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I THE NATURE OF MATHEMATICL ECONOMICS

Mathematical economics is an approach to economic analysis, in which the economists
make use of mathematical symbols in the statement of the problem and also draw upon known

mathematical theorems to aid in reasoning.

The purpose of this course is to introduce the most fundamental aspects of the
mathematical methods such as those matrix algebra, mathematical analysis, and optimization
theory.

1.1 Mathematical Versus Nonmathematical Economics

Since mathematical economics is merely an approach to economic analysis, it should not
and does not differ from the nonmathematical approach to economic analysis in any fundamental
way. The difference between these two approaches is that in the former, the assumptions and
conclusions are stated in mathematical symbols rather than words and in equations rather than
sentences.

Advantages of the Mathematical Approaches

(§)) the analysis is more rigorous;
2 it allows us to treat the general n-variable case; and
3 the "language" used is more concise and precise.




III. EQUILIBRIUM ANALYSIS IN ECONOMICS
31 The Meaning of Equilibrium

Like any economic term, equilibrium can be defined in various ways. One definition
here is that an equilibrium is a constellation of selected interrelated variables so adjusted to one
another that inherent tendency to change prevails in the model which they constitute.

In essence, an equilibrium for a specific model is a situation that is characterized by a
lack of tendency to change. It is for this reason that the analysis of equilibrium is referred to
as statics. The fact that an equilibrium implies no tendency to change may tempt one to
conclude that an equilibrium necessarily constitutes a desirable or ideal state of affairs.

This chapter provides two examples of equilibrium. One is the equilibrium attained by
a market under given demand and supply conditions. The other is the equilibrium of national
income under given conditions of consumption and investment patterns.

3.2 Partial Market Equilibrium - A Linear Model

In a static-equilibrium model, the standard problem is that of finding the set of values
of the endogenous variables which will satisfy the equilibrium conditions of the model.

Partial-Equilibrium Market Model--a model of price determination in an isolated market.

Three variables
Q, = the quantity demanded of the commodity;
Q, = the quantity supplied of the commodity;

P = the price of the commodity.

The Equilibrium Condition: Q, = Q,.

The model is
Qd = Qs
Q,=a-bp (a, b > 0)

Q,=-<+dp (c,d > 0)




Qd —=a —bP
(demand) Qs=—c+dP

(supply)

|
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The slope of Q; = -b, the vertical intercept = a.

The slope of Q, = d, the vertical intercept = -c.
Note that, contrary to the usual practice, quantity rather than price has been plotted vertically
in the Figure.

One way of finding the equilibrium is by successive elimination of variables and
equations through substitution.

From Q, = Q,, we have
a-bp=-c+dp
and thus
b+ dp=a+c

Since b + d # 0, then the equilibrium price is

o
+
[=9

The equilibrium quantity can be obtained by substitutingf) into either Q, or Qg:
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o ad -bc
Q b+d

Since the denominator (b+d) is positive, the positivity of Q requires that the numerator (ad-bc)
> 0. Thus, to be economically meanful, the model should contain the additional restriction that
ad > bc.

3.3 Partial Market Equilibrium - A Nonlinear Model

The partial market model can be nonlinear. Suppose a model is given by

Qi =Qq
Qd=4—p2
Q =4p-1

As previously stated, this system of three equations can be reduced to a single equation by
substitution.

or
pPP+4p-5=0

which is a quadratic equation. In general, given a quadratic equation in the form
ax? +bx+c¢c=0 (a2 0),

its two roots can be obtained from the quadratic formula:

1% - -b + yb?-4ac

1772 2a

where the "+" part of the "4 " sign yields ;(, and the "-" part yields ;(2.
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Thus, by applying the quadratic formulas to p> + 4p -5 = 0, we have 51 = 1 and 52
= -5, but only the first is economically admissible, as negative prices are ruled out.

The Graphical Solution

34 General Market Equilibrium

In the above, we have discussed methods of an isolated market, wherein the Q, and Q,
of a commodity are functions of the price of that commodity alone. In the real world, there
would normally exist many substitutes and complementary goods. Thus a more realistic model
for the demand and supply functions of a commodity should take into account the effects not
only of the price of the commodity itself but also of the prices of other commodities. As a
result, the price and quantity variables of multiple commodities must enter endogenously into
the model. Thus, when several interdependent commodities are simultaneously considered,
equilibrium would require the absence of excess demand, which is the difference between
demand and supply, for each and every commodity included in the model. Consequently, the
equilibrium condition of an n-commodity market model will involve n equations, one for each

commodity, in the form

E=Q;-Q=0 (i=1,2,...,n)




where Q; = Q4 (P,,P,,...,P) and Q,; = Q, (P,,...,P,) are the demand and supply functions of
commodity i, and (P,,P,,...,P,) are prices of commodities.

Thus solving n equations for P:
EP,,P,,....,P) =0

we obtain the n equilibrium prices I’i——if a solution does indeed exist. And then the (—Qi may be
derived from the demand or supply functions.

Two-Commodity Market Model

To illustrate the problem, let us consider a two-commodity market model with linear
demand and supply functions. In parametric terms, such a model can be written as

Qu-Qu =09
Qu = 3 + aP, + a,P,
Q.. = by + b,P; + 0P,
Qu-Q.=0
Qu = o + Py + P,
Q. = By + BP, + 6P,

By substituting the second and third equations into the first and the fifth and sixth equations into
the fourth, the model is reduced to two equations in two variables:

(3 - by) + (a, -b)P, + (2, - b)P, = 0

(ot - Bo) + (ay - BIP, + (a, - )P, =0

If we let
ci = al - bl
(i=0,1,2),
v = o= B
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the above two linear equations can be written as
¢P, + P, = ¢
P + vP2 = v
which can be solved by further elimination of variables.

The solutions are

P - €Yo ~Co72
l —_—
Y2~
35 Y17 %%
P, - —_
Y2~

For these two values to make sense, certain restrictions should be imposed on the model. First,
we require the common denominator ¢y, - ¢y, # 0. Second, to assure positivity, the
numerator must have the same sign as the denominator.

Numerical Example
Suppose that the demand and supply functions are numerically as follows:

Qy = 10-2P, + P,

Q, = -2 + 3P,
de = 15 + Pl ‘P2
Q. =-1+2P,

By substitution, we have

5p,-P, = 12
P, + 3P, = 16

which are two linear equations. The solutions for the equilibrium prices and quantities are
P, = 52/14, P, = 92/14, Q, = 64/7, and Q, = 85/7.




Similarly, for the n-commodity market model, when demand and supply functions aré
linear in prices, we can have n linear equations. In the above, we assume that an equal number
of equations and unknowns has a unique solution. However, some very simple examples should
convince us that an equal number of equations and unknowns does not necessarily guarantee the

existence of a unique solution.

For the two linear equations,

x+y - 8
x+y = 9

we can easily see there is no solution.

The second example shows a system has an infinite number of solutions:

2x +y =12
4x + 2y = 24

These two equations are functionally dependent, which means that one can be derived from the
other. Consequently, one equation is redundant and may be dropped from the system. Any

pair (;c,}) is the solution as long as &,}) satisfies y = 12 - x.

Now consider the case of more equations than unknowns. In general, there is no
solution. But, when the number of unknowns equals the number of functional independent
equations, the solution exists and is unique. The following example shows this fact.

2x + 3y = 58
y = 18
x+ y=20

Thus for simultaneous-equation model, we need systematic methods of testing the existence of
a unique (or determinate) solution. These are our tasks in the following chapters.




35 Equilibrium in National-Income Analysis

The equilibrium analysis can be also applied to other areas of economics. As a simple
example, we may cite the familiar Keynesian national-income model,

¥Y=C+ 1L+ G (equilibrium condition)

C=a+bY (the consumption function)
where ¥ and C stand for the endogenous variables national income and consumption
expenditure, respectively, and I, and G, represent the exogenously determined investment and

government expenditures.

Solving these two linear equations, we obtain the equilibrium national income and
consumption expenditure:

= a+l;+G,
I-b

c . a+b(i,+Gy
1-b
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IV. LINEAR MODELS AND MATRIX ALGEBRA

From the last chapter we have seen that for the one-commodity model, the solutions for
P and (3 are relatively simple, even though a number of parameters are involved. As more and
more commodities are incorporated into the model, such solution formuias quickly become
cumbersome and unwieldy. We need to have new methods suitable for handling a large system
of simultaneous equations. Such a method is found in matrix algebra.

Matrix algebra can enable us to do many things. (1) It provides a compact way of
writing an equation system, even an extremely large one. (2) It leads to a way of testing the
existence of a solution by evaluation of a determinant--a concept closely related to that of a
matrix. (3) It gives a method of finding that solution if it exists.

4.1 Matrix and Vectors

In general, a system of m linear equations in n variables (X{,Xa,---,X,) can be arranged
into such a formula.

agXx; + apx, + ...+ ax

AuX, + apX, + .. X, = 4.1)

on

|
[=N
3

where the doubled-subscripted symbol a; represents the coefficient appearing in the ith equation
and attached to the jth variable x; and d; represents the constant term in the jth equation.

Example: The two-commodity linear market model can be written--after eliminating the
quantity variables--as a system of two linear equations.

c,P, + &P, = ¢
Py + 2P = -y

Matrix as Arrays

There are essentially three types of ingredients in the equation system (4.1). The first
is the set of coefficients a;; the second is the set of variables x,,X,,...,X,; and the last is the set
of constant terms d,,...,d,. If we arrange the three sets as three rectangular arrays and label

them, respectively, as, A, x, and d, then we have




all alz aln xl 1
.. a d

U e I @.2)
aml am2 amn xn dm

Example: Given the linear-equation system
6x, + 3x, + x5 = 22
X, + 4%, - 2x, = 12

4x, - X, + 5x, = 10

we can write

6 3 1 X 22
A = 1 4 -2 X = X, d - 12
4 -1 5 X 10

Each of three arrays in (4.2) constitutes a matrix.

A matrix is defined as a rectangular array of numbers, parameters, or variables. As a
shorthand device, the array in matrix A can be written more simply as

A - [a] i=1,2,..,n
- [a.
Y j=1,2,...m

Vectors as Special Matrices

The number of rows and the number of columns in a matrix together define the
dimension of the matrix. For instance, A is said to be of dimension mxXn. In the special case
where m=n, the matrix is called a square matrix.
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If a matrix contains only one column (row), it is called a column (row) vector. , For

notation purposes, a row vector is often distinguished from a column vector by the use of a
primed symbol.

X, = [xl:xb"'?xn]

Remark. A vector is merely an ordered n-triple and as such it may be interpreted as a point in

an n-dimensional space.
With the matrices defined in (4.2), we can express the equation system (4.1) simply as
Ax = d.
However, the equation Ax = d prompts at least two questions. How do we multiply two
matrices A and x? What is meant by the equality of Ax and d? Since matrices involve whole
blocks of numbers, the familiar algebraic operations defined for single numbers are not divertly
applicable, and there is need for new set of operation rules.

4.2 Matrix Operations

The Equality of Two Matrices.

A = B if and only if a; = b; for all i=1,2,...,n, j=1,2,...,m.

Addition and Subtraction of Matrices.

A+ B=[y] + fby] = [a; + b;]
i.e. the addition of A and B is defined as the addition of each pair of corresponding elements.
Remark. Two matrices can be added (equal) if and only if they have the same dimension.

Example:

43




a, a, a; b, b, b, a, +b, a,+b, a,+b,
+ -
a4y Ay Gn b, by, by, a,+b, a,+b, a,+b,

The Subtraction of Matrices

A - B is defined by

[a;] - [by] = [a; - b;]

Example:

Scalar Multiplication

A = May) = [Aay]

i.e. to multiply a matrix by a number is to multiply every element of that matrix by the given
scalar.

Example:

Example:
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Multiplication of Matrices

Given two matrices A,,, and B,,,, the conformability condition for multiplication AB
is that the column dimension of A must be equal to be the row dimension of B, i.e., the matrix
product AB will be defined if and only if n = p. If defined, the product AB will have the
dimension m Xq.

The product AB is defined by

AB =C

with ¢, - ab, + ab, + ..+ ach, - Z ab,

)

Example:
all a12 bll b12 allbll+a12b21 allb12+a12b22
a2l a7_2 b‘ll b22 a21b11 +aZZbZI a”.lb12+a22b22

Example:

-3+20 35 17 35
-4+24 42 20 42
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Example:

u' = [u,U,,...,u,] and v’ = [v,vy,...,V,]

n
k4
uyv = lllVl'*'L12V2+...+UDVn - E uv,

i=1

This can also be described by using the concept of the inner product of two vectors u and v.

u-cv =y, 4wy, oL+, =u'v.

Example:
all ai'.‘. aln tl
a, a a X
21 2 2n p
A - X =
aml am2 amn xn

N4
agx, +a; X, +..a,x

n

\J
Ax - Ay Xy +ApKy + X x,
a, X va,A \Kmx

n

[\ OS]

Example: Given u - [ ] andv' =[1 4 5]

3x1 3x4 3X5 3 12 15
2xX1 2X8 2X5 2 8 10

It is important to distinguish the meanings of uv' (a matrix larger than 1x1) and u'v (a 1 X1
matrix, or a scalar).
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4.3 Linear Dependence of Vectors

A set of vectors v,,...,v, is said to be linearly dependent if and only if any one of them

can be expressed as a linear combination of the remaining vectors; otherwise they are linearly
independent.

Example: The three vectors

or3v,-2v,-v; =0
where 0 - [ 8 ] represents a zero vector.

An equivalence definition of linear dependence is: a set of m-vectors v,,v,,...,v, is
linearly dependent if and only if there exists a set of scalars k,,K,,....k, (not all zero) such that

If this equation can be satisfied only when k; = O for all i, these vectors are linearly
independent.
4.4 Commutative, Associative, and Distributive Laws

The commutative and associative laws of matrix can be stated as follows:

Commutative Law A+B=B+ A
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Proof: A + B = [a] + [by] = [a; + byl = [b; + a] = [bg] + [35] =B + A
Associative Law A+B)+C=A+B+C

Matrix Multiplication

Matrix multiplication is not commutative, that is
AB # BA

Even when AB is defined, BA may not be; but even if both products are defined, AB

= BA may not still hold.
0 -1 12 13
} B - { } then 4B - [ :l, but
6 7 24 25

RN S

1
Example: Let A4 - {3

-3 -4
BA - :
{27 40}

The scalar multiplication of a matrix does obey. The commutative law:
kA = Ak
if k is a scalar.

Associative Law (AB)C = A(BCO)

if A is mxn, B is nxp, and C is pxq.

Distribution Law

AB + C) = AB + AC [premultiplication by A]
B + C)A = BA + CA [postmultiplication by A]




4.5 Identity Matrices and Null Matrices

Identity Matrix is a square matrix with ones in its principal diagonal and zeros
everywhere else. It is denoted by I or L, in which n indicates its dimension.

Fact 1 Given an mxn matrix A, we have
I,A=Al =A
Fact 2
Ao.LB., = (ADB = AB
Fact3 (I)* =1,
Null Matrices. A null--or zero matrix--denoted by 0, plays the role of the number 0. A null

matrix is simply a matrix whose elements are all zero. Unlike I, the zero matrix is not
restricted to being square. Null matrices obey the following rules of operation.

Ape + Op = AL
Apn O = O
qum Amxn = qun

we can see that

5 8
CD - CE -
15 24

even though D # E.




4.6 Transposes and Inverses

The transpose of a matrix A is a matrix which is obtained by interchanging the rows and
columns of the matrix A. It is denoted by A’ or A'.

38 -9
Example: For 4 - I: jl
10 4

A = 8 O

Thus, by definition, if a matrix A is mxn, then its transpose A’ must be nxm.

Example:
104
D-11037
4 7 2
104
Its transpose D’ - | 0 3 7| - D
4 7 2

A matrix A is said to be symmetric if A" = A.

Properties of Transposes

a) (A = A
b) (A +B) =A" + B
0) (AB)' = B'A’
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The property C states that the transpose of a product is the product of the transposes in reverse
order.

Inverses and Their Properties

For a given matrix A, A’ is always derivable. On the other hand, its inverse matrix
may or may not exist. The inverse of A, denoted by A, is defined only if A is a square
matrix, in which case the inverse is the matrix that satisfies the condition.

AAT = A'A =1

Remarks.

1. Not every square matrix has an inverse--squareness is a necessary but not sufficient
condition for the existence of an inverse. If a square matrix A has an inverse, A is said
to be nonsingular, if A possesses no inverse, it is said to be a singular matrix.

2. If A is nonsingular, then A and A" are inverses of each other, i.e., (A")! = A.
3. If A is nxn, then A" is also nxn.
4. The inverse of A is unique.

Proof. Let B and C both be inverses of A. Then

5. AA' = I implies A'A = L.
Proof. We need to show that if AA" = I, and if there is a matrix B such that BA =
I, then B = A'. Postmultiplying both sides of BA = I by A", we have BAA" = A"
and thus B = A"

ma -] [2]2- [0 ][]




So B is the inverse of A. Suppose A and B ar nonsingular matrices with dimension

nxn.

6. (3  (AB)! = B'A"
®) (A =@

Inverse Matrix and Solution of Linear-Equation System

The application of the concept of inverse matrix to the solution of a simultaneous-
equation is immediate and direct. Consider

Ax =d
If A is a nonsingular matrix, then premultiplying both sides of Ax = d, we have
A'Ax = A'd

So, x = A’d is the solution of Ax = d and the solution is unique since A™ is unique. Methods
of testing the existence of the inverse and of its calculation will be discussed in the next chapter.




V. LINEAR MODELS AND MATRIX ALGEBRA (CONTINUED)

In Chapter 4, it was shown that a linear-equation system can be written in a compact
notation. Furthermore, such an equation system can be solved by finding the inverse of the
coefficient matrix, provided the inverse exists. This chapter studies how to test for the existence
of the inverse and how to find that inverse.

5.1 Conditions for Nonsingularity of a Matrix

As was pointed out earlier, the squareness condition is necessary but not sufficient for
the existence of the inverse A of a matrix A.

Conditions for Nonsingularity

When the squareness condition is already met, a sufficient condition for the
nonsingularity of a matrix is that its rows (or equivalently, its columns) are linearly independent.
In fact, the necessary and sufficient conditions for nonsingularity are that the matrix satisfies the
squareness and linear independence conditions.

An nxn coefficient matrix A can be considered an ordered set of row vectors:

r
v
a, a; a, !
a, a a !
21 Y2 2n ¢
A - -
/
anl anZ ann Vn

where v/ = [a,3p,...,3,), i=1,2,...,n. For the rows to be linearly independent, for any set of

scalars k;, Y kv -0 ifandonlyifk =0 for all i.
i=i

Example: For a given matrix,

3435
A-101 2 |,
6 8 10




since v, = 2v, + Ovj;, so the matrix is singular.
Rank of a Matrix

Even though the concept of row independence has been discussed only with regard to
square matrices, it is equally applicable to any mxn rectangular matrix. If the maximum
number of linearly independent rows that can be found in such a matrix is v, the matrix is said
to be of rank . The rank also tells us the maximum number of linearly independent columns
in the said matrix. The rank of an mxn matrix can be at most m or n, whichever is smaller.

By definition, an nxn nonsingular matrix A has n linearly independent rows (or
columns); consequently it must be of rank n. Conversely, an nXn matrix having rank n must
be nonsingular.

5.2 Test of Nonsingularity by Use of Determinant

To determine whether a square matrix is nonsingular, we can make use of the concept
of determinant.

Determinants and Nonsingularity

The determinant of a square matrix A, denoted by | A, is a uniquely defined scalar
associated with that matrix. Determinants are defined only for square matrices. For a 2X2
matrix:

11 12 . . .
A - , its determinant is defined as follows:
ay an
a;, 9y
4| - = 48y - 81,9,
21 Y22

In view of the dimension of matrix A, | A| as defined in the above is called a second-order
determinant.




10 4 3 5
Example: Given A4 - |: :\ and B - I: :I, then
8 5 0 -1

10 4

4] - -50 - 32 - 18
8 5
3 5

|B| = - -3 -5x0- -3
0 -1

2 6

Example: 4 -
8 24

Then its determinant

2 6
4] - - 2x24 - 6x8 - 48-48 - 0
8 24

This example shows that the determinant is equal to zero if its rows are linearly dependent. As
will be seen, the value of a determinant | A| can serve not only as a criterion for testing the
linear independence of the rows (hence nonsingularity) of matrix A but also as an input in the
calculation of the inverse A, if it exists.

Evaluating a Third-Order Determinant

For a 33 matrix A, its determinants have the value

a;; 4y, A
a

a; 4n

a3 A4y,

a4y, Gy

a5, Gy

22 723

|A| = |Gy 8y Gy | - ay -a

a3, Gy
4y a3 Ay




- Q05,05 — G 83305 ~ G1505,G3y + Aiplasly + Gy sy = (4307534,

We can use the following diagram to calculate the third-order determinant.

! Sy

)
e
S
/ 4
L
/ ;
Example: \ |
N\
N
213 N
456| =259+ 167+ 483-357-149-682
789

=90+ 42 + 96-105-36-96 = -9
This method of cross-diagonal multiplication provides a handy way of evaluating a third-order
determinant, but unfortunately it is not applicable to determinants of orders higher than 3. For

the latter, we must resort to the so-called "Laplace expansion” of the determinant.

Evaluating an nth-Order Determinant by Laplace Expansion

The minor of the element a; of a determinant | A, denoted by | Mijl can be obtained by
deleting the ith row and jth column of the determinant |A|. Since a minor is itself a
determinant, it has a value. For example, for a 3x3 determinant | A |, the minors of a,,, a,,

and a,, are

a5 83 a4y 9y

Gy Q3

iMu| = > |M12| = ’ |M13| = .

31 933 Gy 4y

12 %33

A concept closely related to the minor is that of the cofactor. A cofactor, denoted by | G; |,
is a minor with a prescribed algebraic sign attached to it. Formerly, it is defined by
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| G | = (D | M; |

Thus, if the sum of the two subscripts i and j in | My| is even, then |C;| = | M, |. Ifitis
odd, then |Cij| = —|M;j|. Using these mew concepts, we can express a third-order
determinant as

IAl =311|Mn| ‘allezl +313|N\h|
=a11|Cu| +312|C12| +313|C13|

The Laplace expansion of a third-order determinant serves to reduce the evaluation
problem to one of evaluating only certain second-order determinants. In general, the Laplace
expansion of an nth-order determinant will reduce the problem to one of evaluating n cofactors,
each of which is of the (n-1)st order, and the repeated application of the process will
methodically lead to lower and lower orders of determinants, eventually culminating in the basic
second-order determinants. Then the value of the original determinant can be easily calculated.
Formerly, the value of a determinant | A] of order n can be found by the Laplace expansion

of any row or any column as follows:

|4l = Y a,1C;|  [expansion by the ith row]

j=1

- a, |C,l [expansion by the jth column].
I y i

Even though one can expand |A| by any row or any column, as the numerical
calculation is concerned, a row or column with largest number of Os or 1s is always preferable
for this purpose, because a 0 times its cofactor is simply 0.

5 6 1
Example: Forthe |4 -|2 3 0}
7 -30

the easiest way to expand the determinant is by the third column, which consists of the elements
1, 0, and 0. Thus,
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2 3
IA| - 1(-D™3 - l - -6 -21 - =27

53 Basic Properties of Determinants

Property I. The determinant of a matrix A has the same value as that of its transpose A’, i.e.,

lal = ]a].
Example:
ab
a1 -] 0| - oo
c d
ac
|A’| -‘ .-ad—cb- |A]

b d

Property II. The interchange of any two rows (or any two columns) will alter the sign, but not

the numerical value of the determinant.

ab
Example: ‘ 4 ‘ - ad-bc, but the interchange of the two rows yields
c

c d
l - cb-ad - -(ab-cd).

a b

Property III. The multiplication of any one row (or one column) by a scalar k will change the
value of the determinant k-fold, i.e. for |A [,
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a, G - Gy, a), Q3 - 9y,

q ka, . kay | - k|a; a; .. ay | - k|A]

anl an2 v Oy a, an.2 nn

In contrast, the factoring of a matrix requires the presence of a common divisor for all its

elements, as in

a; 4, . a4, ka, ka, .. ka,

a, dy a, ka, ka,, ka,,
k =

a, a, . a._ ka,, ka_, .. ka,

Property IV. The addition (subtraction) of a multiple of any row (or column) to (from) another
row (or column) will leave the value of the determinant unaltered.

Example:
a b d+kb) - bc+ka
c+ka d+kb - ald+kb) - bc+ka)
ab
-ad - bc -
cd‘

Property V. If one row (or column) is a muitiple of another row (or column), the value of the

determinant will be zero.

Example:

ka kb
l-kab—kab-o
a b




Remark. Property V is a logic consequence of Property Iv.

The basic properties just discussed are useful in several ways. For one thing, they can
be of great help in simplifying the task of evaluating determinants. By subtracting multipliers
of one row (or column) from another, for instance, the elements of the determinant may be
reduced to much simpler and simpler numbers. If we can indeed apply these properties to
transform some row or column into a form containing mostly Os or 1s, Laplace expansion of
the determinant will become a much more manageable task.

Determinantal_Criterion for Nonsingularity

Our present concern is primarily to link the linear dependence of rows with the
vanishing of a determinant. By Property I, we can easily see that row independence is

equivalent to column independence.
Given a linear-equation system Ax = d, where A is an nxn coefficient matrix, we have

|A| # 0 @ A is row (or column) independent
& A is nonsingular
e A exists
& a unique solution X = A’d exists.

Thus the value of the determinant of A provides a convenient criterion for testing the
nonsingularity of matrix A and the existence of a unique solution to the equation system Ax =

d.

Rank of a Matrix Redefined

The rank of a matrix A was earlier defined to be the maximum number of linearly
independent rows in A. In view of the link between row independence and the nonvanishing
of the determinant, we can redefine the rank of an mxn matrix as the maximum order of a
nonvanishing determinant that can be constructed from the rows and columns of that matrix.
The rank of any matrix is a unique number.

Obviously, the rank can at most be m or n for a mxn matrix A, whichever is smaller,

because a determinant is defined only for a square matrix. Symbolically, this fact can be
expressed as follows:
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v(A) < min{m,n}.

The rank of an nxn nonsinguiar matrix A must be n; in that case, we may write y(A) = n. For

the product of two matrix,
¥(AB) < min{y(A), v(B)}.
5.4 Finding the Inverse Matrix

If the matrix A in the linear-equation system Ax = d is nonsingular, then A exists, and
the solution of the system will be x = A’"d. We have learned to test the nonsingularity of A
by the criterion | A| # 0. The next question is how we can find the inverse Al if A does pass
that test.

Expansion of a Determinant by Alien Cofactors

We have known that the value of a determinant | A| of order n can be found by the
Laplace expansion of any row or any column as follows:

|4| =Y a,IC,|  [expansion by the ith row]

j=1

- a. |C.| [expansion by the jth column]
il v y

Now what happens if we replace a; by a;; for i#i’" or by ay, for j#j’. Then we have the
following important property of determinants.

Property VI. The expansion of a determinant by alien cofactors (the cofactors of a "wrong"
row or column) always yields a value of zero. That is, we have

Y a,lC)l -0 (= i') [expansion by i'th row and use of cofactors of ith row]

Jj=1

(5.10)

59




n

Y a.iCl -0 (G#i) [expansion by j'th column and use of cofactors of jth column]

i=1

The reason for this outcome lies in the factor that the above formula can be considered as the
results of the regular expansion by the ith row (jth column) of another determinant, which
differs from |A| only in its i'th row (j'th column) and its ith row (jth column) and i'th row
()'th column) are identical.
Example: For the determinant
a4y @y Ay
|[A] - | 821 92 9y |

a3 a3 4

consider another determinant
4y 4y, a3

|A*] = |4y ay a5 |

a3 4y Ay

If we expand | A”| by the second row, then we have

0=~ |4"| = a,|C,| +a,|Cyl + a,| Gy

3
- E 4, | C2jl
7

Matrix Inversion

Property VI is of finding the inverse of a matrix. For a nXn matrix A:
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11 12 In
a a a
21 2 P
A -
‘znl ‘1n2 ‘Inn

since each element of A has a cofactor | G, |, we can form a matrix of cofactors by replacing
each element a; with its cofactor | C;|. Such a cofactor matrix C = [| C;|]is also nxn. For
our present purpose, however, the transpose of C is of more interest. This transpose C’ is
commonly referred to as the adjoint of A and is denoted by adj A. Thus:

1Cul 1G] 1G]
1Cal 1Cal - 1€,
C/ = adJA = l2| 2 2|
1C, 1C,1 - 1G]

By utilizing the formula for the Laplace expansion and Property VI, we have

r A
n o n

Za1j|clj| Zaulczjl Ealjlcnjl

j=1 j=t j=1

AC - Eazjlclj[ Zazjlclj! Ea‘zjicnj|
j=1 j=1 =1

j=t =1

n n
j-zl aujlcljl Z anjlczjl E andanl

lA] 0 . 0
0 |A] .. 0
0 o0 |A|
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= |al L

Since |A| # O, then

CI

A_— -1
[Al

Thus, by the uniqueness of A™ of A, we know

Now we have found a way to invert the matrix A. The general procedures for finding the
inverse of a square A are: (1) find | A]; (2) find the cofactors of all elements of A and form

adj A
[A]

C= [IC;J- |1; 3) form C’ to get adj A; and (4) determine A" by

ab

] we have the following formula:
c

In particular, for a 2 X2 matrix 4 - [

Al - ad) A
A[
d -b
_ 1
ad-cb c a

This is a very useful formula.
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32
Example: A4 - [ :\
10

The inverse of A is given by

0 -2
oL
211 3
0 1
I I
2 2
4 1 -1
Example: Find the inverse of B - | 0 3 2
307
Since |B| = 99 # 0, B! exists. The cofactor matrix is:
32 02 03
07 37 30
1 -1 ) 21 6 9
- 4 - 1
—lo 3 - 4 -1 -7 31 3
7 7 30 s -8 12
1 -1 4 -1 41
13 2 02 03
Then,
21 -7 5
adi B~ | 6 31 -8
9 3 12
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Hence,

21 -7 5

gt -1 ] 6 31 -8
99

3 12

5.5 Cramer’s Rule

The method of matrix inversion just discussed enables us to derive a convenient way of
solving a linear-equation system, known as Cramer’s rule.

Derivation of the Rule

Given an equation system Ax = d, the solution can be written as

X - A - ‘_1__ (adj A)d

Al

provided A is nonsingular. Thus,

C1c,l 1G] - 16, d,
3 1 |Clzl Iczzl ‘anl d,
|Al : : : : :
L ‘Cl,.l Icz,.l ICMI dn
I T
> dlG,]
in1
_ 1 Zdi'ci2|
T |
d|C.]|
R
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That is, the X, is given by

x | C,
RRLIDY
all a12 dl aln
o a, dy .. d, .. a,,
A
L anI n2 : dn ann B
1
= A,
Iz

where | A;| is obtained by replacing the jth column of | A| with the constant terms d,,...,d
This result is the statement of Cramer’s rule.

Example:

5x, + 3x, = 30

6x, - 2x, = 8
we]f 2]
6 -
30 3
|A{] = - -84
8 -2
5 30
|4, = - -140
6 8

Therefore, by Cramer’s rule, we have
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- |4l -84 = Al 140

- 28 3.4 149
T AT T s Jand X, = T T 38

Note on Homogeneous - Equation System

A linear-equation system Ax = d is said to be a homogeneous-equation system if d=0,
i if Ax = 0. If |A] 0, x=0is a unique solution of Ax = 0 since x = A0 = 0. This
is a "trivial solution.” Thus, the only way to get a nontrivial solution from the homogeneous-
equation system is to have |A| = 0, i.e. A is singular. In this case, Cramer’s rule is not
applicable. Of course, this does not mean that we cannot obtain solutions; it means only that
we cannot get a unique solution. In fact, it has an infinite number of solutions.

Example:

a,Xx, + a,x, =0
anX, + ayxx, =0

If |A| = 0, then its rows are linearly dependent. As a result, one of two equations is
redundant. By deleting, say, the second equation, we end up with one equation with two
variables. The solutions are

[
I

>
]
|
el

ifa, #0

[
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Solution Outcomes for Ax = d.

d d=0 d=20
|l
|A] =0 The solution is unique and x | The solution is unique and
#z 0 x=0
Equations An infinite number of There is an infinite number
dependent solutions and x # 0 of solutions
A|=0
| | Equations No solution exists [Not applicable]
inconsistent

5.6 Application to Market and National-Income Models

Market Model

The two-commodity model described in Chapter 3 can be written as follows:

c,Py + &P, = -G
v,Py + 7Py = 72

¢ 4

Thus |4| -

Y1 Y2

|A1i "

|A2| 'i

Y,

Thus the equilibrium is given by
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1_) _ |A|| . C,% ~So72 andI—’ _ |A2| _ Y1 1%

: IAl €Y.~ 6T, ? A €Y, M
National-Income Model
Y=c+I,+G,
¢c=a+bY (@a>0,0<b<1)

These can be rearranged into the form

Y-c=1,+G,
bY +c=a

While we can solve Y and ¢ by Cramer’s rule, here we solve this model by inverting the
coefficient matrix.

. 1 -1 1 11
Since A - , then A' - ___
b 1 1-b b 1

Hence

1 i 10+G0+a
1-b bl,+G)+a
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VI. COMPARATIVE STATICS AND THE CONCEPT OF DERIVATIVE
6.1 The Nature of Comparative Statics

Comparative statics is concerned with the comparison of different equilibrium states that
are associated with different sets of values of parameters and exogeneous variables. When the
value of some parameter or exogeneous variable that is associated with an initial equilibrium
changes, we can get a new equilibrium. Then the question posed in the comparative-static
analysis is: How would the new equilibrium compare with the old?

It should be noted that in the comparative-statics analysis we don’t concern with the
process of adjustment of the variables; we merely compare the initial (prechange) equilibrium
state with the final (postchange) equilibrium state. We also preclude the possibility of instability
of equilibrium for we assume the equilibrium to be attainable.

Tt should be clear that the problem under consideration is essentially one of finding a
rate of change: the rate of change of the equilibrium value of an endogenous variable with
respect to the change in a particular parameter or exogeneous variable. For this reason, the
mathematical concept of derivative takes on preponderant significance in comparative statics.

6.2 Rate of Change and the Derivative

We want to study the rate of change of any variable y in response to a change in another
variable x, where the two variables are related to each other by the function

y = f(x)

Applied in the comparative static context, the variable y will represent the equilibrium value of
an endogeneous variable, and x will be some parameter.

The Difference Quotient

We use the symbol A to denote the change from one point, say X, to another point, say
x,. Thus Ax = X, - X,. When x changes from an initial value x, to a new value (X, + Ax), the
value of the function y=f(x) changes from f(x,) to f(x, + Ax). The change in y per unit of
change in x can be represented by the difference quotient




Ay _ f(xo+A%)-f(x)
Ax Ax

Example: y = f(x) = 3x*- 4

Then f(x,) = 3x3 - 4 f(x, + Ax) = 3(x, + Ax)* - 4
and thus,

Ay _ f(x,+ Ax) - f(x)

Ax Ax
_ 3(x,+ Ax)*-4 -(3x3-4) _ 6x,Ax+3(8x)°
Ax Ax
- 6x, + 34x

The Derivative

Frequently, we are interested in the rate of change of y when Ax is very small. In
particular, we want to know the rate of Ay/Ax when Ax approaches to zero. If, as Ax — 0, the
limit of the difference quotient Ay/Ax exists, that limit is called the derivative of the function
y=1(x), and the derivative is denoted by

dy / f = | Ay
R A el il

Remark. Several points should be noted about the derivative: (1) a derivative is a function.
Whereas the difference quotient is a function of x, and Ax, the derivative is a function of x,
only; and (2) since the derivative is merely a limit of the difference quotient, it must also be of
necessity a measure of some rate of change. Since Ax — 0, the rate measured by the derivative
is in the nature of an instantaneous rate of change.

Example: Referring to the function y=3x? - 4 again. Since

4y

= 6x + 3Ax,
Ax




we have fll - 6x.
dx

6.3 The Derivative and the Slope of a Curve

Elementary economics tells us that, given a total-cost function C=1(Q), where C is the
total cost and Q is the output, the marginal cost MC is defined as MC = AC/AQ. It is
understood that AQ is an extremely small change. For the case of a product whose quantity is
a continuous variable, AQ will refer to an infinitesimal change. It is well known that MC can
be measured by the slope of the total cost curve. But the slope of the total-cost curve is nothing
but the limit of the ratio AC/AQ as AQ — 0. Thus the concept of the slope of a curve is merely
the geometric counterpart of the concept of the derivative.

C=1/Q

6.4 The Concept of Limit

In the above, we have defined the derivative of a function y=f(x) as the limit of Ay/Ax
as Ax - 0. We now study the concept of limit. For a given function g=q(v), the concept of
limit is concerned with the question: What value does q approach as v approaches a specific
value? That is, as v = N (the N can be any number, say N=0, N=+ o, -00), what happens
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to lim g(v).
v-N

When we say v = N, the variable v can approach the number N either from values
greater than N, or from values less than N. If, as v = N from the left side (from values less
than N), q approaches a finite number L, we call L the left-side limit of q. Similarly, we call
L the right-side limit of q ifyy = N from the right side. The left-side limit and right-side limit
of q are denoted by lim q and lim g, respectively. The limit of q at N is said to exist if

woN*

weN-

lim q - lim q

weN" weN*

and is denoted by lim q. Note that L must be a finite number. If we have the situation of lim q-o
wv-oN

v-=N

(or -o), we shall consider g to possess no limit or an "infinite limit." It is important to realize
that the symbol oo is not a number, and therefore it cannot be subjected to the usual algebraic
operations.

Graphical Illustrations

There are several possible situations regarding the limit of a function, which are shown

¥
H




Evaluation of a Limit

Let us now illustrate the algebraic evaluation of a limit of a given function = gv).

Example: Givenq = 2 + V%, find lim q. Itisclear that lim q and lim q and v2— 0 as
v=0) veN*

wN"

v—-0. Thus lim q=2.
v-0

Note that, in evaluating lim q, we only let v tends N but, as a rule, do not let v=N.
vN
Indeed, sometimes N even is not in the domain of the function ¢= gv).

Example: q = (1-v®)/(1-v). For this function, N=1 is not in the domain of the function, and
we cannot set v=1 since it would involve division by zero. Moreover, even the limit-evaluation
procedure of letting v-1 will cuase difficulty since (I-v)>0asv—1.

One way out of this difficulty is to try to transform the given ratio to a form in which
v will not appear in the denominator. Since

1-vZ _ (1-v)(1+v) _ 1

1-v a-v) Y v==D).

q-

and v - 1 implies v#1 and (1+v) =2 as v —> 1, we have lim q-2.
vl

Example: Find lim q with q - 2v+3
V-soo v+1
since @Qv+S) _ 2(v+2)+1 _ 2 4 1
+1 v+1 v+l
and lim —1_ - 0, so limq - 2.
v V+1 .
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Formal View of the Limit Concept

Definition of the Limit: The number L is said to be the limit of g=g(v) as v approaches N if,
for every neighborhood of L, there can be found a corresponding neighborhood of N (excluding
the point v=N) in the domain of the function such that, for every value of v in that N-
neighborhood, its image lies in the chosen L-neighborhood. Here a neighborhood of a point
L is an open interval defined by

(L-a,, L+3,) = {q|L-a, < ¢ < L+a} fora, > a,> 0

q=g(v)

6.5 Inequalities and Absolute Values

Rules of Inequalities

Transitivity: a > bandb > cimpliesa > ¢
a>bandb = cimpliesa = ¢
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Addition and Subtraction:

a>b=at+tk>b+k
a=2b atk=2b+k

Multiplication and Division:

ka>kb (k>0)

>b
a = ka<kb (k<0)

Squaring: a > bwithb =20 = a> > b’

Absolute Values and Inequalities

For any real number n, the absolute value of n is defined and denoted by

n ifn>0
jn] = | -n ifn<o
0 if n=0

Thus we can write |x| < n as an equivalent way -n < x < n (n > 0). Also |x] < nif
andonlyif-n < x < n(n = 0).

The following properties characterize absolute values:

i) |m| + |n] = |m + n
if) |m| - [n] = |m-n]
iy mlojm

n| n




Solution of an Inequality

Example: Find the solution of the inequality 3x -3 > x + 1. By adding (3—x) to both sides,
we have

3x-3+3-x>x+4+1+3-x.
Thus, 2x > 4s0x > 2.

Example: Solve the inequality | 1-x| < 3. From |1-x| < 3, wehave-3 < 1-x < 3, or -
4 < x < 2. Thus 4 =>2x=>-2,ie.-2 £x <4

6.6 Limit Theorems

Theorems Involving a Single Equation

Theorem I: If @ = av + b, then lim q - aN+b

v-=N

Theorem II: If q = g(v) = b, then limq -b

=N

Theorem III: lim v - Nt

N

Example: Givenq = 5v + 7,then limq =52 +7 = 17
v—2

Example: q = v* Find lim q

w2

By Theorem III, we have limq - 2° - 8.
v--2

Theorems Involving Two Functions

For two functions q, = g(v) and q, = h(v), if limgq, =L, and limq, - L,, then we have
weN v=N




the following theorems:

Theorem IV: lim (q,+q) - L, +L,
N

Theorem V: lim (qq,) - LL,
w-N

L
Theorem VI: lim . - 1_‘ (L,=0)

weN q2 2

1+v
+v

Example: Find lim
w0

Since lim (1+v) =1 and lim 2+v) =2, SO
v v=0

Remark. Note that L, and L, represent finite numbers; otherwise theorems do not apply.

Limit of a Polynomial Function

3 2 o
lim (a,+a,v+a,v’+.+av")

v-N

- a,+aN+aN?+_ +aN"

6.7 Continuity and Differentiability of a Function

Continuity of a Function

A function gq=g(v) is said to be continuous at N if limq exists and
v—-N

lilzl gv) = e).
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Thus the term continuous involves no less than three requirements: (1) the point N must be in

the domain of the function; (2) lim g(v) exists; and (3) lim g(v) - g(N).
v-N v--N

Remark: It is important to note that while—in discussing the limit of a function--the point (N,L)
was excluded from consideration, we are no longer excluding it in the present context. Rather,
as the third requirement specifically states, the point (N,L) must be on the graph of the function
before the function can be considered as continuous at point N.

Polynomial and Rational Functions

From the discussion of the limit of polynomial function, we know that the limit exists
and equals the value of the function at N. Since N is a point in the domain of the function, we
can conclude that any polynomial function is continuous in its domain. By those theorems
involving two functions, we also know any rational function is continuous in its domain.

2
Example: q -~
vi+l
lim 4v?
2 2
Then lim —3Y_ - =¥ - 4N

wN vi+1l  lim (v3+1) N?+1

weN

Example: The rational function

vi+vi-4v-4
vi-4

is not defined at v=2 and v=-2. Since v=2,-2 are not in the domain, the function is
discontinuous at v=2 and v=-2, despite the fact that its limit exists as v - 2 or -2.

Differentiability of a Function

By the definition of the derivative of a function y = f(x), at x, we know that f'(x,)
exists if and only if the lim of Ay/Ax exists at x=x, as Ax = 0,i.e.,
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Ay

f(x) - lim 2Y
(%) A:S Ax
f(x, + Ax) - f
= tim (Rt A0 ) i fferentiability condition]
Ax—0 Ax

On the other hand, the function y = f(x) is continuous at X, if and only if '

lim f(x) = f(x,) [continuity condition].
XX,

We want to know what is the relationship between the continuity and differentiability of a
function. Now we show that the continuity of f is a necessary condition for its differentiability.
But this is not sufficient.

Since the notation x — x, implies X ¥ Xo, SO X - X, is a nonzero number, it is permissible to
write the following identity:

f(x) - f(xy) x-

X —-X,

fx) - f(xp) = X

Taking the limit of each side of the above equation as x — X, yields the following results:

Left side = lim (f(x) -f(xy) = lim f(x)-f(xy)
X'.xn X"'Xv

Right side - lim SO G x-x

X%, X-Xp x-+%,

= fi(xy)[lim x -x,]

XX,

- f(x) (X=X = 0
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Thus lim f(x)-f(x) = 0. So lim f(x) - f(x) which means f(x) is continuous at x = x,.
X“'Xv XX,

Although differentiability implies continuity, the converse is not true. That is,
continuity is a necessary, but not sufficient, condition for differentiability. The following
example shows this fact.

Example: f(x) = |x].
This function is clearly continuous at x=0. Now we show that it is not differentiable

at x=0. This involves the demonstration of a disparity between the left-side and the right-side
limits. Since, in considering the right-side limit X >0, thus

lim f®-fO _im X cfim1 -1
x~0° X"O x=0- X x-=0°

On the other hand, in considering the left-side limit, x <0; thus

lim f® O i X g X
x=0" X~ x=0- X =0 X
= lim -1 - -1
x=0"
Thus, lim 2Y does not exist, this means the derivative of y = | x j -does not exist at x=0.
x~0"
y

y=|x—21+1

-
+
<+

]




VII. RULES OF DIFFERENTATION AND THEIR USE IN COMPARATIVE STA’IIC‘S

The central problem of comparative-static analysis, that of finding a rate of change, can
be identified with the problem of finding the derivative of some function y=£(x), provided only
a small change in x is being considered. Before going into comparative-static models, we begin

some rules of differentiation.

7.1 Rules of Differentiation for a Function of One Variable

Constant-Function Rule

If y=f(x)=c, where c is a constant, then

dy

L=y =f -0

dx y
Proof. 3 _ jim &0 -f® |y €7C L gim -0,

dx x'—-x X/-X x/~ex X/'X x’-ox
We can also write dy _ _d_f as

dx dx

d d

—y = —f.

& T &

So we may consider d/dx as an operator symbol.

Power-Function Rule

If y=f(x)=x* where a is any real number - < a < oo,

Iiix f(x) = ax*'.




d d

. _ do_d;_g
Remark. (i) Ifa = 0, then =* i 1
@i) If a = 1, theny = x. Thus %-1.

For simplicity, we prove this rule only for the case where a=n, where n is any positive integer.

since
X" - X5 = (X-X)(X*! + xox®2 + x3x*% + ... + x5),
then
"_x(;‘ n-1 n-2 2. n-3 o-1
= X2+ X XTI+ XX+ +Xg
Thus,

f(x) - boxg
P(xy) - fim SO IRy I
XX, X—-Xo x=x, X—X,

n-1

= lim [x* +xx* 2+ x0x" 2+ L+ Xg ]

S RS SRR HEENES S

Example: Suppose y=f(x)=x>. Theny’ = -3x™*.

Example: Suppose y=-f(x)-yx. Then y’- Fdi x%=thx",

f(2) -1 L - “/742_'

2

In particular, we can know that




Power-Function Rule Generalized

If the function is given by y=cx*, then % - _:.; - acx*’.

Example: Suppose y=2x. Then :_i = 2x!1 = 2x% =2

Example: Suppose y=4x>. Then _:.ii - 4-3x*! - 12x2
Example: Suppose y=3x?2. Then dy _ _ext - -6x7.

X

7.2 Rules of Differentiation Involving Two or More Functions of the Same Variable
Let f(x) and g(x) be two differentiable functions. We have the following rules:

Sum-Difference Rule

L 10 £ 801 - 302 1860 = PO ££/0)

This rule can easily be extended to more functions

d [ =~ d
FX- [E f.(x)] = E -&fi(x) = E f:(x)

il i=1 i=1

Example: di [ax?+bx+c] = 2ax+b
x

Example: Suppose a short-run total-cost function is given by ¢ = Q*-4Q* + 10Q + 75.
Then the marginal-cost function is the limit of the quotient AC/AQ, or the derivative of the C
function:
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dC
= -3Q*-4 10.
0 Q Q+

In general, if a primitive function y =f(x) represents a total function, then the derivative
function dy/dx is its marginal function. Since the derivative of a function is the slope of its
curve, the marginal function should show the slope of the curve of the total function at each
point x. Sometimes, we say a function is smooth if its derivative is continuous.

Product Rule

Hdi[f(X)g(x)] - f(x)dixg(x) - 8X) )

- fx)g'(x) + g®f (x)

d L f0g() - f(xg(xg)
3 O] = lim——

- lim f(x)g(x) - f(x)g(x,) + f(x)g(xy) ~ f(xx)8(%,)

X-*X, X-X,
- Lim f(x)[g(x) - g(xy] + g(xf(x) - f(xy)]
X%, XXy

gx)-8(xg) |
X- xo

limg(x) [f(x) - f(xy)]

= limf(x)
x-+X, X ~Xg

XKy

f(x)g'(xy) + 2(xf (x9)

Since this is true for any x=x,, this proves the rule.
Example: Suppose y = (2x + 3)(3x%. Let f(x) = 2x + 3 and g(x) = 3x% Then f'(x) = 2

g'(x) = 6x. Hence,

a“; [2x+3)(3x)] - (2x+3)6x+3x>2

= 12x2 + 18x + 6x2

- 18x2 + 18x
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As an extension of the rule to the case of three functions, we have

dix[f(x)g(x)h(x)] = f(x)gEhx) + f(x)g'(x)h(x)

+ f(x)g(x)h'(x).

Finding Marginal-Revenue Function from Average-Revenue Function
Suppose the average-revenue (AR) function is specified by

AR = 15-Q.
Then the total-revenue (TR) function is

TR = AR -Q = 15Q - Q>

Thus, the marginal-revenue (MR) function is given by

MR = 3 TR - 15 - 2Q.
dQ

In general, if AR = f(Q), then

TR = AR - Q = Qf(Q). Thus

MR = 9 TR - f(Q) + QF(Q).

dQ

From this, we can tell relationship between MR and AR. Since
MR - AR = [f(Q) + Qf'(Q)] - f(Q) = Qf'(Q),

they will always differ the amount of Qf'(Q). Also, since




AREE-E—P,
Q Q

we can view AR as the inverse demand function for the product of the firm. If the market is
perfectly competitive, i.e., the firm takes the price as given, then P=f(Q)=constant. Hence
£(Q) = 0. Thus MR - AR = 0 or MR = AR. Under imperfect competition, on the other
hand, the AR curve is normally downward-sloping, so that f'(Q) < 0. Thus MR < AR.

Quotient Rule

d [ f(x)] _ Fmgm - fx)g'x)
dx | 8(x) 2°(x)

We will come back to prove this rule after learning the chain rule.

Example:

) d | 2x-3 ] _ 2(x+1)-(2x-3)(1)
dx | x+1 x+1)?

3
(x+ 1)?

iy L [ 5x ] _ 5(x*+1)-5x(2x) _ 5(1-x%)
d: (X2+ 1)2 (X2+ 1)2

... d [ax?+b 2ax(cx) - (ax>+b)c
(iii) — -
dx | cx (cx)?
_ c(ax*-b) _ ax*-b
(cx)? cx?

Relationship Between Marginal-Cost and Average-Cost Functions

As an economic application of the quotient rule, let us consider the rate of change of

average cost when output varies.

Given a total cost function C = C(Q), the average cost (AC) function and the marginal-
cost (MC) function are given by
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AC = EE)&) Q> 0)

and
MC = C'(Q).

The rate of change of AC with respect to Q can be found by differentiating AC:

d[c@] . cQQ-c@ _ L [C,(Q)_C(Q)]_
Q| Q % Q Q

From this it follows that, for Q > 0.

d > >
9 AC - 0iff MC(Q) - AC(Q).
dQ < <

100—

90 —

. Capz
80— MC = 3Q2 —24Q + 60
70—

60

Dollars

20— AC=Q%*—12Q + 60

7.3 Rules of Differentiation Involving Functions of Different Variables

Now we consider cases where there are two or more differentiable functions, each of
which has a distinct independent variable.




Chain Rule

If we have a function z=1(y), where y is in turn a function of another variable x, say,
y=g(x), then the derivative of z with respect to x is given by

dz _ dz  dy _ / .
TG & f(y)g'(x). [Chain Rule]

The chain rule appeals easily to intuition. Given a Ax, there must result a corresponding Ay
via the function y=g(x), but this Ay will in turn being about a Az via the function z=1(y).

Proof. Note that

Since Ax — 0 implies Ay — 0, we have

dz dz dy , y
—_ - L = f . .E.D.
&4y & eg'(x) Q

In view of the function y=g(x), we can express the function z=1f(y) as z=1(g(x)), where
the contiguous appearance of the two function symbols f and g indicates that this is a compose
function (function of a function). So sometimes, the chain rule is also called the composite-
function rule. As an application of this rule, we use it to prove the quotient rule.

Let z=y"' and y=g(x). Thenz = g'(x) = 1/g(x) and

dz _dz dy | 1g - - 0
dx dy dx y? g4x)

Thus,
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d | fx)| _ d -
?ﬁ['@] Lt - gl

- Pg® + f(x) % g @]

- f -1 + fi __gSXl

e ') + f(x) [ £

- f’(x)g(x)—f(x)g’(x) QED
g¥(x)

Example: If z = 3y?and y = 2x + 5, then

dz _ dz dy _ 6y2) - 12y - 12(2x + 5)

dx dy dz

Example: Ifz =y-3andy = y = x’, then

dz _dz dy .3
dx dy dz

x? - 3x?

Example: z = (x* + 3x-2)"". Letz = y“andy = x* + 3x - 2. Then

dz dz dy
2 - 222 217y - (2x+3
dx dy dx y®@x+3)

- 17(x2+3x -2)(2x +3).

Example: Suppose TR = f(Q), where output Q is a function of labor input L, or Q = g(L).
Then, by the chain rule, the marginal product of labor (MP) is ‘

_dR _ dR dQ _ &ve’
MP - "3 @ f(Qg'(L)

- MR - MP,

Thus the result shown above constitutes the mathematical statement of the well-known result in
economics that




MP, = MR - MP,

Inverse-Function Rule

If the function y=f(x) represents a one-to-one mapping, i.e., if the function is such that
a different value of x will always yield a different value of y, then function f will have an
inverse function x = f(y). Here, the symbol f* is a function symbol which signifies a function
related to the function f: it does not mean the reciprocal of the function f(x). When x and y
refer specifically to numbers, the property of one-to-one mapping is seen to be unique to the
class of function known as monotonic function. A function f is said to be monotonically
increasing (decreasing) if x, > X, implies f(x,) > f(x,) [f(x,) < f(x,)]. In either of these cases,
an inverse function f exists.

A practical way of ascertaining the monotonicity of a given function y =£(x) is to check
whether the f'(x) always adheres to the same algebraic sign for all values. Geometrically, this
means that its slope is either always upward or always downward.

Example: Suppose y = 5x + 25. Since y’ = 5 for all x, the function is monotonic and thus
the inverse function exists. In fact, it is given by x = 1/5y - 5.

Generally speaking, if an inverse function exists, the original and the inverse functions
must be both monotonic. Moreover, if f* is the inverse function of f, then f must be the inverse
function of f!. For inverse functions, the rule of differentiation is

d | 1
dy dy
dx
Proof. 9% - lim A o jim L - _1 -1 QED.
el Sy Ry
Ax X-*X, Ax
Example: Supposey = x* + x. Sincey’ = 5x* + 1, s0 a __1
dy Sx%+1

7-10




7.4 Partial Differentiation

So far, we have considered only the derivative of functions of a single independent
variable. In comparative-static analysis, however, we are likely to encounter the situation in
which several parameters appear in a model, so that the equilibrium value of each endogeneous
variable may be a function of more than one parameter. Because of this, we now consider the
derivative of a function of more than one variable. ’

Partial Derivatives

Consider a function
Y = f(xhx29 e ,xn)’

where the variables x;(i=1,2,...,n) are all independent of one another, so that each can vary by
itself without affecting the others. If the variable x; changes Ax; while the other variables
remain fixed, there will be a corresponding change in y, namely, Ay. The difference quotient
in this case can be expressed as

Ay f(x,, X5 n X,_, X, + AX, Xy, X)) - (X, 00 X))
Ax, Ax, '

If we take the limit of Ay/Ax;, that limit will constitute a derivative. We call it the partial
derivative of y with respect to x;, The process of taking partial derivatives is called partial

differentiation. Denote the partial derivative of y with respect to x; by g_z, i.e.

i

9 _jim AY,
9x; axw0 AX;

Also we can use f, to denote dy/dx,. If the function happens to be written in terms of
unsubscripted variables, such as y=f(u,v,w), one also uses, f,, f,, f, to denote the partial
derivatives.
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Techniques of Partial Differentiation

Partial differentiation differs from the previously discussed differentiation primarily in
that we must hold the other independent variables constant while allowing one variable to vary.

Example: Suppose y = f(x,,x;) = 3x} + x,x, + 4x3. Find dy/dx, and dy/ox,.

dy _ o ..

- — =6

ox, = dx, Xk
dy of 2
—_— — 8
ox, = ox, Xt S

Example: For y = f(u,v) = (u+4)(3u+2v), we have

ay

= = f -« Bu+2v)+(u+4)-3
du
= 6u+2v+12
- 2(3u+v+6)
?_y = f - 2(u+4)
av

When u=2 and v=1, then f,(2,1) = 2x13 = 26 and f(2,1) = 2x6 = 12.

Example: Giveny = (3u - 2v)/(u* + 3v),

dy _ 3(u?+3v)-(3u-2v)(2u) _ —3u+4uv +9v
du (u2+3v)? u?+3v)?

dy _ -2(u*+3v)-(3u-2v)-3 _ -u(2u+9)
av (u?+3v)? (u?+3v)?
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7.5 Applications to Comparative-Static Analysis
Equipped with the knowledge of the various rules of differentiation, we can at last tackle

the problem posed in comparative-static analysis: namely, how the equilibrium value of an
endogeneous variable will change when there is a change in any of the exogeneous variables or

parameters.
Market Model
For the one-commodity market model:

Q.=a-bp (a,b > 0)
Q, =c +dp (c,d > 0),

the equilibrium price and quantity are given by

These solutions will be referred to as being in the reduced form: the two endogeneous variables
have been reduced to explicit expressions of the four independent parameters, a, b, ¢, and d.

To find how an infinitesmal change in one of the parameters will affect the value of P
or Q, one has only to find out its partial derivatives. If the sign of a partial derivative can be
determined, we will know the direction in which P will move when a parameter changes; this
constitutes a qualitative conclusion. If the magnitude of the partial derivative cah be
ascertained, it will constitute a quantitative conclusion. To avoid misunderstanding, a clear
distinction should be made between the two derivatives, say, aé/aa and 8Q,/0a. The latter
derivative is a concept appropriate to the demand function taken alone, and without regard to
the supply function. The derivative 8Q/da, on the other hand, to the equilibrium quantity which
takes into account interaction of demand and supply together. To emphasize this distinction,
we refer to the partial derivatives of P and (_2 with respect to the parameters as comparative-
static derivatives.

7-13




For instance, for P, we have

P _ 1

da b+d

ap _ _(a+o)

db (b +d)?

P _ 1

ac b+d

aP _ —(a+c)

ad (b+d)z
P oP gp 9P
9o .2 >0and - - — <0

Thus =2 = 3% 3  ad

Q
(Increase in a) ! (Increase in b)
a :
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National-Income Model

Y=C+1+G, (equilibrium condition)
C=oa+BX-T (@>0,0<B8<1

T=+v+0Y (y>00<6<1
where three endogeneous variables are the national income Y, consumptidn C, and taxes T.

The equilibrium income (in reduced form) is

-  a-fy+1 +G,
1-4+p8

Thus,
_6_?_ - _so [the government-expenditure multiplier]
G, 1-p+ps
Y __ B <o
3y 1-B+Bd
6? - —6(Q—B‘Y+I°+Go) - 'ﬁgv <0
ab (1-B+B8)* 1-B+B5

7.6 Note on Jacobian Determinants

Partial derivatives can also provide a means of testing whether there exists functional
(linear or nonlinear) dependence among a set of n functions in n variables. This is related to

the notion of Jacobian determinants.

Consider n differentiable functions in n variables not necessary linear

YI = f‘(xl’xzy"wxn.)
YZ = P(xl’xb'“’xn)

.......................

where the symbol f' denotes the ith function, we can derive a total of n® partial derivatives.
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ay,
i (=1,2,0m; j=1,2,..1).
axj

We can arrange them into a square matrix, called aJ acobian matrix and denoted by J, and then
take its determinant, the result will be what is known as a ] acobian determinant (or a Jacobian,
for short), denoted by |J}:

Mo M
O,
W % M
17| = Wvyer-dD | | o,
Xy X5 X,) : .
ayn ayn ayn
ax, ox,  ox,
Example: Consider two functions:
y: = 2x; + 3x,
y, = 4x} + 12x,x, + 9x3
Then the Jacobian is
& M
; ax; Ox, 2 3
o dy, dy,| |@®x+12xv) (12x,+18x)
ox, ax,

A Jacobian test for the existence of functional dependence among a set of n functions
is provided by the following theorem:

Theorem: The Jacobian |J | defined above will be identically zero for all values of x,, X,,...,X,
if and only if the n functions f',f%,...,f* are functionally (linear or nonlinear) dependent.

For the above example, since
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_ a(ypyz)

v
O(x,,x,)

- (24x,+36x,) - (24x,+36x,) - 0

for all x, and x,, y* and y® are functionally dependent. In fact, y, is simply y, squared.
Example: Consider the linear-equation system: Ax = d, i.e., |
aX; + apX, + ...+ ax, = d,

ayXy + apX, + ...+ ayX,

I
(=9
~

We know that the rows of the coefficient matrix A are linearly dependent if and only if |A|
= (. This result can now be interpreted as a special application of the Jacobian criterion of
functional dependence.

Take the left side of each equation Ax = d as a separate function of the n variables
Xy,Xs,...,X,, and denote these functions by y,,ys,-..,y.. Then we have dy,/dx; = a;. In view of
this, the elements of |J| will be precisely the elements of A, i.e., |J| = |A| and thus the
Jacobian criterion of functional dependence among y,,Ys,...,Y, is equivalent to the criterion |A|
= ( in the present linear case.
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VIII. COMPARATIVE-STATIC ANALYSIS OF GENERAL-FUNCTIONS

The study of partial derivatives has enabled us, in the preceding chapter, to handle the
simple type of comparative-static problems, in which the equilibrium solution of the model can
be explicitly stated in the reduced form. We note that the definition of the partial derivative
requires the absence of any functional relationship among the independent variables. As applied
to comparative-static analysis, this means that parameters and/or exogeneous variables which
appear in the reduced-form solution must be mutually independent.

However, no such expediency should be expected when, owing to the inclusion of
general functions in a model, no explicit reduced-form solution can be obtained. In such a case,
we will have to find the comparative-static derivatives directly from the originally given
equations in the model. Take, for instance, a simple national-income model with two
endogeneous variables Y and C:

Y=C+1 + G, [equilibrium condition]
C =C({,T,) [T,: exogeneous taxes]

which reduces to a single equation
Y =C¥,T)+ 1, + G,

to be solved for Y. We must, therefore, find the comparative-static derivatives directly from
this equation. How might we approach the problem?

Let us suppose that an equilibrium solution Y does exist. We may write the equation
Y = YQ,,G,,T.)

even though we are unable to determine explicitly the form which this function takes.
Furthermore, in some neighborhood of Y, the following identical equality will hold:

Y = C(Y,T) + I, + G..
Since Y is a function of T,, the two arguments of the C function are not independent. T, can
in this case affect C not only directly, but also indirectly via Y. Consequently, partial

differentiation is no longer appropriate for our purposes. In this case, we must resort to total
differentiation (as against partial differentiation). The process of total differentiation can lead
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us to the related concept of total derivative. Once we become familiar with these concepts, we
shall be able to deal with functions whose arguments are not all independent so that we can
study the comparative-statics of a general-function model.

8.1 Differentials

The symbol dy/dx has been regarded as a single entity. We shall now reinterpret as a
ratio of two quantities, dy and dx.

Differentials and Derivatives

Given a function y=1(x), we can use the difference quotient Ay/Ax to represent the ratio
of change of y with respect to x. Since

8.1) Ay = [%]Ax

the magnitude of Ay can be found, once the Ay/Ax and the variation Ax are known. If we
denote the infinitesimal changes in x and y, respectively, by dx and dy, the identity (8.1)
becomes |

dy
ax

8.2 dys= [ ]dx or dy = f(x)dx

The symbols dy and dx are called the differentials of y and x, respectively.

Dividing the two identities in (8.2) throughout by dx, we have

@) o [_d_y] or @-f’(x)
(dx) dx (dx)

This result shows that the derivative dy/dx = f'(x) may be interpreted as the quotient of two
separate differentials dy and dx.

On the basis of (8.2), once we are given {'(x), dy can immediately be written as f'(x)dx.
The derivative f'(x) may thus be viewed as a "converter" that serves to convert an infinitesimal
change dx into a corresponding change dy.




Example: Giveny = 3x? + 7x - 5, find dy. Since f'(x) = 6x + 7, the desired differential
is

dy = (6x + 7)dx
Remark. The process of finding the differential dy is called differentiation. Recall that we have
used this term as a synonym for derivation. To avoid confusion, the word "differentiation" with

the phrase "with respect to x" when we take the derivative dy/dx.

The following diagram shows the relationship between "Ay" and "dy"

y
! y=f(x)
|
B
o
; D
A
- |
ll AX
—&
) %o *
Ay CB
- |22 Ax = Z_AC = C
Ay [Ax] ach B
dy = [SX]Ax-EEAc-CD
dx AC

which differs from Ay by an error of DB.

Differentials and Point Elasticity

As an illustration of the application of differentials in economics, let us consider the
elasticity of a function. For a demand function Q=f(P), for instance, the elasticity is defined
as (AQ/Q)/(AP/P). Now if AP — 0, the AP and AQ will reduce to the differential dP and dQ,
and the elasticity becomes




dQ/Q _ dQ/dP _ marginal demand function
dP/Q Q/P average demand function

€ =

In general, for a given function y=f(x), the point elasticity of y with respect to x as

_ dy/dx _ marginal function

€ -
™ y/x average function

Example: Find ¢, if the demand function is Q = 100 - 2P. Since dQ/dP = -2 and Q/P =
(100-2P)/2, so ¢; = (-P)/(50-P). Thus the demand is inelastic (Iedl < 1)for0 <P < 25,
unit elastic (] e,] = 1) for P=25, and elastic for 25 < P < 50.

8.2 Total Differentials

The concept of differentials can easily be extended to a function of two or more
independent variables. Consider a saving function

S = 8(Y,i)
where S is savings, Y is national income, and i is interest rate. If the function is continuous

and possesses continuous partial derivatives, the total differential is defined by

ds - gy + 8y
Y

di

That is, the infinitesimal change in S is the sum of the infinitesimal change in Y and the
infinitesimal change in i.

Remark. If i remains constant, the total differential will reduce to a partial differential:
3 _ [ds
W dY i constant
Furthermore, general case of a function of n independent variables y=1(x,,X,,...,X,), the total

differential of this function is given by

of of .
dx, = ¥ fdx
ox, ox, 2 ox, *a o i

in which each term on the right side indicates the amount of change in y resulting from an
infinitesimal change in one of the independent variables.
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Similar to the case of one variable, the n partial elasticities can be written as

of X .
€, = 3;‘ ¥ (i=1,2,..,n).

8.3 Rules of Differentials

Let ¢ be constant and u and v be two functions of the variables x,,x,,...,x,. Then the
following rules are valid:

Il

Rulel. dc =0

Rule II. d(cu®) = cau*'du

Rule III. d(u + v) = du + dv
Rule IV. d(uv) = vdu + udv
Rule V. d(u/v) = 1/v? (vdu - udv)

Example: Find dy of the functiony = 5x3 + 3x,. There are two ways to find dy. One is the
straightforward method by finding 3f/dx, and 8f/dx,: 8f/dx, = 10x, and 3f/dx, = 3, which will
then enable us to write

dy = fdx + f,dx = 10x,dx, + 3dx,.
The other way is to use the rules given above by letting u=5x? and v=3x,:

d(5x3) + d(3x,) [by Rule III]
10x,dx, + 3dx, [by Rule II].

dy

Example: Find dy of the function y = 3x? + x,x3. Since f, = 6x, + x% and f, = 2x,x,, the
desired differential is

dy = (6x, + x)dx + 2x,x,dx,.
By applying the given rules, the same result can be arrived at
dy = d(3x3) + d(x,x%)

= 6x,dx, + x3dx, + 2x,x,dx,
= (6x, + x)dx, + 2x,x,dx,




Example: For the function

X tX,
2x,2 ’
- 2x

£ - _(’_‘%_32 af, - L,

2x; 2x;
(x,+2 1
then y - - dx, + — d

2x,3 ' 2){,2 &

The same result can also be obtained by applying the given rules:

dy - L [2x¥dex, +x) - (x, +x)d@xD)]  [by Rule V]
4x,
- # [2x,2(dxl+dx,)—(xl+x2)4x,dx1]
1
- L [-2x,(x, +2x)dx, + 2xdx,]
4x,

(x, +2x,)

3
2x;

dx, + — d
1 2x!2 X‘Z

For the case of more than two functions, we have

Rule VI. d(u + v £ w) = du + dv & dw
Rule VII. d(uvw) = vwdu + uwdv + uvdw.

8.4 Total Derivatives
Consider any function

y = f(x,w) where x=g(w).

Unlike a partial derivative, a total derivative does not require the argument x to main constant
as w varies, and can thus allow for the postulated relationship between the two variables. The
variable w can affect y through two channels: (1) indirectly, via the function g and then f, and
(2) directly, via the function. Whereas the partial derivative f,, is adequate for expressing the
direct effect alone, a total derivative is needed to express both effects jointly.

8-6




To get the total derivative, we first get the total differential dy = fdx + f.dw.
Dividing both sides of this equation by dw, we have the total derivative

dy _¢ dx ¢ dw
dw * dw v dw
-9 dx | 9y
ox dw ow

Example: Find the dy/dw, given the function

y = f(x,w) = 3x - w? where g(w) = 2w* + w + 4.

9 g 9 2 3@We1) - 2w - 10w + 3.
dw dw

As a check, we may substitute the function g into f, to get
y=3Q2w + w + 4)-w = 5w + 3w + 12

which is now a function of w alone. Then

9 _jow+3
dw

the identical answer.

du du du

- + (¢).
% "% e E@

Example: Find du/dc, given u = u(c,s) with s=g(c). Then

A Variation on the Theme
For the function
y = f(Xl,Xz,W)

with x, = g(w) and x, = h(w), the total derivative of y is given by

dy _ of dx, of dx, = of
dw  9x, dw 9x, dw 3w’




Example: Let the production function be

Q = QK,L,t)

where K is the capital input, L is the labor input, and t is the time which indicates that the
production function can shift over time in reflection of technological change. Since capital and
labor can also change over time, we may write

K = K() and L = L(t).

Thus the rate of output with respect to time can be denoted as
dQ_anK+6QdL+8Q
dt 9K dt 9L dt ot
Another Variation on the Theme
Now if a function is given,
y = f(xl, x2,u’v)
with x, = g(u,v) and x, = h(u,v), we can find the total derivative of y with respect to u (while

v is held constant). Since

dy-_"’idx,+£dx2+ﬁdu+gfdv.
v

ax, ox, du
dividing both sides of the above equation by du, we have

dy _ aydn oy dm gydu gy dv
du 9x,du  9x,du  Qudu dvdu
d d
-ﬁ_f_‘. +i)’__§ +ﬂ ﬂ-o since v is constant
dx, du dx, du ou du

Since v is held constant, the above is the partial total derivative, we redenote the above equation
by the following notation:

§y _ 9y ax,+ay 8x2+ay

S ox Bu  Ox, Bu  du

Remark. In the cases we have discussed, the total derivative formulas can be regarded as
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expressions of the chain rule, or the composite-function rule. Also the chain of derivatives does
not have to be limited to only two "links"; the concept of the total derivative should be
extendible to cases where there are three or more links in the composite function.

8.5 Derivatives of Implicit Functions

The concept of total differentials can also enable us to find the derivatives of the so-
called "implicit functions."”

Implicit Functions

A function given in the form of y = f(x;,X,,-.-,Xs) i8 called an explicit function, because
the variable y is explicitly expressed as a function of x. But in many cases y is not an explicit
function of X,,X,,...,X,, instead, the relationship between y and x,,...,X, is given with the form
of

F(Y,X1,Xz,...,X,) = 0.

Such an equation may also be defined as implicit function y = f(x,,X,,...,X,). Note that an
explicit function y = f(x,,...,X,) can always be transformed into an equation F(y,x,,...,x,) =
y-f(X1,X,...,Xy) = 0. The reverse transformation is not always possible.

In view of this uncertainty, we have to impose a certain condition under which we can
be sure that a given equation F(y,x,,...,x) = 0 does indeed define an implicit function
y=1(X;,X,,.-.,X,). Such a result is given by the so-called "implicit-function theorem."

Implicit-Function Theorem. Given F(y,X;,Xs,...,Xy) = 0, if (a) the function F has continuous
partial derivatives F,F ,F,,..F,, and if () at a point (Yo,Xs0,.--,Xg0) Satisfying
F(Yo,X105----Xw) = 0, F, is nonzero, then there exists an n-dimensional neighborhood of
(X405---sXm0), N, in which y is an implicitly defined function of variables x,,...,X,, in the form of
y=£(x,,...,Xy), and F(y,x,....x)) = 0 for all points in N. Moreover, the implicit function fis
continuous, and has continuous partial derivatives f,,...,f,.

Derivatives of Implicit Functions
Differentiating F, we have dF=0, or

Fdy + Fdx, + ... + Fdx, = 0.




Suppose that only y and x, are allowed to vary. Then the above equation reduce to F,dy + .Fid'y
= 0. Thus

iy-L =
dxl variable constant

In the simple case where the given equation is F(y,x) = O, the rule gives

#le

il i-1,2,..n)
Py SO | |

. 5
&  F,
F —17%x?
Example: Suppose y - 3x* = 0. Then dy | _ Do J 2128 o
dx F, 1

In this particular case, we can easily solve the given equation for y, to get y=3x* so that dy/dx
= 12x%.
Example: F(x,y) = x> + y*-9 = 0. Thus,

dy__Fx__Zx__i. (y#0)
y

dx F, 2y

Example: For F(y,x,w) = y’x*> + W’ + yxw - 3 = 0, we have

dy _ _ Fo_ _ 2yxeyw
ox F, 3y +xw

In particular, at point (1,1,1), dy/dx = -3/4.

Example: Assume that the equation F(Q,K,L) = 0 implicitly defines a production function
Q=f(K,L). Then we can find MP and MP, as follows:

F
MP, = 9Q . _ x

] 4 F,

and

aQ__FL

MP, = =
Y oL F,

In particular, we can also find the MRTS, x which is given by

8-10




K F,
MRTS i
= 3L F,

Extension to the Simuitaneous-Equation Case

Consider a set of simultaneous equations.

FI(YI:-"’Yn; xls"'rxm) 0
FAYy,-.5Yas XiperesXp) = 0
Fn()’l" ’Yn; xl7 ’xm) =

dF! dF! JF! dF! oF!
—d —d dy = - | —d e+ —d
M L e b R xm]
aF? aF? JF? aF? dF?
—d —_—d dy = - | —d . —d
ay, nr ay? Y2 : 9y, Vs 1 e ox,, xm]
oF* dF* oF*® dF® dF"
—d d dy = - d d
ay, T ey, T gy e - xm]
Or in matrix form,
B_F' aF! oF! aF' oF' QF:
dy, dy, dy, dy, ox, Ox, ox_ ds,
o o ||, o o or | |,
ay, oy, oy, 2| L _ | T ox ax 2
| NEr L
oF apr ar | L o oF aF
ay, dy, 0y, ox, ox, ~ ax,

If we want to obtain partial derivatives with respect to x;, we can let dx,=0 for t#i. Thus, we
have the following equation:
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aF' oF'  oF 24 oF'
W, ox, o,
3F* oF*  oF* 3y, 3F?
E il I B O B 75
gF" 3F"  3F" 3y, aF"
L a—yl _a;’; ay, i ox, L ax, ]

Now suppose the following Jacobian determinant is nonzero:

oFt oFt  aF
¥ ¥ O,
1 p2 L
AL | oy, T |0
a()’p)'z,---,)',.) . )

Vi =

9F" OF" 3"
% % 9,

Then, by Cramer’s rule, we have

an - |Jii|

ox,  [J]

(j = 1’2)"-,nv 1= 1,2,...,m).
where |Ji| is obtained by replacing the jth column of |J| with

/
dF' 9F? JdF®"
ol -l

1

Of course, we can find these derivatives by inversing the Jacobian matrix J:
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. N o -1 r
ay, aFt 9F! aF! | dF! ]
ox, Jy, 9y, o, ox,
ay, oF* aF? 9F? oF?
W |- | W W, W, ox;
ay, aF™ JF*" aF" aF"
| 5 | S | ox; |

In the compact notation,

ady -1
— = -J'F,
ox, !

Example: Let the national-income model be rewritten in the form:

Y-C-1,-G,=0
C-a--T)=0
T-y-6Y=0

Since

oF' oF' oF!

8y oC or

1 -10
aF* dF* oF?
J - == —|-|-B 1 - 1-B+ps.
-5 36 55 |-|® 1 p|-1-B+p
-3 0 1
8y a8Cc or

Suppose all exogeneous variables and parameters are fixed except G,, then we have

1 -10| | 8¥RG, 1
818 aciaG, | - | o0
-6 01 aTIaG, 0

so that we can solve the above equation for, say, 6?/6G° which comes out to be
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01
¥ _ |0 o0 1 1
3G 1 1-p+p3

8.6 Comparative Statics of General-Function Models

Consider a single-commodity market model:

Q=Q [equilibrium condition]
Q. = D(®,Y,) [8D/3P < 0; 8D/3Y, > 0]
Q, = S(P) [dS/dP > 0]

where Y, is an exogeneously determined income. From this model, we can obtain a single
equation:

D®,Y,) - S(P) = 0.

Even though this equation cannot be solved explicitly for the equilibrium price T’, by the
implicit-function theorem, we know that there exists the equilibrium price P which is the
function of Y,

P = P(Y,)
such that

D®,Y,) - S(P) = 0.

It then requires only a straight application of the implicit-function rule to produce the
comparative-static derivative, dP/dY:

P F/aY, aD/aY,

av, aF/GP  OD/GP-ds/dP

Since (—2 = S(f'), thus we have

dQ _ ds dP

daY, gp dY,
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IX. OPTIMIZATION: A SPECIAL VARIETY OF EQUILIBRIUM ANALYSIS

From now on, our attention will be turned to the study of goal equilibrium, in which
the equilibrium state is defined as the optimal position for a given economic unit and in which
the said economic unit will be deliberately striving for attainment of that equilibrium. Our
primary focus will be on the classical techniques for locating optimal positions - those using
differential calculus.

9.1 Optimal Values and Extreme Values

Economics is by large a science of choice. When an economic project is to be carried
out, there are normally a number of alternative ways of accomplishing it. One (or more) of
these alternatives will, however, be more desirable than others from the stand-point of some
criterion, and it is the essence of the optimization problem to choose.

The most common criterion of choice among alternatives in economics is the goal of
maximizing something or of minimizing something. Economically, we may categorize such
maximization and minimization problems under general heading of optimization. From a purely
mathematical point of view, the collective term for maximum and minimum is the more matter-
of-fact designation extremum, meaning an extreme value.

In formulating an optimization problem, the first order of business is to delineate an
objective function in which the dependent variable represents the object of maximization or
minimization and in which the set of independent variables indicates the objects whose
magnitudes the economic unit in question can pick and choose. We shall therefore refer to the
independent variables as choice variables.

9.2 Relative Maximum and Minimum: First-Derivative Test

Consider a general-form objective function y=1f(x). Three specific cases of functions
are depicted in the following Figures:

B

:

G e— —

;)
-'!{:‘.
%ﬂz

- (a) (b) ()




Remark. The points E and F in (c) are relative (or local) extremum, in the sense that. each of
these points represents an extremum in some neighborhood of the point only. We shall continue
our discussion mainly with reference to the search for relative extrema. Since an absolute (or
global) maximum must be either a relative maxima or one of the ends of the function. Thus,
if we know all the relative maxima, it is necessary only to select the largest of these and
compare it with the end points in order to determine the absolute maximum. Hereafter, the
extreme values considered will be relative or local ones, unless indicated otherwise.

First-Derivative Test

Given a function y=£(x), the first derivative f'(x) plays a major role in our search for
its extreme values. For smooth functions, relative extreme values can only occur where f'(x)
= 0, which is a necessary (but not sufficient) condition for a relative extremum (either
maximum or minimum).

First-derivative test relative extremum. If f'(x,) = 0, then the value of the function at x,, f(xy),
will be

@@ A relative maximum if f'(x) changes its sign from positive to negative from the
immediate left of the point x, to its immediate right.

®) A relative minimum if f'(x) changes its sign from negative to positive from the
immediate left of x, to its immediate right.

© No extreme points if f'(x) has the same sign on some neighborhood.

Example; y = (x-1)’. x=1 is not an extreme point even f'(1)=0.
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Example; y = f(x) = x* - 12x*> + 36x + 8
Since f'(x) = 3x? - 24 + 36, to get the critical values, i.e., the values of x satisfying
the condition f'(x) = 0, we set f'(x) = 0, and thus ‘ ‘

3x%-24x + 36 = 0.

Its roots are ;1 = 2 and ?(2 = 6. It is easy to verify that f'(x) > 0 for x<2, and f'(x) < O for
x>2. Thus x=2 is a maximum point and the corresponding maximum value of the function
f(2)=40. Similarly, we can verify that x=6 is a minimum point and {(6)=8.

Example; Find the relative extremum of the average-cost function
AC = f(Q) = Q°-5Q + 8.

Since '(2.5)=0, f'(Q) < 0 for Q < 2.5, and f'(Q) > 0 for Q > 2.5, so Q = 2.5isan
extreme point.

9.3 Second and Higher Derivatives

Since the first derivative f'(x) of a function y=f(x) is also a function of x, we can
consider the derivative of f'(x), which is called second derivative. Similarly, we can find
derivatives of even higher orders. These will enable us to develop alternative criteria for
locating the relative extrema of a function.

The second derivative of the function f is denoted by f''(x) or d’y/dx*. If the second
derivative f''(x) exists for all x values, f(x) is said to be twice differentiable; if, in addition,
f''(x) is continuous, f(x) is said to be twice continuously differentiable.

The higher-order derivatives of f(x) can be similarly obtained and symbolized along the
same line as the second derivative:

f'''(x), f9(x), ... , f(x)
or

&y dy dry
dx3’ dax* 7 dx®

Remark. d°y/dx® can be also written as (d*/dx")y, where the d°*/dx" part serves as an operator
symbol instructing us to take the nth derivative with respect to x.

9-3




Example; y = f(x) = 4x*- x> + 17x* + 3x - 1
Then

f'(x) = 16x* - 3x* + 34x + 3
f''(x) = 48x% - 6x + 34
f'''(x) = 96x - 6

f9x) = 96

f9(x) = 0

Example. Find the first four derivatives of the function

y - g(x) - Tf.- (x#-1)
+X

g'x) = (1+x)*
g'x) = 2(1+x)°
g'"'x) = 6(1+x)*
g9x) = -24(1+x)°

Remark. A negative second derivative is consistently reflected in an inverse U-shaped curve;
a positive second derivative is reflected in an U-shaped curve.

9.4 Second-Derivative Test

Second-derivative test for relative extremum. If f'(x,) = 0, then the value of the function at
Xo, f(Xo) will be

(a) A relative maximum if f''(x;) < 0
®) A relative minimum if f''(x) > 0.

This test is in general more convenient to use than the first-derivative test, since it does not
require us to check the derivative sign to both the left and right of x.

Example: y = f(x) = 4x* - x.
Since f'(x) = 8x - 1 and f''(x) = 8, we know f(x) reaches its minimum at x = 1/8.
Indeed, since the function plots as a U-shaped curve, the relative minimum is also the absolute

minimum.
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Example; y = g(x) = x> - 3x*> + 2.

Theny’ = g'(x) = 3x>-6x and y'' = 6x - 6. Setting g'(x) = 0, we obtain the critical
values ;1 = 0 and _;(2 = 2, which in turn yield the two stationary values g(0)=2 (a maximum
because g'(0) < 0) and g(2)=-2 (a minimum because g'2) > 0).

Remark. Note that when f'(x,)=0, f''(x)) < 0 (f''(x;) > 0) is a sufficient condition for a
relative maximum (minimum) but not a necessary condition. However, the condition f'’(x;) <
0 (f''(x,) = 0) is a necessary condition (even though not sufficient) for a relative maximum
(minimum).

Condition for Profit Maximization

Let R=R(Q) be the total-revenue function and let C=C(Q) be the total-cost function,
where Q is the level of output. The profit function is then given by

7 = 7(Q) = RQ) - C(Q.

To find the profit-maximizing output level we need to find (_2 such that

7@Q =R@Q-C'Q) =0
or

R'(Q) = C'(Q), or MR(Q) = MC(Q).

To be sure the first-order condition leads to a maximum, we require

dzﬂ'ﬁ oY - RO - CO
0 (Q) - R/(Q) - C"(Q) < 0.

Economically, this would mean that, if the rate of change of MR is less than the rate of change
of MC at Q, then that output Q will maximize profit.

Example; Let R(Q) = 1200Q - 2Q*and C(Q) = Q* - 61.25Q% + 1528.5Q + 2000. Then the
profit function is

7' (Q) = -Q° + 59.25Q? - 328.5Q - 2000.




Setting ©'(Q) = -3Q? + 118.5Q - 328.5 = 0, we have (—2l = 3 and 62 = 36.5. Since 1r"'(3)
= -18 + 118.5 = 100.5 > 0 and 7''(36.5) = -219 + 118.5 < 0, so the profit-maximizing
output is Q = 36.5.

9.5 Taylor Series and the Mean-Value Theorem

This section considers the so-called "expansion" of a function y=f(x) into what is
known as Taylor series (expansion around any point x=X,). To expand a function y=f(x)
around a point X, means to transform that function into a polynomial form, in which the
coefficients of the various terms are expressed in terms of the derivative values f'(x), f''(Xo),
etc. - all evaluated at the point of expansion x,.

Taylor’s Theorem. Given an arbitrary function ¢(x), if we know the values of f(xo), f'(xo),
£''(x,), etc., then this function can be expanded around the point x, as follows:

#(xy)

n!

¢/(xy

57 (X=X +..+

d(X) = B(x)) + ¢(Xy) (x-Xp) + (x-x9"

+RnEPn+Rn

where P, represents the nth-degree polynomial and R, denotes a remainder which can be denoted
by the so-called Lagrange form of the remainder:

- ¢(n+l)(P) - n+l
R ey O

with P being some number between x and x,. Here n! is the "n factorial”, defined as
n! = n(n-1)(n-2)...(3)2)(1).

Remark. When n=0, the Taylor series reduce to the so-called mean-value theorem:
¢(x) = Py + Ry = ¢(x0) + ¢'(P)(x - Xo)

or

d(x) - $(xp) = ¢'(P)X - Xo).
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This mean-value theorem states that the difference between the value of the function ¢ at x, and
at any other x value can be expressed as the product of the difference (x - xo) and ¢'(P) with
P being some point between x and X,.

Figure 9.8

Remark. If x, = 0, then Taylor series reduce to the so-called Maclaurin series:

- + () ¢”(0) 2 + + ¢(n)(0) LI ¢@’I)(P) n+l
d(x) = ¢(0) . x 2T = X @ X

where P is a point between 0 and x.

Example: Expand the function
¢(x) = 1/1+x

around the point x,=1, with n=4. Since ¢(1) = 1/2 and
¢'(x) = -(1+x)7, ¢'(1) = -1/4
¢"'(x) = 2(1+x)?, ¢"'(1) = 1/4

$O(x) = -6(1+x)*, $(1) = -3/8
$O(x) = 24(1+x)%, $¥(1) = 3/4




we obtain the following Taylor series:
o(x) = 1/2 - 1/4 (x-1) + 1/8 (x-1)* - 1/16 (x-1)* + 1/32 (x-4)* + R,.
9.6 Nth-Derivative Test
A relative extremum of the function f can be equivalently defined as follows:

A function f(x) attains a relative maximum (minimum) value at x, if f(x) - f(x,) is nonpositive
(nonnegative) for values of x in some neighborhood of x,.

Assume f(x) has finite, continuous derivatives up to the desired order at x=x,, then the
function can be expanded around x=x, as a Taylor series:

f”(x 0)

f(x) -f(xg)) = F(xH(x-x%)+ 51

+ f("’(xo)

n!

(X-%Xg)* +...

- L f(nﬂ)(P) - n+l
(x-xg) W(x Xg)

From the above expansion, we have the following test:

Nth-Derivative Test. If f'(x,) = 0, and if the first nonzero derivative value at x, encountered
in successive derivation is that of the Nth derivative, f™(x,) # 0, then the stationary value f(x,)
will be

(a) A relative maximum if N is an even number and f™(x,) < 0.
(®) A relative minimum if N is an even number and f™(x;) > 0.
(©) An inflection point if N is odd.

Example: y = (7-x)*.

Since f'(7) = 4(7-7P = 0, f''(7) = 12(7-7* = 0, f'''(7) = 24(7-7) = 0, and f(7) =
24 > 0, so x=7 is a minimum point such that f(7) = 0.
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X. DERIVATIVES OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS
Exponential functions, as well as the closely related logarithmic functions, have
important applications in economics, especially in connection with growth problems, and in

economic dynamics in general. This chapter gives some basic properties and derivatives of
exponential and logarithmic functions.

10.1 The Nature of Exponential Functions
In its simple version, the exponential function may be represented in the form:
y = f(t) = b’ ®>1

where b denotes a fixed base of the exponent. Its generalized version has the form:
y = ab®

Remark. y = ab® = a(d°). Thus we can consider b° as a base of the exponent. It changes
exponent from ct to t and changes base b to b°.

If the base is the irrational number denoted by the symbol e=2.71828..., the function:
y = ae"
is referred to the natural exponential function, which can alternatively denote

y = a exp(rt).

Remark. It can be proved that e may be defined as the limit:

e = lim f(n) = lim (1+21)
neoe neco n

10.2 Logarithmic Functions

For the exponential function y=>b" and the natural exponential function y=¢', taking the
log of y to the base b (denoted by log, y) and the base e (denoted by log, y) respectively, we
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have

t = log,y

and
t =log. y
= Iny.

The following rules are familiar to us:

Rules:

(a) Inwv) = Inu + Inv {log of product]

) Inw/v) = lnu-Inv [log of quotient]

() Inv* =alnu [log of power]

d log, u = (log, e)(log, u) [conversion of log base]
(e) log, e = 1/(log, b) [inversion of log base]

Properties of Log.

(@ Iny, =lny, iffy, =y,
(®) Iny, > Iny, iffy, >y,
(© 0<y<l1 ifflogy < 0
@) y=1 ifflogy = 0
() logy-> oo asy—> o
® logy—-o asy—0

Remark. t = log, y and t = In y are the respective inverse functions of the exponential
functions y = b'and y = ¢".

10.3 Derivatives of Exponential and Logarithmic Functions

dint 1
@ at  t
de' .
(d) a €
def®
- t H{U]
© + ~fOe
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d ()
@ 5 of® N0}
Examples:

@ Lety = e*. Then dy/dt = re*

®) Lety = e*. Then dy/dt = -e*

{© Lety = ln at. Then dy/dt = a/at = 1/t

@ y=Int. Sincey = Int = clInt, so dy/dt = c(1/t)

(e) Lety = tIn t2. Then dy/dt = 3%n t* + 2t%t = 2t%(1+3 Int)

The Case of Base b

db!
a —— = b'lnb
(@) =
d 1
—log t = ——_
() TR tlnb
d £(t) "/ t
© b - f(t)bInb
dt
d fiity 1
Liogfy - LO L
O 4 0510 = 75 o

Proof of (a). Since b' - e®* = e'® then (d/dt)b* = (d/dt)e'™® = (In b)(e'™") = b*Inb.

Proof of (b). Since

log,t = (log,e)dog.t) = (1/In b)In t,
(d/dt)(log,t) = (d/dt)[(1/In b)In t] = (1/In b)(1/t)

Examples:

(@) Lety = 12**. Then % - d(_:h"_) 12112 - -12'*In12
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An Application.
Example; Find dy/dx from y = x%¢*°. Taking the natural log of both sides, we have

Iny =alnx + kx-c.

Differentiating both with respect to x, we get

Thus % - (a/x + Ky - (a/x + Kx*e=
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XI. THE CASE OF MORE THAN ONE CHOICE VARIABLE

This chapter develops a way of finding the extreme values of an objective function that
involves two or more choice variables. As before, our attention will be focused heavily on
relative extrema, and for this reason we should often drop the adjective "relative,” with the
understanding that, unless otherwise specified, the extrema referred to are relative.

11.1 The Differential Version of Optimation Condition

This section shows the possibility of equivalently expressing the derivative version of
first and second conditions in terms of differentials.

Consider the function z=f(x). Recall that the differential of z=1(x) is

dz = f'(x)dx.
Since f'(x)=0, which implies dz=0, is the necessary condition for extreme values, so dz=0 is
also the necessary condition for extreme values. This first-order condition requires that dz=0
as x is varied. In such a context, with dx#0, dz=0 if and only if f'(x)=0.

What about the sufficient conditions in terms of second-order differentials?

Differentiating dz=f'(x)dx, we have

d’z = d(dz) - d[f/(x)dx]
- d[f(x)]dx
- f(x)dx?

Note that the symbols d’z and dx? are fundamentally different. d’z means the second-
order differential of z; but dx®> means the squaring of the first-order differential dx.

Thus, from the above equation, we have d’z < 0 (dz > 0) if and only if f""(x) < 0
(f'"(x) > 0). Therefore, the second-order sufficient condition for maximum (minimum) of
z=f(x) is dZz < 0 (dz > 0).




11.2 Extreme Values of a Function of Two Variables

For a function of one variable, an extreme value is represented graphically by the peak
of a hill or the bottom of a valley in a two-dimensional graph. With two choice variables, the
graph of the function z={(x,y) becomes a surface in a 3-space, and while the extreme values
are still to be associated with peaks and bottoms.

WL
\o

(a)

First-Qrder Condition

For the function z=f(x,y), the first-order necessary condition for an extremum again
involves dz=0 for arbitrary values of dx and dy: an extremum point must be a stationary point,
at which z must be constant for arbitrary infinitesimal changes of two variables x and y.

In the present two-variable case, the total differential is

dz = fdx + fdy

Thus the equivalent derivative version of the first-order condition dz=0is

f, =1, =0 or df/ox = d8f/dy = 0
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As in the earlier discussion, the first-order condition is necessary, but not sufficient.
To develop a sufficient condition, we must look to the second-order total, which is related to
second-order partial derivatives. ‘

Second-Order Partial Derivatives

From the function z=£(x,y), we can have two first-order partial derivatives, f, and f,.
Since f, and f, are themselves functions of x, we can find second-order partial derivatives:

f = ifx or .‘?2 = i El
= ox ox? ax ax‘

d z a {az)
f = — or —- = | —
"= gy 3y? oy |3y

z _ 0 [ 9z ]
~ = 3xdy  dx | dy |

%z d [ a8z
» dyodx ay | 5?1

The last two are called cross (or mixed) partial derivatives.
Remark. Even though f,, and f,, have been separately defined, they will--according to Young’s
theorem, be identical with each other, as long as the two cross partial derivatives are both
continuous. In fact, this theorem applies also to functions of three or more variables. Given
z=g(u,v,w), for instance, the mixed partial derivatives will be characterized by guv = g, 8w

= g.., etc. provided these partial derivatives are continuous.

Example: Find all second-order partial derivatives of z = x> + 5xy - y?. The first partial
derivatives of this function are

f,=3x* + 5y and f, = 5x -2y
Thus, f, = 6x, f, = 5,f, =5, and f, = 2. As expected, f,, = f,.
Example: For z = x%?7, its first partial derivatives are

f = 2xe? and f, = -x%”
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Thus, the second partial derivatives are

f, = 2e, f, = -2xe?, f, = -2xe?, f,, = x%e?
Again f, = f,.
Second-Order Total Differentials

From the first total differential

dz = fdx + fdx

we can obtain the second-order total differential d’z:

d% = d(dz) - agdz) dx + ig‘Tz)dy
X

- %(fxdx +£ dy)dx + :%(fxdx+fydy)dy

- [ dx+f dyldx + [f,dx+f dyldy
- f dx? + f_dydx + f dxdy + f dy?
- f dx? + 2f dxdy + f dy?> [if f = f.]

Example: Given z = x* + 5xy - y?, find dz and dz’

dz = fdx + fdy
= (3x% + S5y)dx + (5x - 2y)dy

dz = fdx* + 2f_dxdy + f,dy*
= 6xdx? + 10dxdy - 2dy?

Second-Order Condition
Using the concept of d’i, we can state the second-order sufficient condition for:
(@) A maximum of z = f(x,y) if d%z < 0 for any values of dx and dy, not both zero;

(b) A minimum of z = f(x,y) if dz > 0 for any values of dx and dy, not both zero.
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For operational convenience, second-order differential conditions can be translated into
equivalent conditions on second-order derivatives. The actual translation would require a
knowledge of quadratic forms, which will be discussed in the next section. But we may first
introduce the main result here.

Main Result: For any values of dx and dy, not both zero,

dz < 0ifff, < 0;f, < 0;and f.f, > ()’
dz > 0ifff, > 0;f, > 0; and ff, > ()

From the first- and second-order conditions, we obtain conditions for relative extremum:

Conditions for Maximum: f, = f, = 0 (necessary condition) and f, < 0; f,, < 0; and ff,
> (f,)?

Conditions for Minimum: f, = f, = 0 (necessary condition) and f, > 0; f, > 0; and i
> (fy)°

Example: Find the extreme values of z = 8x* + 2xy - 3x> + y* + 1.

f, = 24x* + 2y - 6x, f, =2x + 2y
f, = 48x -6, £ =2 £, =2

Setting f, = 0 and f, = 0, we have

24x* + 2y-6x =0
2y +2x =0

Then y = -x and thus from 24x? + 2y - 6x, we have 24x* - 8x = 0 which yields two solutions
for x: x;, = 0 and x, = 1/3.

Since £(0,0) = -6 and £,(0,0) = 2, it is impossible ff, = (f,)* = 4, so the point
(x,,y,) = (0,0) is not extreme point. For the solution (x,,y,) = (1/3, -1/3), we find that f,, =
10> 0,f, =f,=2>0,and f,f, -(,)>=20-4>0,s0 x,y,z) = (1/3, -1/3, 23/27)
is a relative minimum point.

Example: z = x + 2ey -e*-e”. Lettingf, = 1-¢*=0and f, = 2e-2¢¥ - 0, we have x =
0 and y= 1/2. Since f, = -e*, f, = -4e¥, and f,, = 0, we have f,(0, 1/2) = -1 < 0,
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£,(0, 1/2) = -¢* < 0, and ff,, - (£, = €' > u, s0 x,y,z) = (0, 1/2, -1) is the maximtim
point.

11.3 Quadratic Forms

Quadratic Forms

A function q with n-variables is said to have the guadratic form if it can be written as

2
gy, iy ) = dyuy + 2duu, + ..o+ 2d, uu,
+ 2, + +
.7 gty + ... onlold,

If weletd; = dy, i < j, then q(u,u,,...,u,) can be written as

2
g,y o8, = djuy + dput, + ..+ d uu

in"1"n
2
dy ity + dyplty + ... + dyUsu,

......................................

dulunul + duz“nuz + + dmuz
=YY duy
i=} jel
=u'Du
where
dll dlz dln
d. -
b |k
an dn2 : dM
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which is called quadratic-form matrix.
Since d; = dj;, D is a symmetric matrix.
Positive and Negative Definiteness

A quadratic form q(u,,...,u,) = u'Du is said to be
(a) positive definite if q(u) > 0 for all u # 0;
®) positive semidefinite if q(u) = 0 for all u # 0;
(©) negative definite if q(u) < O for all u # 0,

(@ negative definite if q(u) < 0 for allu # 0.

Sometimes, we say that a matrix D is, for instance, positive definite if the corresponding
quadratic form q(u) = u'Du is positive definite.

Determinantal Test for Sign Definiteness

We state without proof that for the quadratic form q(u) = u'Du, the necessary and
sufficient condition for positive definiteness is the principal minors of | D | , namely,

d, d
ID| =dy, >0; ID| = el IO Y
d, dy
dll dlz dlll
do -
D, - dy dyy ~ dy, . 0
dnl du) dm

The corresponding necessary and sufficient condition for negative definiteness is that
the principal minors alternate in sign as follows:

|D,| <0, |D,|] >0, |D;| <O, etc.
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Two-Variable Quadratic Form

Example: Consider the second-order total differential

d’z = fdx* + 2f dxdy + f dy*

S Sy dx
- [dx,dJ’]
Ja Sy dy

Thus, for the function z = f(x,y),

(a) d’z is positive definite iff f,, > 0 and ff,, - (f,)> > 0
o) d’z is negative definite iff f, < 0 and f,f, - (f)> > 0

From the inequality ff, - (f,)> > O, it implies that f, and f,, are required to take the same
sign, we see that this is precisely the second-order sufficient condition presented in the last

section.

Remark. The determinant

is the Hessian determinant (or simply a Hessian).

Example: Is q = 5u® + 3uv + 2V either positive or negative? The symmetric matrix is

5 1.5
D - .
1.5 2




5 15
Since the principal minors of | D | is | Dy | =5 and |D2|-|15 ) |-10—3-7>0 ,

so q is positive definite.

Example: Givenf, = -2,f =1, andf, = -lata certain point on a function z = f(x,y),
does d%z have a definite sign at that point regardless of the values of dx and dy? The Hessian

-2 1

determinant is in this case \ 1 2| , with principal minors |H|--2 <0 and

-2 1
| -2 -1=1>0 . Thus dz is negative definite.

Bl =y 4

Three-Variable Quadratic Form

Example: Determine whether ¢ = u;® + 6u,® + 3u,? - 2u,u, - 4u,u, is either positive or
negative definite. The matrix D corresponding this quadratic form is

1 -1 0
D-|-1 6 -2{.
0 -2 3

and the principal minors of | D | are [D,| = 1 >0, |D,] -‘ ‘- 6-1-5>0 ,and

-1 6
1 -1 0
ID,| -|-1 6 -2|=-11>0 . Thus, the quadratic form is positive definite.
0o -2 3

11.4 Objective Functions with More than Two Variables

When there are n choice variables, the objective function may be expressed as
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z = f(X;,X3,...,Xy)
The total differential will then be
dz = fdx, + fdx, + ... + fdx,.

so that the necessary condition for extremum is dz = 0 for arbitratry dx;, which in turn means
that all the n first-order partial derivatives are required to be zero:

It can be verified that the second-order differential d?z can be written as

—

f;l flz j;n? dxl

f;l fzz f?n dx2
dZZ - [dxl,dxzv'"!dxn]

Lf:nl fnZ fm dxn

= (dx)Hdx .

Thus the Hessian determinant is

fu Su o S
o fon - f
|H| - 21 Jn 2
Ju S T

and the second-order sufficient condition for extremum is, as before, that all the n principal
minors be positive for a minimum in z and that they duly alternate in sign for a maximum in
z, the first one being negative.

In summary,
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Conditions for Maximum:

¢)) f, = f, = ... = f, = 0 (necessary condition)
) |H,| <0, |H,| >0, |Hy| <O0,... L] | Hy | > 0. [d’z negative definite].

Conditions for Minimum:

()] f, = f, = ... = f, = 0 (necessary condition)
)] |H,| >0, |H,| >0,.., |H,| > 0.[d positive definite].

Example: Find the extreme values of
z = 2x2 + XX, + 4% + xX; + X2 + 2.

From the first-order conditions:

f,=0: 4%, + X, + X, =0
f,=0: X, +8,+0=0
f,=0: X, + 0+ 2x, =0,

we can find a unique solution X, = X, = X, = 0. This means that there is only one stationary
value, Z = 2. The Hessian determinant of this function is

fu Jfa Sis 4 11
|H| = |fu Jfo fs|-|1 80
fa fu fs 1 02

the principal minors of which are all positive: | H,| =4, |H,| = 31, and | H; | = 54.
Thus we can conclude that z = 2 is a minimum.
11.5 Second-Order Conditions in Relation to Concavity and Convexity

Second-order conditions which are always concerned with whether a stationary point is

the peak of a hill or the bottom of a valley are closely related to the so-called (strictly) concave
or convex functions.
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A function that gives rise to a hill (valley) over the entire domain is said to be a concave
(convex) function. If the hill (valley) pertains only to a subset S of the domain, the function
is said to be concave (convex) on S.

Mathematically, we have

A function f is concave (convex) if and only if, for any pair of distinct points u and v
in the domain of f, and for any 0 < 6 < 1,

Bf(u) + (l—o)f(v) < f(0u + (1-0)v)
(65) + (-8 = flow + 1-0)v)).

Further, if the weak inequality "<" (" =") is replaced by the strictly inequality "<t (">"),
the function is said to be strictly concave (strictly convex).

Remark. 6u + (1-6)v consists of line segments between points u and v when 6 takes values of
0 < 8 < 1. Thus, in the sense of geometry, the function f is concave (convex) iff, the line
segment of any two points u and v lies either on or below (above) the surface. The function is
strictly concave (strictly convex) iff the line segment lies entirely below (above) the surface,
except at M and N.

f(u) + (1-6) (o)




From the definitions of concavity and convexity, we have the following three theorems:

Theorem I (linear functions). If f(x) is a linear function, then it is a concave function as well
as a convex function, but not strictly so.

Theorem II (negative of a function). If f(x) is a (strictly) concave function, then -f(x) is a

(strictly) convex function, and vice versa.

Theorem Il (sum of functions). If f(x) and g(x) are both concave (convex) functions, then
f(x) + g(x) is also a concave (convex) functions. Further, in addition, either one or both of
them are strictly concave (strictly convex), then f(x) + g(x) is strictly concave (strictly convex).

In view of the association of concavity (convexity) with a global hill (valley)
configuration, an extremum of a concave (convex) function must be a peak -a maximum (a
bottom - a minimum). Moreover, the maximum (minimum) must be an absolute maximum
(minimum). Further, the maximum (minimum) is unique if the function is strictly concave
(strictly convex).

In the preceding paragraph, the properties of concavity and convexity are taken to be
global in scope. If they are valid only for a portion of surface (only in a subset S of domain),

the associated maximum and minimum are relative to that subset of the domain.

We know that when z = f(x,,...,x,) is twice continuously differentiable, z = f(x,,...x,)
reaches its maximum (minimum) if dz is negative (positive) definite.

The following proposition shows the relationship between concavity (convexity) and
negative definiteness.

Proposition. A twice continuously differentiable function z = f(x,,X,,...X,) is concave (convex)
if and only if d’z is everywhere negative (positive) semidefinite. The said function is strictly

concave (convex) if (but not only if) d’z is everywhere negative (positive) definite.

This proposition is useful. It can easily verify whether a function is strictly concave
(strictly convex) by checking whether its Hessian matrix is negative (positive) definite.

Example: Check z = -x* for concavity or convexity by the derivative condition.
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Since dz = -12x*> < 0 for all x, it is concave. This function, in fact, is strictly
concave.

Example: Check z = x,*> + x,’ for concavity or convex.

Since

fu fu
S fn

20
02}

20
|H,| =2>0, |H] - lo ) . - 4> 0. Thus, by the proposition, the function is strictly

convex.
11.6 Economic Applications

Problem of a Multiproduct Firm

Example: Suppose a competitive firm produces two products. Let Q, represent the output level
of the i-th product and let the prices of the products are denoted by P, and P,. Since the firm
is a competitive firm, it takes the prices as given. Accordingly, the firm’s revenue function will
be

TR = P,Q, + P,Q,
The firm’s cost function is assumed to be
C = 2Q2 + QQ, + 2Q;%
Thus, the profit function of this hypothetical firm is given by
x = TR -C = P,Q, + P,Q, - 2Q,* - Q,Q; - 2Q.%.

The firm wants to maximize the profit by choosing the levels of Q, and Q,. For this purpose,
setting
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-0 40, + 0O, - P,

90,
ai(’;:-o: 0, +4Q, - P,,
We have

Also the Hessian matrix is
H - Ty Ty _ l: -4 -1 :| .
Ty Ty -1 -4

Since | H,| = 4 < 0and |H,| -\

) 4‘- 16 - 1 = 15 > 0 , the Hessian matrix (or dz)

is negative definite, and the solution does maximize. If fact, since H is everywhere negative
definite, the maximum profit found above is actually a unique absolute maximum.

Example: Let us now transplant the problem in the above example into the setting of a
monopolistic market.

Suppose that the demands facing the monopolist firm are as follows:

Q =40-2P, + P,
Q=15+P-P,

Again, the cost function is given by
C=0Q+QQ + Q>

From the monopolistic’s demand function, we can express prices P, and P, as functions
of Q, and Q,. That is, solving
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"2P1 + P2= Ql-40
P,-P,=Q,-15,

we have

P,=55-Q-Q
P2=70'Q1'2Q2.

Consequently, the firm’s total revenue function TR can be written as
IR - P,Q, + P,Q,

= (55 - Ql - Qg)Ql + (70 - Q| - 2Q7)Q2
- 550, + 70Q, - 20,0, - O - 20;.

Thus the profit function is

T=TR-C
= 55Q, + 70Q, - 3Q,Q, - 2Q* - 3Q;?

which is an objective function with two choice variables. Setting

97 _o: 40, + 3Q, - 55
30, 9, +30,
KL 30, + 60, - 70.
30, SR

we can find the solution output level are

Q,Qy) = 8, 72/3).

The prices and profit are
P, =391/3, P,=462/3, and T = 488 1/3.

11-16




Inasmuch as the Hessian determinant is

-4 -3
-3 -6/
we have |H,| = 4 < Oand |H,| =15 > 0 so that the value of 7 does represent the

maximum. Also, since Hessian matrix is everywhere negative definite, it is a unique absolute
maximum.
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XII. OPTIMIZATION WITH EQUALITY CONSTRAINTS

The last chapter presented a general method for finding the relative extrema of an
objective function of two or more choice variables. One important feature of that discussion
is that all the choice variables are independent of one another, in the sense that the decision
made regarding one variable does not impinge upon the choices of the remaining variables.
However, in many cases, optimization problems are the constrained optimization problem. Say,
every consumer maximizes his utility subject to his budget constraint. A firm minimizes the
cost of production with the constraint of production technology.

In the present chapter, we shall consider the problem of optimization with equality
constraints. Our primary concern will be with relative constrained extrema.

12.1 Effects of a Constraint

In general, for a function, say z = f(x,y), the difference between a constrained
extremum and a free extremum may be illustrated in the following graph:

Free maximum

Constrained
maximum

Constraint

The free extremum in this particular graph is the peak point of entire dome, but the constrained
extremum is at the peak of the inverse U-shaped curve situated on top of the constraint line.
In general, a constraint maximum can be expected to have a lower value than the free
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maximum, although by coincidence, the two maxima may happen to have the same value. But
the constrained maximum can never exceed the free maximum. In general, the number of
constraints should be less than the number of choice variables. ‘

12.2 Finding the Stationary Values
For illustration, let us consider a consumer choice problem: maximizes his utility:
U(x,Xy) = XX, + 2X,
subject to the budget constraint.
4x, + 2x, = 60

Even without any new technique of solution, the constrained maximum in this problem
can easily be found. Since the budget line implies

X -60‘4x'-30—2x
L R 1

we can combine the constraint with the objective function by substitution. The result is an
objective function in one variable only:

u = x,(30 - 2x,) + 2x, = 32x, - 2x°

which can be handled with the method already learned. By setting 37“ -32-4x -0 ,we

get the solution X, = 8 and thus, by the budget constraint,
X, = 30 -2x, = 30 - 16 =14 since du/dx* = -4 < 0, that stationary value constitutes a
(constrained) maximum.

However, when the constraint is itself a complicated function, or when the constraint
cannot be solved to express one variable as an explicit function of the other variables, the
technique of substitution and elimination of variables could become a burdensome task or would
in fact be of no avail. In such cases, we may resort to a method known as the method of
Lagrange multiplier.
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Lagrange-Multiplier Method

The essence of the Lagrange-muitiplier method is to convert a constrained-extremum
problem into a form such that the first-order condition of the free-extremum problem can still
be applied.

In general, given an objective function

z = f(x,y)
subject to the constraint

glx.y) = ¢
where ¢ is a constant, we can write the Lagrange function as

Z = f(x,y) + Nc - gx,y)).

The symbol A, representing some as yet undermined number, is called a Lagrange multiplier.
If we can somehow be assured that g(x,y) = c, so that the constraint will be satisfied, then the
last term of Z will vanish regardless of the value of A. In that event, Z will be identical with

u. Moreover, with the constraint out of the way, we only have to seek the free maximum. The
question is: How can we make the parenthetical expression in Z vanish?

The tactic that will accomplish this is simply to treat X as an additional variable, i.e.,
to consider Z = Z(\,x,y). For stationary values of Z, then the first-order condition for free
extremum is

z=Z - c-gan-0
z, =32 .12, -0
ox
_ 0Z
2, = Z-f-2,-0
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and the first equation will automatically guarantee the satisfaction of the constraint. And since
the expression A[c - g(x,y)] = 0, the stationary values of Z must be identical with those of Z
= f(x,y), subject to g(x,y) = C. ‘

Example: Let us again consider the consumer’s choice problem above. The Lagrange
function is

Z = XX, + 2x, + A[60 - 4x, - 2x,]
for which the necessary condition for a stationary value is
Z, =60-4x,-2x, =0
Z, =% +2-4x=0
Z,=x-22=0

Solving the critical values of the variables, we find that X, = 8, x, = 14, and A\ = 4. As
expected, X, = 8 and X, = 14 are the same obtained by the substitution method.

Example: Find the extremum of z = Xy subjectto x + y = 6. The Lagrange function is
Z=xy+ N6-x-Y)
The first-order condition is
Z,=6-x-y=0

Z,

i
<
]
>
Il
o

i
>
1
>
Il
o

Z)'
Thus, we find A = 3,X = 3,y = 3.

Example: Find the extremum of z = x,2 + x,? subject to x, + 4x, = 2.

The Lagrange function is
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Z = x2 + %2 + M2 - x, - 4x,).
The first-order condition (FOC) is
Z,=2-%-4x,=0
Z, =2x,-A=0
Z,=2x-4\=0

The stationary value of Z, defined by the solution

4
17

Ned -2 3z_8 7.7-
7" 17Tt T

To tell whether z is a maximum or minimum, we need to consider the second-order condition.

An Interpretation of the Lagrange Muitiplier

The Lagrange multiplier A measures the sensitivity of Z to change in the constraint. If
we can express the solutions A, X, and y all as implicit functions of the parameter C:

A = Nc), X = X(c), and ¥ = ¥(¢)
all of which will have continuous derivatives. Also we have the identities
¢ - g(fy ;) =0

£@ - Ae,Gy) =0

£ED) - 28,y =0

Thus, we can consider Z as a function c:

Z = f(X, §) + MNc - gx, y)].
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Then

dZ _ x| Ay o o= AN
I f;;i'z f;z—c- + [c g(x’y)]%
. L E b
)\I:l T gy.‘%.:l

- - dx + - d; + [c-g(x, ¥ dx +
(- M) + (- A + [e=g@ 7 + A

- A

n-Variable and Multiconstraint Cases

The generalization of the Lagrange-multiplier method to n variable can be easily carried.
The objective function is

z = f(X,,X3,...,Xp)
subject to
g(x,,...,Xxy) = C.
It follows that the Lagrange function will be
Z = f(X;,X5,...,X,) - NE(X},Xg5-.5Xy)
for which the first-order condition will be given by
Z, = ¢ - g(Xy,Xp--,Xy,)
Z, = fi(X;,Xp5..,Xy) - AEi(Xyye..5Xy) [i = 1,2,...,n].
If the objective function has more than one constraint, say, two constraints

g(Xy,...,x) = ¢ and h(xp,....x) =d
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The Lagrange function is
Z = f(x,,...,%) + Nc - gXy,...,%,)] + pld - h(x,...,Xy)],
for which the first-order condition consists of (n + 2) equations:
Z, = C - g(Xp,Xp5e5%,) = 0
Z. = d - h(x,X,,...,X,) = 0
Z, = fi(X1,.... X)) - Ni(Xy,..0Xg) - phi(xy,....x)) =0
12.3 Second-Order Condition
From the last section, we know that finding the constrained extremum is equivalent to
find the free extremum of the Lagrange function Z and gave the first-order condition. This
section gives the second-order condition for the constrained extremum of f.
We only consider the case where the objective functions take form
z = f(X,,X55...,Xy)
subject to
2(X1,X25--+,Xy).

The Lagrange function is then

Z = f(x;,....%) + N - 80ye-0sX)].
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Define the bordered Hessian determinant | H | by

0 8 & - 8
& Z, Z,, -~ Z
|H| = 8 Z, Z22 - Zy

&, an an ZM

where Z; = f; - Ag;. Note that by the first-order condition, A - hih oLk .
& & 8
The bordered principal minors can be defined as
0 & 8 &
0 & & Z, 2, Z
~ — 81 41 4 43
|H,y| = | & Zu Zy |H,| - 2 Z. Z,, Z (etc.) .
2 4 4n 4y
& Zy In

8 Zy Zy Zy

The Conditions for Maximum:

1 Z,=Z =2Z,=..=7Z =0 [necessary condition]

@ |H| >0;|H]| <0; |H] >0;..¢r|H] >o0.
The Conditions for Minimum:

1) Z,=2Z =2Z,=..=1Z, =0 [necessary condition]

@ |8] <0;|8,] <0;..|8] <o

Example: For the objective function z = xy subject to x + y = b, we have shown that (x,y,2)
= (3,3,9) is an extremum point. Since Z, = y-AandZ, =x -\, thenZ, =0,7Z, =1,

andZ, = 0, g = g, = 1. Thus, we find that
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011
|H| - |1 0 1{-2>0.
110

which establishes the value of z = 9 as an maximum.

Example; For the objective function of 2 = x2 + x;? subject to x; + 4x, = 2, we have

2 8 i) is the extremum point. To tell whether it is maximum or

h —)_’— = N >
shown that (x,y,2) (17 5 7

minimum, we check the second-order sufficient condition. Since Z, = 2x, - Aand Z, = 2x, -
Naswellas g, = 1 and g, = 4, we have Z;, = 2,Z,=2,and Z, = Z,, = 0. It thus
follows that the bordered Hessian is

014
|H| - |12 0[--34<0
402

and the value Z - % is a minimum.

12.4 Quasiconcavity and Quasiconvexity

For a problem of free extremum, we know that the concavity (convexity) of the
objective function guarantees the existence of absolute maximum (absolute minimum). For a
problem of constrained optimization, we will demonstrate the quasiconcavity (quasiconvexity)
of the objective function guarantees the existence of absolute maximum (absolute minimum).

Algebraic Characterization

Quasiconcavity and quasiconvexity, like concavity and convexity, can be either strict
or nonstrict:

Definition; A function is quasiconcave (quasiconvex) iff, for any pair of distinct points u and
v in the convex domain of f, and for 0 < 8 < 1, f(v) = f(u) implies
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fGu + (1 - O)v) = f(w)
[f6u + (1 - O)v) < fW)].

Further, if the weak inequality "2" ("<") is replaced by the strict inequality ">" ("< "), fis
said to be strictly quasiconcave (strictly quasiconvex).

M" N,

e e e s s et Ny

Remark: From the definition of quasiconcavity (quasiconvexity), we can know that
quasiconcavity (quasiconvexity) is a weaker condition than concavity (convexity).

Theorem I_(negative of a function). If f(x) is quasiconcave (strictly quasiconcave), then f(x)
is quasiconvex (strictly concave).

Theorem II__(concavity versus quasiconcavity). Any (strictly) concave (convex) function is

(strictly) quasiconcave (quasiconvex), but the converse is not true.
Theorem III (linear function). If f(x) is linear, then it is quasiconcave as well as quasiconvex.

Theorem IV (monotone function with one variable). If f is a function of one variable, then it

is quasiconcave as well as quasiconvex.

Remark: Note that, unlike concave (convex) functions, a sum of two quasiconcave
(quasiconvex) functions is not necessarily quasiconcave (quasiconvex).

Sometimes it may prove easier to check quasiconcavity and quasiconvexity by the
following alternative definitions.
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A function f(x), where x is a vector of variables, is quasiconcave (quasiconvex) iff, for
any constant k, the set $* = {x|f(x) = k} (§* = {x|f(x) < k}) is convex.

Set §= SetS§2
(c)

Examples:

) Z = x* is quasiconvex since S= is convex.
2) Z = f(x,y) = xy is quasiconcave since S* is convex.
3 Z = f(x,y) = (x - a* + (y - b)* is quasiconcave since S* is convex.

The above facts can be seen by looking at graphs of these functions.

Differentiable Functions

If a function z = f(x,,...,X,) is twice continuously differentiable, quasiconcavity and
quasiconvexity can be checked by means of the first and second partial derivatives of the
function.

Define a bordered determinant as follows:

flfuflz fln
|B| - fzlefzz “ Jon
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Remark: The determinant | B | is different from the bordered Hessian |H | . Unlike

| H |, the border in | B | is composed of the first derivatives of the function f rather than
an extraneous constraint function g.

We can define successive principal minors of B as follows:

0 £ £
0 f,

|Bl|- f f |Bz" flfu flz |B.|' |B|
Lo fy fu Fa

A necessary condition for a function z = f(x;,,.

..,X,) defined the nonnegative orthant to
be quasiconcave is that

|B,| <0, |B| 20, |B] <0, ..., -1)*|B,|] =0.
For quasiconvexity, it is necessary that
IB,| <0, |B,| <0, .., |B] =0
A sufficient condition for f to be quasiconcave on the nonneéative orthant is that
|B,| <0, |B,| >0, |B] <0, .., ¢1¢|B] >0
For quasiconvexity, the corresponding sufficient condition is that

|B,| <0, |B,] <0, ..., |B] <0.

Example: z = f(x,,x,) = xX,. Since f; = x,, f,

=x, f, = fp, =0, and f, = f,, = 1, the
relevant principal minors turn out to be

0 x x,
0 «x 2
| B, | --x 50 |By| = x 0 1 }-2xx 0.
x20
x 1 0

Thus z = X,X, is quasiconcave on the positive orthant.
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Example; Show that z = f(x,y) = Xy (x,y>0,0<a,b< 1) is quasiconcave.

Since
f; - axa—lyb f;. - bxayb-l
Ja = a(a-1)x*"%y* A abx*'y*! Ly - b(b-1)x°y*™2.
thus
0 f,
1B, - - -Gy < 0
[ I
0 f, f

|B,| - | f Sy | - [2a%b* - a(a - Db? - a?b(b-1x* %2 > 0.

5y Jx T

So it is quasiconcave.

Remark: When the constraint g is linear: g(x) = axx; + ... + X, = €, the bordered
determinant | B | and the bordered Hessian have the following relationship:

|B| = »|H]

Consequently, in the linear-constraint case, the two bordered determinants always have the same
sign at the stationary of z. The same is true for principal minors.

Absolute versus Relative Extrema

If a function is quasiconcave (quasiconvex), by the similar reasons for concave (convex)
functions, its relative maximum (relative minimum) is an absolute maximum (absolute

minimum).
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12.5 Utility Maximization and Consumer Demand
Let us now re-examine the consumer choice problem--utility maximization problem.
For simplicity, only consider the two-commodity case. The consumer wants to maximize his
utility
u = u(x,y) @ > 0,u > 0)
subject to his budget constraint
Px+Py=8B
by taking prices P, and P, as well as his income as given.
First-Order Condition
The Lagrange function is
Z = u(x,y) + AB - Px - Pyy). -
At the first-order condition, we have the following equations:
Z,=B-Px-Py=0
Z,=u -ANP, =0
Z,=u,-N, =0

From the last two equations, we have

u u
L= L=
P, P,
Or
ux PX
u, P/
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The term ;i = MRS, is the so-called marginal rate of substitution of x for y. Thus, we
3 ‘

. . P - . N
obtain the well-known equality: MRS, - .P_‘ which is the necessary condition for the interior
y

solution.

y
Indifference curves Indifference
_dy _-U, curves
{slope = i v, }
. Budget line
. _dy _-P,
(slope o Py )
Budget
line
X P4

(b)
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Second-Order Condition

If the bordered Hessian in the present problem is positive, i.e., if

O P Py
‘HI' Px Uxx ny '2Pxpyuxy-P:Un-P:Uyy>o’
P’ ny Uyy

(with all the derivatives evaluated at the critical value of x and y), then the stationary value of
U will assuredly be maximum.

Since the budget constraint is linear, from the result in the last section, we have
[B| = »|H]|

Thus, as long as | B| > 0, we know the second-order condition holds.
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