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M602: Methods and Applications of Partial Differential Equations. Final TEST,
December, 2010. Notes, books, and calculators are not authorized. Show all your
work in the blank space you are given on the exam sheet. Always justify your
answer. Answers with no justification will not be graded.

Here are some formulae that you may want to use:

F(f)(ω) def=
1

2π

∫ +∞

−∞
f(x)eiωxdx, F−1(f)(x) =

∫ +∞

−∞
f(ω)e−iωxdω, (1)

F(f ∗ g) = 2πF(f)F(g), F(e−αx
2
) =

1√
4πα

e−
ω2
4α (2)

cos(a)− cos(b) = −2 sin( 1
2 (a+ b)) sin( 1

2 (a− b)) (3)

The implicit representation of the solution to the equation ∂tv+ ∂xq(v) = 0, v(x, 0) = v0(x), is

X(s, t) = q′(v0(s))t+ s; v(X(s, t), t) = v0(s). (4)

Question 1: Solve utt − 4uxx = 0, x ∈ (0, 1) and t ≥ 0, with u(0, t) = u(1, t) = 0, u(x, 0) = 0,
∂tu(x, 0) = g(x) := 2π sin(πx). (Hint: use an extension technique).

We notice first that the wave speed is 2. We define go to be the odd extension of g over (−1,+1).
Clearly go(x) = 2π sin(πx) since sin(πx) is odd. We define gop to be the periodic extension of go
over (∞,+∞) with period 2. Clearly, gop(x) = 2π sin(πx) since 2 is a period for sin(πx). From
class we know that the solution to the above problem is given by the restriction of the D’Alembert
formula to the interval [0, 1]:

u(x, t) =
1
4

∫ x+2t

x−2t

gop(ξ)dξ =
1
4

∫ x+2t

x−2t

2π sin(πx)dξ,

= −1
2

(cos(π(x+ 2t))− cos(π(x− 2t)))

= sin(
π

2
(2x)) sin(

π

2
(4t))

= sin(πx) sin(2πt), ∀x ∈ [0, 1],∀t ≥ 0.
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Question 2: Let Ω = {(x, t) ∈ R2; x+ 2t ≥ 0}. Solve the following PDE in explicit form with
the method of characteristics:

∂tu(x, t) + 3∂xu(x, t) = u(x, t), in Ω, and u(x, t) = 1 + sin(x), if x+ 2t = 0.

(i) First we parameterize the boundary of Ω by setting Γ = {x = xΓ(s), t = tΓ(s); s ∈ R} with
xΓ(s) = −2s and tΓ(s) = s . This choice implies

u(xΓ(s), tΓ(s)) := uΓ(s) := 1 + sin(−2s).

(ii) We compute the characteristics

∂tX(t, s) = 3, X(tΓ(s), s) = xΓ(s).

The solution is X(t, s) = 3(t− tΓ(s)) + xΓ(s).

(iii) Set Φ(t, s) := u(X(t, s), t) and compute ∂tΦ(t, s). This gives

∂tΦ(t, s) = ∂tu(X(t, s), t) + ∂xu(X(t, s), t)∂tX(t, s)
= ∂tu(X(t, s), t) + 3∂xu(X(t, s), t) = u(X(t, s), t) = Φ(t, s).

The solution is Φ(t, s) = Φ(tΓ(s), s)et−tΓ(s).

(iv) The implicit representation of the solution is

X(t, s) = 3(t− tΓ(s)) + xΓ(s) u(X(t, s)) = uΓ(s)et−tΓ(s).

(v) The explicit representation is obtained by using the definitions of −tΓ(s), xΓ(s) and uΓ(s).

X(s, t) = 3(t− s)− 2s = 3t− 5s,

which gives

s =
1
5

(3t−X).

The solution is

u(x, t) = (1 + sin( 2
5 (x− 3t)))et−

1
5 (3t−x)

= (1 + sin( 2(x−3t)
5 ))e

x+2t
5 .
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Question 3: Solve the following integral equation (Hint: x2 − 3xa+ 2a2 = (x− a)(x− 2a)):∫ +∞

−∞
f(y)f(x− y)dy − 3

√
2
∫ +∞

−∞
e−

y2

2π f(x− y)dy = −4πe−
x2
4π . ∀x ∈ R.

This equation can be re-written using the convolution operator:

f ∗ f − 3
√

2e−
x2
2π ∗ f = −4πe−

x2
4π .

We take the Fourier transform and use (2) to obtain

2πF(f)2 − 2π3
√

2F(f)
1√

4π 1
2π

e
−ω2 1

4 1
2π = −4π

1√
4π 1

4π

e
−ω2 1

4 1
4π

F(f)2 − 3F(f)e−ω
2 π

2 + 2e−ω
2π = 0

(F(f)− e−ω
2 π

2 )(F(f)− 2e−ω
2 π

2 ) = 0.

This implies

either F(f) = e−ω
2 π

2 , or F(f) = 2e−ω
2 π

2 .

Taking the inverse Fourier transform, we obtain

either f(x) =
√

2e−
x2
2π , or f(x) = 2

√
2e−

x2
2π .
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Question 4: Consider the quasilinear Klein-Gordon equation: ∂ttφ(x, t)−c2∂xxφ(x, t)+m2φ(x, t)+
β2φ3(x, t) = 0, x ∈ R, t > 0, with φ(x, 0) = f(x), ∂tφ(x, 0) = g(x) and φ(±∞, t) = 0,
∂tφ(±∞, t) = 0, ∂xφ(±∞, t) = 0. Find an energy E(t) which is invariant with respect to time
(Hint: test with ∂tφ(x, t) and use φpφ′ = ( 1

p+1φ
p+1)′.)

Testing with ∂tφ(x, t) and integrating over R and using the property ∂tφ(±∞, t) = 0, ∂xφ(±∞, t) =
0, we obtain

0 =
∫ +∞

−∞
∂t(

1
2

(∂tφ)2)dx− c2
∫ +∞

−∞
∂xxφ∂tφdx+m2

∫ +∞

−∞
∂t(

1
2
φ2)dx+ β2

∫ +∞

−∞
∂t(

1
4
φ4)dx

= dt

∫ +∞

−∞

1
2

(∂tφ)2dx+ c2
∫ +∞

−∞
∂xφ∂t∂xφdx+ dt

∫ +∞

−∞
(
m2

2
φ2 +

β2

4
φ4)dx

= dt

∫ +∞

−∞

1
2

(∂tφ)2dx+ dt

∫ +∞

−∞

c2

2
(∂xφ)2dx+ dt

∫ +∞

−∞
(
m2

2
φ2 +

β2

4
φ4)dx

= dt

∫ +∞

−∞

(
1
2

(∂tφ)2 +
c2

2
(∂xφ)2 +

m2

2
φ2 +

β2

4
φ4

)
dx.

Introduce

E(t) =
∫ +∞

−∞

(
1
2

(∂tφ)2 +
c2

2
(∂xφ)2 +

m2

2
φ2 +

β2

4
φ4

)
)dx.

Then
dtE(t) = 0.

The fundamental Theorem of calculus gives

E(t) = E(0).

In conclusion the quantity E(t) is invariant with respect to time, as requested.
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Question 5: Solve the conservation equation ∂tρ+ ∂xq(ρ) = 0, x ∈ (∞,+∞), t > 0 with flux
q(ρ) = ρ2 + ρ, and with the initial condition ρ(x, 0) = −1, if x < 0, ρ(x, 0) = 1, if x > 0. Do we
have a shock or an expansion wave here?

The solution is given by the implicit representation

ρ(X(s, t), t) = ρ0(s), X(s, t) = s+ (2ρ0(s) + 1)t.

Case 1: s < 0. Then ρ0(s) = −1 and X(s, t) = s+(−2+1)t. This means s = X+ t. The solution
is

ρ(x, t) = −1, if x < t.

Case 2: s < 0. Then ρ0(s) = 1 and X(s, t) = s+ (2 + 1)t. This means s = X− 3t. The solution is

ρ(x, t) = 1, if 3t < x.

We have a expansion wave. We need to consider the case ρ0 ∈ [−, 1] at s = 0.
Case 3: s = 0 and ρ0 ∈ [−1, 1]. Then X(s, t) = s + (2ρ0 + 1)t = (2ρ0 + 1)t. This means
ρ0 = (X/t− 1)2. In conclusion

ρ(x, t) =
1
2

(x
t
− 1
)
, if − t < x < 3t.
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Question 6: Solve the conservation equation ∂tρ+ ∂xq(ρ) = 0, x ∈ (∞,+∞), t > 0 with flux
q(ρ) = ρ4 + 2ρ, and with the initial condition ρ(x, 0) = 1, if x < 0, ρ(x, 0) = −1, if x > 0. Do
we have a shock or an expansion wave here?

The solution is given by the implicit representation

ρ(X(s, t), t) = ρ0(s), X(s, t) = s+ (4ρ0(s)3 + 2)t.

We then have two cases depending whether s is positive or negative.
Case 1: s < 0, then ρ0(s) = 1 and X(s, t) = (4 + 2)t+ s = 6t+ s. This means

ρ(x, t) = 1 if x < 6t.

Case 2: s > 0, then ρ0(s) = −1 and X(s, t) = (−4 + 2)t+ s = −2t+ s. This means

ρ(x, t) = −1 if x > −2t.

We see that the characteristics cross in the region {6t > x > −2t}. This implies that there is a
shock. The Rankin-Hugoniot relation gives the speed of this shock with ρ− = 1 and ρ+ = −1:

dxs(t)
dt

=
q+ − q−

ρ+ − ρ−
=
−1− 3
−1− 1

= 2, xs(0) = 0.

In conclusion the location of the shock is xs(t) = 2t and the solution is as follows:

ρ = 1, x < xs(t) = 2t,
ρ = −1, x > xs(t) = 2t.
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Question 7: Consider the equation u′(x) +u = f(x) for x ∈ (0, 1) with u(0) = a. Let G(x, x0)
be the associated Green’s function. (Pay attention to the number of derivatives).
(a) Give the equation and boundary condition defining G and give an integral representation
of u(x0) in terms of G, f and the boundary data a. (Do not compute G.)

The Green’s function is defined by

−G′(x, x0) +G(x, x0) = δ(x− x0), G(1, x0) = 0.

We multiply the equation by u and we integrate over (0, 1) (in the distribution sense),∫ 1

0

−G′(x, x0)u(x)dx+
∫ 1

0

G(x, x0)u(x)dx = u(x0).

We integrates by parts and we obtain,

u(x0) =
∫ 1

0

G(x, x0)(u′(x) + u(x))dx−G(1, x0)u(1) +G(0, x0)u(0)

Then, using the fact that u′ + u = f and using the boundary conditions for G and u, we obtain

u(x0) =
∫ 1

0

G(x, x0)f(x)dx+ 2G(0, x0). ∀x0 ∈ (0, 1).
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(b) Compute G(x, x0).

For x < x0 and x0 > x we have

−G′(x, x0) +G(x, x0) = 0.

The solution is

G(x, x0) =

{
αex for x < x0

βex for x > x0.

The boundary condition G(1, x0) = 0 implies β = 0.

For every ε > 0 we have

1 =
∫ x0+ε

x0−ε
(−G′(x, x0) +G(x, x0))dx

= G(x0 − ε, x0)−G(x0 + ε, x0) +
∫ x0+ε

x0−ε
G(x, x0)dx

The term Rε =
∫ x0+ε

x0−ε G(x, x0)dx can be bounded as follows:

|Rε| ≤ 2ε max
x∈[0,1]

|G(x, x0)| = 2εαex0 .

Clearly Rε goes to 0 with ε. As a result we obtain the jump condition

1 = G(x−0 , x0)−G(x+
0 , x0) = αex0 .

This implies
α = e−x0 .

Finally

G(x, x0) =

{
ex−x0 for x < x0

0 for x > x0.


