � 0 simplifies to U (r̄) � 0. Incentive

compatibility implies that only the participation constraint of the most risk-averse type can be binding, i.e., U (r̄) = 0. We
therefore get

U (r) =
r̄∫

r

1

2
w(r̃)′Σw(r̃)dr. (A.1)

The principal’s objective function becomes

Π =
r∫

r

{
β ′C−1 B ′w(r)− 1

2
w(r)′

[
BC−1 B ′ + rΣ

]
w(r)−

r̄∫
r

1

2
w(r̃)′Σw(r̃)dr

}
f (r)dr

which, by an integration of parts, gives

r∫
r

{
β ′C−1 B ′w(r)− 1

2
w(r)′

[
BC−1 B ′ +

(
r + F (r)

f (r)

)
Σ

]
w(r)

}
f (r)dr.

Maximizing pointwise the above expression, we get

wh(r) = [
BC−1 B ′ +Φ(r)Σ

]−1
BC−1β

and

wh
0(r) = 1

2

r∫
r

wh(r̃)′Σwh(r̃)dr̃ − 1

2
wh(r)′

[
BC−1 B ′ − rΣ

]
wh(r).

The only work left is to verify the convexity of U (r). Notice that

U ′′(r) = −(
Dr wh)′Σwh = Φ ′(r)wh(r)′Σ

[
BC−1 B ′ +Φ(r)Σ

]−1
Σwh(r).
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The second equality comes from the fact that the derivative of wh with respect to r is16

Dr wh = −[
BC−1 B ′ +Φ(r)Σ

]−1
Φ ′(r)Σ

[
BC−1 B ′ +Φ(r)Σ

]−1
BC−1β

= −Φ ′(r)
[

BC−1 B ′ +Φ(r)Σ
]−1

Σwh.

It is clear that U ′′(r) � 0 because Φ ′(r) � 0 and the matrix Σ[BC−1 B ′ + Φ(r)Σ]−1Σ is positive definite. The proof is
completed.

A.2. Proof of Theorem 1

1. (a) Applying Lemma A.1 (see Appendix A.9. Lemmas below), there exist a nonsingular matrix U such that

U ′BC−1 B ′U = Λ, U ′ΣU = I.

Λ ≡ diag{ω1, . . . ,ωm} is a diagonal matrix composed of the generalized eigenvalues. We therefore have(
w p)′Σw p = β ′C−1 B ′U (Λ+ r I)−2U ′BC−1β,(
wh)′Σwh = β ′C−1 B ′U

[
Λ+Φ(r)I

]−2
U ′BC−1β.

It is obvious that (wh)′Σwh < (w p)′Σw p , ∀r ∈ (r, r̄]. If Σ is diagonal, then there exists at least one i ∈ {1 · · ·m},
such that |wh

i | < |w p
i | for all r ∈ (r, r̄].

(b) Also, we have(
w p)′BC−1 B ′w p = β ′C−1 B ′V

(
rΛ−1 + I

)−2
V ′BC−2β,(

wh)′BC−1 B ′wh = β ′C−1 B ′V
[
Φ(r)Λ−1 + I

]−2
V ′BC−1β,

where V = UΛ−1/2. Consequently, we have (wh)′BC−1 B ′wh < (w p)′BC−1 B ′w p , ∀r ∈ (r, r̄]. If BC−1 B ′ is diagonal,
then there exists at least one i ∈ {1 · · ·m}, such that |wh

i | < |w p
i | for all r ∈ (r, r̄].

(c) If BC−1 B ′Σ = ΣBC−1 B ′ , then BC−1 B ′ and Σ can be simultaneously diagonalized by an orthogonal matrix; that
is, there exists an m × m orthogonal matrix P such that P ′BC−1 B ′ P = D1 and P ′Σ P = D2 for some diagonal
matrices D1 and D2. It follows that(

w p)′w p = β ′C−1 B ′ P (D1 + rD2)
−2 P ′BC−1β,(

wh)′wh = β ′C−1 B ′ P
[

D1 +Φ(r)D2
]−2

P ′BC−1β.

We conclude that the power of incentive will be reduced for at least one performance measure.
(d) It follows from the expression of w p that(

w p)′w p = βC−1 B ′[BC−1 B ′ + rΣ
]−2

BC−1β. (A.2)

Differentiating (A.2) with respect to r yields

∂w ′w
∂r

= −β ′C−1 B ′[BC−1 B ′ + rΣ
]−2[

ΣBC−1 B ′ + BC−1 B ′Σ + 2rΣ2][BC−1 B ′ + rΣ
]−2

BC−1β. (A.3)

Making use of Lemma A.2 and Lemma A.3, we have

λm
(
ΣBC−1 B ′ + BC−1 B ′Σ + 2rΣ2) � λm

(
ΣBC−1 B ′ + BC−1 B ′Σ

)+ 2rλm
(
Σ2) � ρ + 2rλ2

m, (A.4)

where

ρ = max

{
min

i=1,m
λiμm

(
√

kλ + 1)2 − kμ(
√

kλ − 1)2

2
√

kλ
, min

i=1,m
μiλm

(
√

kμ + 1)2 − kλ(
√

kμ − 1)2

2
√

kμ

}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

λmμm
(
√

kλ+1)2−kμ(
√

kλ−1)2

2
√

kλ
if
√

kμ �
√

kλ+1√
kλ−1

, kμ � kλ,

λmμm
(
√

kμ+1)2−kλ(
√

kμ−1)2

2
√

kμ
if
√

kμ �
√

kλ+1√
kλ−1

, kμ < kλ,

λ1μm
(
√

kλ+1)2−kμ(
√

kλ−1)2

2
√

kλ
if
√

kμ >
√

kλ+1√
kλ−1

, kμ � kλ,

λmμ1
(
√

kμ+1)2−kλ(
√

kμ−1)2

2
√

kμ
if
√

kμ >
√

kλ+1√
kλ−1

, kλ < kλ.

16 Let A be a nonsingular, m × m matrix whose elements are functions of the scalar parameter α, then

∂ A−1

∂α
= −A−1 ∂ A

∂α
A−1.
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If ρ + 2rλ2
m > 0 holds, then matrix ΣBC−1 B ′ + BC−1 B ′Σ + 2rΣ2 is positive definite, and consequently ∂w ′ w

∂r < 0.
Therefore ‖w p‖ > ‖wh‖. Then we get the result that there exists at least one i such that |w p

i (r)| < |wh
i (r)|,∀r ∈ (r, r̄].

2. If both Conditions 3.1 and 3.2 are satisfied, then

w p
i (r) = b′

iC
−1β

b′
iC

−1bi + rσ 2
i

,

wh
i (r) = b′

iC
−1β

b′
iC

−1bi +Φ(r)σ 2
i

.

It is obvious that |w p
i (r)| < |wh

i (r)| for all i and all r ∈ (r, r̄].
3. If BC−1 B ′ = λΣ , it is obvious that wh = λ+r

λ+Φ(r) w p . Now we need only to prove this conclusion from the opposite

direction. As shown above, BC−1 B ′ and Σ can be simultaneously diagonalized by nonsingular matrix U , then we have

w p(r) = U (Λ+ r)−1U ′BC−1β,

wh(r) = U
(
Λ+Φ(r)

)−1
U ′BC−1β.

If wh(r) = kw p(r) then
ku′

i BC−1β

r+ωi
= u′

i BC−1β

Φ(r)+ωi
, ∀i, where ui is the i-th column of U . Since BC−1β /∈ ⋃

i∈K V⊥
i , u′

i BC−1β �= 0

for all i. Then we get ωi = λ ≡ kΦ(r)−r
1−k . It follows that BC−1 B ′ = λ(X X ′)−1 = λΣ .

A.3. Proof of Proposition 2

Using integration by parts, we get

δ∫
δ

U (δ)g(δ) =
δ∫

δ

[
1 − G(δ)

g(δ)

]
w ′B B ′w

2
dG(δ).

Substituting it into the expression of the principal’s expected surplus and optimizing it with respect to w , we get the
second-best performance wage wh(δ), and wh

0(δ) is also easily obtained. We now check the convexity of U (δ). The first
order derivative of wh(δ) is

Dδwh(δ) = −
[

H(δ)B B ′ + r

δ
Σ

]−1[
H ′(δ)B B ′ − rΣ

δ2

][
H(δ)B B ′ + rΣ

δ

]−1

Bβ

= −
[

H(δ)B B ′ + rΣ

δ

]−1[
H ′(δ)B B ′ − rΣ

δ2

]
wh(δ)

= −
[

H(δ)B B ′ + rΣ

δ

]−1{
− H(δ)

δ
B B ′ − rΣ

δ2
+

[
H(δ)

δ
+ H ′(δ)

]
B B ′

}
wh(δ)

= 1

δ

{(
B B ′)−1 −

[
H(δ)B B ′ + rΣ

δ

]−1[
H(δ)+ δH ′(δ)

]}
B B ′wh(δ).

It can be verified that the matrix 1
δ
{(B B ′)−1 −[H(δ)B B ′ + rΣ

δ
]−1[H(δ)+ δH ′(δ)]} is positive definite since δ+ 1−G(δ)

g(δ) = δH(δ)

is decreasing. Therefore

U ′′(δ) = Dδwh(δ)B B ′wh(δ)

= 1

δ
wh(δ)′B B ′

{(
B B ′)−1 −

[
H(δ)B B ′ + rΣ

δ

]−1[
H(δ)+ δH ′(δ)

]}
B B ′wh(δ) � 0,

which implies the convexity of U (δ).

A.4. Proof of Theorem 3

• Case IV: The principal’s objective in case IV is rewritten as:
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Π IV =
∫∫
D

[
δw ′Bβ − 1

2
w ′(δB B ′ + rΣ

)
w − U (δ, r)

]
f (δ, r)dδ dr

=
θ1∫

θ1

[
w ′Bβ

2k
g(θ1)− 1

2
w ′Σwh(θ1)− u(θ1)ϕ1(θ)

]
dθ1, (A.5)

where g(θ1) ≡ ∫
(θ1 + θ2)ϕ(θ1, θ2)dθ2, h(θ1) ≡ ∫

θ2ϕ(θ1, θ2)dθ2.17 As a consequence, the principal’s optimal contract
design problem simplifies to a unidimensional mechanism design problem:

max
w(·),u(·)

Π IV , s.t.: u′(θ1) = 1

2
w ′Σw, u(θ1) is a convex function, u(θ1) � 0. (A.6)

Using the integration by parts technique, the principal’s objective can be expressed as:

Π IV =
θ1∫

θ1

{
1

2k
g(θ1)w ′Bβ − w ′Σw

2

[
h(θ1)+ 1 −Φ1(θ1)

]}
dθ1. (A.7)

We ignore momentarily the convexity condition and simply maximize this expression pointwise with respect to w to
get:

wIV(θ1) = 1

2k

g(θ1)

h(θ1)+ 1 −Φ1(θ1)
Σ−1 Bβ = ρ(θ1)Σ

−1 Bβ, (A.8)

where

ρ(θ1) ≡ 1

2k

g(θ1)

h(θ1)+ 1 −Φ1(θ1)
= 1

2k

θ1 + Eθ2(θ2|θ1)

H1(θ1)+ Eθ2(θ2|θ1)
.18

The only task left is to check the convexity of function u(θ1). Since

u′′(θ1) = (Dθ1 w)′Σw = ρ ′(θ1)ρ(θ1)β
′B ′Σ−1 Bβ,

u(·) is convex if and only if ρ(·) is nondecreasing. It holds provided that: (i) H1(θ1) is nonincreasing; (ii) η(θ1) ≡
Eθ2 (θ2|θ1) is nonincreasing; and (iii) θ1 − H1(θ1) � 0 for all θ1 ∈ [θ1, θ1]. Condition (i) is the familiar monotone hazard
rate property, while condition (ii) is equivalent to Cov(θ1, θ2) < 0 (see Lemma A.4). Note that Cov(θ1, θ2) = k2σ 2

δ − σ 2
r ,

it holds if and only if Assumption 3 is satisfied. Under monotone hazard rate condition, condition (iii) is satisfied if
θ1ϕ1(θ1) � 1. Substituting (A.8) into (A.7), we get the principal’s expected profit.

Π IV = 1

8k2
Eθ1

[
(θ1 + Eθ2(θ2|θ1))

2

H1(θ1)+ Eθ2(θ2|θ1)

]
β ′B ′Σ−1 Bβ. (A.9)

• Case II: If θ1 is observable and θ2 is unknown to the principal, i.e., in case II, we only need to consider the participation
constraint u(θ1) � 0 in (A.6), then the wage contract and the corresponding surplus are

wII(θ1) = 1

2k

θ1 + Eθ2(θ2|θ1)

Eθ2(θ2|θ1)
Σ−1 Bβ, (A.10)

Π II = 1

8k2
Eθ1

[
(θ1 + Eθ2(θ2|θ1))

2

Eθ2(θ2|θ1)

]
β ′B ′Σ−1 Bβ. (A.11)

• Case III: In case III, the principal’s objective function is

Π III =
∫∫
Θ

[
θ1 + θ2

2k
w ′Bβ − 1

2
w ′Σwθ2 − u(θ1, θ2)

]
ϕ(θ1, θ2)dθ1 dθ2.

Notice that in this case w depends on both θ1 and θ2, so it cannot be reduced to one-fold integral as in (A.5). The
principal’s optimization problem could thus be rewritten as

max
w

Π III, s.t.:
∂u

∂θ1
= 1

2
w ′Σw, u(θ1, θ2) is convex in θ1, u(θ1, θ2) � 0. (A.12)

17 To simplify notation, we drop the limits of integrals.
18 Eθi (·) is the expectation operator with respect to θi .
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The envelop condition implies u(θ1, θ2) = ∫ θ1
θ1(θ2)

1
2 w ′Σw dθ1 +s(θ2). Substituting it into the principal’s objective function

and using the integration by parts technique yields

Π III =
∫∫
Θ

{
θ1 + θ2

2k
w ′Bβ − 1

2
w ′Σw

[
θ2 + H1|2(θ1|θ2)

]}
ϕ(θ1, θ2)dθ1 dθ2 +

∫∫
Θ

s(θ2)ϕ2(θ2)dθ1 dθ2. (A.13)

It is optimal to choose a function s(θ2) such that
∫∫
Θ

s(θ1)ϕ2(θ2)dθ1 dθ2 = 0. With Assumption 4 ensuring the convexity
condition, we get the optimal wage contract and surplus as follows:

wIII(θ1, θ2) = 1

2k

θ1 + θ2

H1|2(θ1|θ2)+ θ2
Σ−1 Bβ, (A.14)

Π III = 1

8k2
Eθ

[
(θ1 + θ2)

2

H1|2(θ1|θ2)+ θ2

]
β ′B ′Σ−1 Bβ. (A.15)

• Case I: If θ1 and θ2 are both observable, we need only to consider IR constraint in (A.12), the wage contract and surplus
are therefore

w I (θ1, θ2) = 1

2k

θ1 + θ2

θ2
Σ−1 Bβ, (A.16)

Π I = 1

8k2
Eθ

[
(θ1 + θ2)

2

θ2

]
β ′B ′Σ−1 Bβ. (A.17)

It is obvious that |wIV
i | � |wII

i |, |wIII
i | � |w I

i |, ∀i and Π III � Π I , Π IV � Π II , but the comparison between cases I and II
(cases III and IV as well) is ambiguous.

A.5. Proof of Theorem 4

Letting y = Σ1/2 w , the embedded program maxw∈W(x) w ′Bβ can be expressed as

max
y

y′Σ−1/2 Bβ, s.t.: y′ y = x2, y ∈N (
Σ−1/2 B B ′Σ−1/2 − λ1 I

)
.

Applying Lemma A.6, we get the solution and the corresponding maximized value of this program

y∗ = x
Q k Q ′

kΣ
−1/2 Bβ√

β ′B ′Σ−1/2 Q k Q ′
kΣ

−1/2 Bβ
, Π∗ = x

√
β ′B ′Σ−1/2 Q k Q ′

kΣ
−1/2 Bβ.

Following from the spectral representation theorem in linear algebra, Q k Q ′
k is unique although Q k is usually not. (See

Lemma A.7 for detailed discussion.)
The maxima to the original program maxw∈W(x) w ′Bβ is therefore

w∗ = x
Σ−1/2 Q k Q ′

kΣ
−1/2 Bβ√

β ′B ′Σ−1/2 Q k Q ′
kΣ

−1/2 Bβ
. (A.18)

Substituting this expression into (31), we can rewrite the optimization problem of the principal as

max
u,x

∫∫
Dϑ

[
ϑ1 + ϑ2

2λ1

√
β ′B ′Σ−1/2 Q k Q ′

kΣ
−1/2 Bβx − 1

2
ϑ2x2 − u(ϑ1)

]
ψ(ϑ1,ϑ2)dϑ1 dϑ2

s.t.: u′(ϑ1) = 1

2
x2, u(ϑ1) is a convex function, u(ϑ1) � 0. (A.19)

Integrating with respect to ϑ2, the above optimization can be simplified to a standard one-dimensional screening problem:

max
u,x

ϑ1∫
ϑ1

[
x
μ(ϑ1)

2λ1

√
β ′B ′Σ−1/2 Q k Q ′

kΣ
−1/2 Bβ − x2

2
�(ϑ1)− u(ϑ1)ψ1(ϑ1)

]
dϑ1

s.t.: u′(ϑ1) = x2

2
, u(ϑ1) is a convex function, u(ϑ1) � 0. (A.20)

Ignoring for a while the convexity condition and applying the standard technique, we obtain the solution to the relaxed
problem:
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x∗(ϑ1) =
√
β ′B ′Σ−1/2 Q k Q ′

kΣ
−1/2 Bβ

2λ1

μ(ϑ1)

�(ϑ1)+ [1 −Ψ1(ϑ1)]

=
√
β ′B ′Σ−1/2 Q k Q ′

kΣ
−1/2 Bβ

2λ1

ϑ1 + Eϑ2(ϑ2|ϑ1)

H(ϑ1)+ Eϑ2(ϑ2|ϑ1)
. (A.21)

It can be verified that under Assumptions 5 to 7, x(ϑ1) is increasing in ϑ1. In turn, this implies the convexity of u(ϑ1).
Substituting (A.21) into (A.18) we get the optimal wage

w∗(ϑ1) = 1

2λ1

ϑ1 + Eϑ2(ϑ2|ϑ1)

H(ϑ1)+ Eϑ2(ϑ2|ϑ1)
Σ−1/2 Q k Q ′

kΣ
−1/2 Bβ. (A.22)

The information rent accrued to the agent and surplus of the principal are also easily obtained:

u∗(ϑ1) = β ′B ′Σ−1/2 Q k Q ′
kΣ

−1/2 Bβ

8λ2
1

ϑ1∫
ϑ1

(
ϑ1 + Eϑ2(ϑ2|ϑ1)

H(ϑ1)+ Eϑ2(ϑ2|ϑ1)

)2

dϑ1, (A.23)

Π∗ = 1

8λ2
1

Eϑ1

[
(ϑ1 + Eϑ2(ϑ2|ϑ1))

2

H(ϑ1)+ Eϑ2(ϑ2|ϑ1)

]
β ′B ′Σ−1/2 Q k Q ′

kΣ
−1/2 Bβ. (A.24)

A.6. Proof of Corollary 1

Let P = (B,Σ) be an orthogonal performance measurement system with Σ = diag{σ 2
1 , σ

2
2 , . . . , σ

2
m}, B B ′ = diag{‖b1‖2, . . . ,

‖bm‖2}, then Σ− 1
2 B B ′Σ− 1

2 = diag{λ1, . . . , λm}, λi = ‖bi‖2/σ 2
i , i = 1, . . . ,m, are eigenvalues in descending order. The largest

element λ1 has multiplicity k, that is, λ1 = λ2 = · · · = λk > λk+1 � · · · � λm . Let p = (p1, . . . , pm)
′ ∈ Rm be the normalized

eigenvector associated with λ1. Then

p′Σ−1/2 B B ′Σ−1/2p = λ1.

It follows that

λ1

k∑
j=1

p2
j +

p∑
j=k+1

λ j p2
j = λ1

p∑
j=1

p2
j .

Then we obtain

p j = 0, ∀ j = k + 1, . . . ,m.

Therefore we write

Q k =
[

Q̃ k
0

]
,

where Q̃ k is a k × k orthogonal matrix. Substituting it into (A.22), we get

w∗(ϑ1) = 1

2λ1

ϑ1 + Eϑ2(ϑ2|ϑ1)

H(ϑ1)+ Eϑ2(ϑ2|ϑ1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b′
1β/σ

2
1

...

b′
kβ/σ

2
k

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.25)

The optimal wages paid for the performance measures associated with the non-largest eigenvalues are zero: w∗
i (ϑ1) = 0,

for all i = k + 1, . . . ,m.

A.7. Proof of Corollary 2

Suppose that P1 and P2 are orthogonal systems with the same first eigenvalues λ1 = λ1(Σ
−1/2
11 B1 B ′

1Σ
−1/2
11 ) =

λ1(Σ
−1/2
22 B2 B ′

2Σ
−1/2
22 ), and the multiplicities of λ1 are respectively k1 and k2. Then the surplus obtained using system P1 is
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Π∗(P1) = κ(λ1)β
′B ′

1Σ
−1/2
11 Q 1 Q ′

1Σ
−1/2
11 B1β

= κ(λ1)β
′B ′

1

[
Λk1 0

0 Λm1−k1

][
Ik1 0
0 0

][
Λk1 0

0 Λm1−k1

]
B1β

= κ(λ1)β
′

k1∑
i=1

b1
i b1′

i

σ 2
i

β

= κ(λ1)

k1∑
i=1

‖b1
i ‖2‖β‖2 cos2(b̂1

i , β)

σ 2
i

= κ(λ1)λ1‖β‖2
k1∑

i=1

cos2(b̂1
i , β

)

= κ(λ1)λ1‖β‖2
k1∑

i=1

Υ 2
i1,

where

κ(λ1) = 1

8λ2
1

Eϑ1

[
(ϑ1 + Eϑ2(ϑ2|ϑ1))

2

H(ϑ1)+ Eϑ2(ϑ2|ϑ1)

]
.19

Λk1 = diag{ 1
σ1
, . . . , 1

σk1
}, Λm1−k1 = diag{ 1

σk1+1
, . . . , 1

σm1
}, b1

i , i = 1, . . . ,m1, are the columns of B ′
1, Υi1 = cos(b̂1

i , β). Similarly,

the surplus obtained using system P2 is:

Π∗(P2) = κ(λ1)λ1‖β‖2
k2∑

i=1

cos2(b̂2
i , β

) = κ(λ1)λ1‖β‖2
k2∑

i=1

Υ 2
i2, (A.26)

where b2
i , i = 1, . . . ,m2, are columns of matrix B ′

2, Υi2 = cos(b̂2
i , β). It follows that Π∗(P1) � Π∗(P2) if and only if∑k1

i=1 Υ
2

i1 �
∑k1

i=1 Υ
2

i2.

A.8. Proof of Corollary 3

The matrix

Σ−1/2 B B ′Σ−1/2 =
[
Σ

−1/2
11 B1 B ′

1Σ
−1/2
11 0

0 Σ
−1/2
22 B2 B ′

2Σ
−1/2
22

]

has m1 + m2 eigenvalues λ1, . . . , λm1 , μ1, . . . ,μm2 .

1. If λ1 >μ1, then the first eigenvalue of Σ−1/2 B B ′Σ−1/2 is λ1, its multiplicity is still k1. If q ∈ Rm1 is an eigenvector of
Σ

−1/2
11 B1 B ′

1Σ
−1/2
11 associated with λ1, then q̂ = (q,0)′ ∈ Rm1+m2 is clearly the eigenvector of Σ−1/2 B B ′Σ−1/2 associated

with λ1. Subsequently, if Q 1 Q ′
1 is the spectral projector of Σ−1/2

11 B1 B ′
1Σ

−1/2
11 associated with λ1, then

Q̂ 1 Q̂ ′
1 =

(
Q 1
0

)(
Q ′

1 0
) =

(
Q 1 Q ′

1 0
0 0

)

is the spectral projector of Σ−1/2 B B ′Σ−1/2 associated with λ1. Then the expected revenue of the principal with aug-
mented performance system P is

Π∗(P) = 1

8λ2
1

Eϑ1

[
(ϑ1 + Eϑ2(ϑ2|ϑ1))

2

H(ϑ1)+ Eϑ2(ϑ2|ϑ1)

]
β ′B ′Σ−1/2 Q̂ 1 Q̂ ′

1Σ
−1/2 Bβ

= 1

8λ2
1

Eϑ1

[
(ϑ1 + Eϑ2(ϑ2|ϑ1))

2

H(ϑ1)+ Eϑ2(ϑ2|ϑ1)

]
β ′B ′

1Σ
−1/2
11 Q 1 Q ′

1Σ
−1/2
11 B1β

= Π∗(P1). (A.27)

19 Note that the term Eϑ1 [ (ϑ1+Eϑ2 (ϑ2 |ϑ1))
2

H(ϑ1)+Eϑ2 (ϑ2 |ϑ1)
] also depends on λ1.
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2. If λ1 =μ1, then the first eigenvalue of Σ−1/2 B B ′Σ−1/2 is λ1, but its multiplicity is now k1 + k2. Let Q 1 (Q 2) represent
an m1 × k1 (m1 × k1) matrix whose columns are orthonormal eigenvectors of Σ

−1/2
11 B1 B ′

1Σ
−1/2
11 (Σ−1/2

22 B2 B ′
2Σ

−1/2
22 )

associated with λ1 (μ1). Then the columns of matrix

Q̂ =
(

Q 1 0
0 Q 2

)
∈ Rm1+m2

k1+k2

form an orthonormal basis for eigenspace N (Σ−1/2 B B ′Σ−1/2 − λ1 I)

Π∗(P) = 1

8λ2
1

Eϑ1

[
(ϑ1 + Eϑ2(ϑ2|ϑ1))

2

H(ϑ1)+ Eϑ2(ϑ2|ϑ1)

]
β ′B ′Σ−1/2 Q̂ Q̂ ′Σ−1/2 Bβ

= 1

8λ2
1

Eϑ1

[
(ϑ1 + Eϑ2(ϑ2|ϑ1))

2

H(ϑ1)+ Eϑ2(ϑ2|ϑ1)

]
β ′(B ′

1Σ
−1/2
11 Q 1 Q ′

1Σ
−1/2
11 B1 + B ′

2Σ
−1/2
22 Q 2 Q ′

2Σ
−1/2
22 B2

)
β

= Π∗(P1)+Π∗(P2)

>Π∗(P1).

3. The case λ1 <μ1 is similar to λ1 >μ1. Then the proof is thus omitted.

A.9. Lemmas

Lemma A.1. Two real symmetric, positive-definite matrices can be simultaneously diagonalized.

Proof. Let A and B be two real symmetric positive-definite matrices, {τi} be the set of generalized eigenvalues of A relative
to B , that is, for some nonzero vi , Avi = τi B vi . B has a Cholesky decomposition, B = T ′T , where T is an upper triangular
matrix with positive diagonal elements. We can therefore get(

T ′)−1
AT −1ui = τiui,

where ui = T vi . Note that since A is symmetric, (T ′)−1 AT −1 is symmetric, and since τi is an eigenvalue of this matrix,
it is real. Its associated eigenvector (with respect to (T ′)−1 AT −1) is likewise real, so is the generalized eigenvector vi .
Since (T ′)−1 AT −1 is symmetric, the ordinary eigenvectors can be chosen to be orthogonal. This implies that the generalized
eigenvectors of A relative to B can be chosen to be B-orthogonal. Let V = (v1, . . . , vn) be a matrix having as columns
the generalized B-normalized and B-orthogonal eigenvectors and Λ = diag{τ1, . . . , τn} be a diagonal matrix consisting of
generalized eigenvalues, then we have the final result: V ′ AV = Λ, V ′B V = I .20 �
Lemma A.2. Let A and B be two m × m real symmetric matrices, then

λm(A + B) � λm(A)+ λm(B).21

Proof.

λm(A + B) = min
x�=0

x′(A + B)x

x′x
� min

x�=0

x′ Ax

x′x
+ min

x�=0

x′Bx

x′x
= λm(A)+ λm(B). �

Lemma A.3. Let A and B stand for m × m real symmetric positive definite matrices and C is their Jordan product: C = AB + B A.
ai , bi , ci denote the eigenvalues of A, B, and C in a descending enumeration respectively. Then we have

cm � C̃ , (A.28)

where

C̃ = max

{
min

i=1,m
aibm

(
√

ka + 1)2 − kb(
√

ka − 1)2

2
√

ka
, min

i=1,m
biam

(
√

kb + 1)2 − ka(
√

kb − 1)2

2
√

kb

}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ambm
(
√

ka+1)2−kb(
√

ka−1)2

2
√

ka
if

√
kb �

√
ka+1√
ka−1

, kb � ka,

ambm
(
√

kb+1)2−kb(
√

kb−1)2

2
√

kb
if

√
kb �

√
ka+1√
ka−1

, kb < ka,

a1bm
(
√

ka+1)2−kb(
√

ka−1)2

2
√

ka
if

√
kb >

√
ka+1√
ka−1

, kb � ka,

amb1
(
√

kb+1)2−kb(
√

kb−1)2

2
√

kb
if

√
kb >

√
ka+1√
ka−1

, kb < ka,

(A.29)

20 Note that this is not necessarily an orthogonal diagonalization, and then this result does not extend to the case of three or more matrices.
21 λm(·) stands for the least eigenvalue of a matrix.
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where ai , bi and ρi are the i-th eigenvalues of A, B and their Jordan product C respectively in a descending enumeration. ka = a1
am

and

kb = b1
bm

denote the spectral condition numbers of A and B, respectively.

Proof. See Alikakos and Bates (1984) for detailed discussion. �
Lemma A.4. E(Y |X) is nonincreasing in X if and only if Cov(X, Y ) � 0.

Proof. Since Cov(X, Y ) = E(X)E(Y ) − E(XY ) = E(X)E[E(Y |X)] − E[E(XY |X)] = E(X)E[E(Y |X)] − E[X E(Y |X)] =
Cov[X, E(Y |X)], Cov(X, Y ) � 0 if and only if E(Y |X) is a nonincreasing function of X .22 �
Lemma A.5. Let A, B be m × m symmetric matrices and B > 0. Then

max
x�=0

x′ Ax

x′Bx
= λ1

(
B−1/2 AB−1/2)

and the optimal x satisfies: B−1/2x ∈N (B−1/2 AB−1/2 − λ1 I).

Proof. Let B1/2x√
x′ Bx

= y. Then

max
x�=0

x′ Ax

x′Bx
= max‖y‖=1

y′B−1/2 AB−1/2 y.

Since B−1/2 AB−1/2 is a symmetric matrix, there exists an orthogonal matrix P such that P ′B−1/2 AB−1/2 P = diag{λ1, . . . , λm}.
λ1, . . . , λm are eigenvalues of B−1/2 AB−1/2 in descending order; λ1 has multiplicity k. Let P ′ y = z, then

max‖y‖=1
y′B−1/2 AB−1/2 y = max‖z‖=1

z′diag{λ1, . . . , λm}z = max
1� j�m

λ j.

The optimal solution to this problem is z = (z1, . . . , zk,0, . . . ,0)′ with
∑k

j=1 z2
j = 1. We get y = P z = ∑k

i=1 zi pi . pi ,

i = 1, . . . ,k, are eigenvectors associated with λ1 = · · · = λk . Therefore y ∈ N (B−1/2 AB−1/2 − λ1 I), which in turn implies
that B−1/2x ∈N (B−1/2 AB−1/2 − λ1 I). �
Lemma A.6. The solution x∗ and maximized value Π∗ to program

max
x

: α′x, s.t.: ‖x‖ = a, x ∈N (A − λI) (A.30)

are:

(i) If α′ Q k Q ′
kα �= 0

x∗ = a
Q k Q ′

kα√
α′ Q k Q ′

kα
,

Π∗ = a
√
α′ Q k Q ′

kα.

(ii) If α′ Q k Q ′
kα = 0

x∗ is an arbitrary element in N (A − λI) with norm a,

Π∗ = 0

where λ is an eigenvalue of symmetric matrix A with multiplicity k, N (A − λI) represents the eigenspace of A associated with λ,
Q k = (q1,q2, . . . ,qk) are a set of orthonormal eigenvectors of A corresponding to λ.

Proof. Since A is a real symmetric matrix, there exists an orthogonal matrix Q = (q1, . . . ,qn) = (Q k, Q −k) such that

Q ′ A Q = diag{λ, . . . , λ,λk+1, . . . , λn}.
Q k = (q1,q2, . . . ,qk) are a set of orthonormal eigenvectors associated with λ, Q −k = (qk+1, . . . ,qn) is the set of remaining
orthonormal eigenvectors. Applying the spectral decomposition theorem in matrix algebra (see Lemma A.7), the spectral
projector matrix Q k Q ′

k is unique although Q k is in general not unique:

(A − λI)x = 0 ⇐⇒ Q diag{0, . . . ,0, λ− λk+1, . . . , λ− λn}Q ′x = 0.

22 Here we use a result in probability theory: Cov(ϕ1(X),ϕ2(X)) � 0 iff ϕ′
1(X)ϕ′

2(X)� 0.
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Letting Q ′x = y, we get

diag{0, . . . ,0, λ− λk+1, . . . , λ− λn}y = 0,

which implies yi = 0, i = k + 1, . . . ,n. Then the program (A.30) can be rewritten as

max
y

: α′ Q y, s.t.: ‖y‖ = a, y = (y1, . . . , yk,0, . . . ,0).

• If α′ Q k Q ′
kα = 0, then Q ′

kα = 0. Therefore, for any vector y with entries yk+1 = · · · = kn = 0, we have

α′ Q y = (
0, . . . ,0,α′qk+1,α

′qn
)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
...

yk

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0.

The solution to the program (A.30) is therefore an arbitrary vector in N (A − λI) with norm a.
• If α′ Q k Q ′

kα �= 0, it is optimal to choose

y∗ = a√
α′ Q k Q ′

kα
(Q k,0)′α,

the corresponding optimal value is

Π∗ = a
√
α′ Q k Q ′

kα.

The maxima for the original program is therefore

x∗ = Q y∗ = a
Q k Q ′

kα√
α′ Q k Q ′

kα
. �

Lemma A.7 (Uniqueness of spectral representation). A represents an n × n symmetric matrix, Q represents an n × n orthogonal
matrix, D = diag{d1, . . . ,dn} is an n ×n diagonal matrix such that Q ′ A Q = D. (Note that every real symmetric matrix is orthogonally
diagonalizable.) The i-th columns of Q are qi , i = 1, . . . ,n, respectively. λ1, . . . , λk represent the distinct eigenvalues of A, ν1, . . . , νk
represent the multiplicities of λ1, . . . , λk, respectively. For j = 1, . . . ,k, S j = {i: di = λ j} represents the set comprising the ν j values
of i such that di = λ j . Then A can be expressed uniquely (aside from the ordering of the terms) as

A =
k∑

j=1

λ j E j, (A.31)

where (for j = 1, . . . ,k) E j = ∑
i∈S j

qiq′
i , qi , i ∈ S j are eigenvectors associated with λ j .

Proof. Suppose that P is an n ×n orthogonal matrix and D∗ = {di} an n ×n diagonal matrix such that P ′ A P = D∗ (where P
and D∗ are possibly different from Q and D). Further, denote the first, n-th columns of P by p1, . . . , pn , respectively, and
(for j = 1, . . . ,k) let S j = {i: d∗

i = λ j}. Then, analogous to the decomposition A = ∑k
j=1 λ j E j , we have the decomposition

A =
k∑

j=1

λ j F j,

where (for j = 1, . . . ,k) F j = ∑
j∈S∗

j
p j p′

j . Now, for j = 1, . . . ,k, let Q j = (qi1 , . . . ,qiν j
) and P j = (pi∗1 , . . . ,pi∗ν j

), where

i1, . . . , iν j and i∗1, . . . , i∗ν j
are the elements of S j and S∗

j , respectively. Then, C(P j) =N (A − λ j I) = C(Q j) (the symbol C(A)

denotes the column space of a matrix A), so that P j = Q j L j for some ν j × ν j matrix L j . Moreover, since clearly Q ′
j Q j = Iν j

and P ′
j P j = Iν j ,

L′
j L j = L′

j Q ′
j Q j L j = P ′

j P j = I,

implying that L j is an orthogonal matrix. Thus,

F j = P j P ′
j = Q j L j L

′
j Q ′

j = Q j I Q ′
j = Q j Q ′

j = E j.
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We conclude that the decomposition A = ∑k
j=1 λ j F j is identical to the decomposition A = ∑k

j=1 λ j E j , and hence that the

decomposition A = ∑k
j=1 λ j E j is unique (aside from the ordering of terms). �
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