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M602: Methods and Applications of Partial Differential Equations. Final TEST, Dec, 2012. Notes,
books, and calculators are not authorized. Show all your work in the blank space you are given on
the exam sheet. Always justify your answer. Answers with no justification will not be graded.

Here are some formulae that you may want to use:

F(f)(ω)
def
=

1

2π

∫ +∞

−∞
f(x)eiωxdx, F−1(f)(x) =

∫ +∞

−∞
f(ω)e−iωxdω, (1)

F(f ∗ g) = 2πF(f)F(g), (2)

F(e−αx
2

) =
1√
4πα

e−
ω2

4α (3)

F(e−α|x|) =
1

π

α

ω2 + α2
, (4)

F(H(x)e−ax)(ω) =
1

2π

1

a− iω
, a ≥ 0, where H is the Heaviside function (5)

The implicit representation of the solution to the equation ∂tv + ∂xq(v) = 0, v(x, 0) = v0(x), is

X(s, t) = q′(v0(s))t+ s; v(X(s, t), t) = v0(s). (6)

Question 1: Consider the following PDE’s:

∂yu(x, y) + 3∂xxu(x, y) = f(x, y), y > 0, x ∈ (0, L)

u(x, 0) = 1, u(0, y) = 3, ∂xu(L, y) = 2 (7)

∂yu(x, y)− 3∂xxu(x, y) = f(x, y), y > 0, x ∈ (0, L)

u(x, 0) = 1, u(0, y) = 3, ∂xu(0, y) = 2, ∂xu(L, y) = 2 (8)

∂yu(x, y)− 3∂xxu(x, y) = f(x, y), y > 0, x ∈ (0, L)

u(x, 0) = 1, u(0, y) = 3, ∂xu(L, y) = 2 (9)

∂yyu(x, y)− 3∂xxu(x, y) = f(x, y), y > 0, x ∈ (0, L)

u(x, 0) = 1, u(0, y) = 3, ∂xu(L, y) = 2 (10)

∂yyu(x, y)− 3∂xxu(x, y) = f(x, y), y > 0, x ∈ (0, L)

u(x, 0) = 1, ∂yu(x, 0) = 1, u(0, y) = 2, ∂xu(L, y) = 3 (11)

∂yyu(x, y) + 3∂xxu(x, y) = f(x, y), y > 0, x ∈ (0, L)

u(x, 0) = 1, ∂yu(x, 0) = 1, u(0, y) = 2, ∂xu(L, y) = 3 (12)

−∂yyu(x, y)− ∂xxu(x, y) = f(x, y), y ∈ (0, H), x ∈ (0, L)

u(x, 0) = 1, u(x,H) = 1, u(0, y) = 2, ∂xu(L, y) = 3 (13)

−∂yyu(x, y)− ∂xxu(x, y) = f(x, y), y ∈ (0, H), x ∈ (0, L)

u(x, 0) = 1, u(x,H) = 1, ∂xu(x,H) = 2, ∂xu(L, y) = 3 (14)

−∂yyu(x, y)− ∂xxu(x, y) = f(x, y), y ∈ (0, H), x ∈ (0, L)

u(x, 0) = 1, u(L, y) = 2, ∂xu(0, y) = 3 (15)

∂yu(x, y) + 3∂xu(x, y) = f(x, y), y ∈ (0, H), x ∈ (0, L)

u(x, 0) = 1, u(x,H) = 1, u(L, y) = 2, ∂xu(0, y) = 3 (16)

∂yu(x, y) + 3∂xu(x, y) = f(x, y), y > 0 x ∈ (0, L)

u(x, 0) = 1, u(0, y) = 2, ∂xu(L, y) = 3 (17)

∂yu(x, y) + 3∂xu(x, y) = f(x, y), y > 0 x ∈ (0, L)

u(x, 0) = 1, u(0, y) = 2 (18)

Which one is the

• Heat equation? 9

• Laplace equation? 13

• Transport equation? 18

• Wave equation? 11
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Question 2: Solve by the Fourier transform technique the following equation: ∂xxφ(x)−2∂xφ(x)+φ(x) = H(x)e−x,
x ∈ (−∞,+∞), where H(x) is the Heaviside function. (Hint: use the factorization iω3+ω2+iω+1 = (1+ω2)(1+iω)
and recall that F(f(x))(−ω) = F(f(−x))(ω)).

Applying the Fourier transform with respect to x gives

(−ω2 + 2iω + 1)F(φ)(ω) = F(H(x)e−x)(ω) =
1

2π

1

1− iω
.

where we used (??). Then, using the hint gives

F(φ)(ω) =
1

2π

1

(1− iω)(−ω2 + 2iω + 1)
=

1

2π

1

iω3 + ω2 + iω + 1

=
1

2π

1

1 + ω2

1

1 + iω
.

We now use again (??) and (??) to obtain

F(φ)(ω) = π
1

π

1

1 + ω2

1

2π

1

1− i(−ω)
= πF(e−|x|)(ω)F(H(x)e−x)(−ω).

Now we use F(H(x)e−x)(−ω) = F(H(−x)ex)(ω) and we finally have

F(φ)(ω) = πF(e−|x|)(ω)F(H(−x)ex)(ω).

The Convolution Theorem (??) gives

F(φ)(ω) = π
1

2π
F(e−|x| ∗ (H(−x)ex))(ω).

We obtain φ by using the inverse Fourier transform

φ(x) =
1

2
e−|x| ∗ (H(−x)ex),

i.e.,

φ(x) =

∫ +∞

−∞

1

2
e−|x−y|H(−y)eydy

and recalling that H is the Heaviside function we finally have

φ(x) =
1

2

∫ 0

−∞
ey−|x−y|dy =

{
1
4e
−x if x ≥ 0

( 1
4 − x)ex if x ≤ 0.
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Question 3: Let Ω = (0, L) and let (λ, u) be an eigenpair of the Laplace equation over Ω with zero Dirichlet
condition. Assume that λ ∈ C and that the function u(x) is complex-valued.
(i) Write the PDE solved by u.

u and λ are such
−∂xxu(x) = λu(x), u(0) = 0, u(L) = 0.

(ii) Let ū be the complex conjugate of u. Write the PDE solved by ū (Hint: take the conjugate of (i)).

Taking the complex conjugate of (i) we obtain

−∂xxū(x) = −∂xxu(x) = λu(x) = λ̄ū(x), ū(0) = 0, ū(L) = 0,

which gives
−∂xxū(x) = λ̄ū(x), ū(0) = 0, ū(L) = 0.

Note that we used the fact that ∂xu = ∂xū.

(iii) Prove that λ ∈ R (Hint: Use an energy argument with ū in (i) and an energy argument with u (ii) and conclude
that λ = λ̄. Recall u 6= 0 and |z|2 = zz̄ for all z ∈ C).

Multiply (i) by ū and integrate over Ω ∫
Ω

−∂xxu(x)ū(x)dx =

∫
Ω

λu(x)ū(x)dx∫
Ω

∂xu(x)∂xū(x)dx− [∂xu(x)ū(x)]L0 = λ

∫
Ω

|u(x)|2dx∫
Ω

∂xu(x)∂xu(x)dx = λ

∫
Ω

|u(x)|2dx∫
Ω

|∂xu(x)|2dx = λ

∫
Ω

|u(x)|2dx.

Multiply (ii) by u and integrate over Ω ∫
Ω

−∂xxū(x)u(x)dx =

∫
Ω

λ̄ū(x)u(x)dx∫
Ω

∂xū(x)∂xu(x)dx− [∂xū(x)u(x)]L0 = λ̄

∫
Ω

|u(x)|2dx∫
Ω

∂xu(x)∂xu(x)dx = λ̄

∫
Ω

|u(x)|2dx∫
Ω

|∂xu(x)|2dx = λ̄

∫
Ω

|u(x)|2dx.

In conclusion

λ

∫
Ω

|u(x)|2dx = λ̄

∫
Ω

|u(x)|2dx,

which means

(λ− λ̄)

∫
Ω

|u(x)|2dx.

This in turn implies that λ = λ̄ since
∫

Ω
|u(x)|2dx is not zero (recall u 6= 0). In conclusion λ is real. Note in passing

that this also prove that λ ≥ 0.
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Question 4: Give an explicit solution to the equation ∂tu+ ∂x(u4) = 0, where x ∈ (−∞,+∞), t > 0, with initial

data u0(x) = 0 if x < 0, u0(x) = x
1
3 if 0 < x < 1, and u0(x) = 0 if 1 < x.

The implicit representation of the solution is

u(X(s, t), t) = u0(s), X(s, t) = s+ 4u0(s)3t.

Case 1: s < 0, then u0(s) = 0 and X(s, t) = s. This means

u(x, t) = 0 if x < 0.

Case 2: 0 < s < 1, then u0(s) = s
1
3 and X(s, t) = s+ 4st. This means s = X/(1 + 4t)

u(x, t) =

(
x

1 + 4t

) 1
3

if 0 < x < 1 + 4t.

Case 3: 1 < s, then u0(s) = 0 and X(s, t) = s. This means

u(x, t) = 0 if 1 < x.

There is a shock starting at x = 1 (this is visible when one draws the characteristics).

Solution 1: The speed of the shock is given by the Rankin-Hugoniot formula

dxs(t)

dt
=
u4

+ − u4
−

u+ − u−
, and xs(0) = 1,

where u+(t) = 0 and u−(t) =
(
xs(t)
1+4t

) 1
3

. This gives

dxs(t)

dt
= u−(t)3 =

xs(t)

1 + 4t
,

which we re-write as follows:
d log(xs(t))

dt
=

1

1 + 4t
=

1

4

d log(1 + 4t)

dt
.

Applying the fundamental of calculus between 0 and t gives

log(xs(t))− log(1) =
1

4
(log(1 + 4t)− log(1)).

This give
xs(t) = (1 + 4t)

1
4 .

Solution 2: Another (equivalent) way of solving this problem, that does not require to solve the Rankin-Hugoniot relation,
consists of writing that the value of u− is such that the total mass is conserved:∫ xs(t)

0

u(x, t)dx =

∫ xs(0)

0

u0(x)dx =

∫ 1

0

x
1
3 dx =

3

4

i.e., using the fact that u(x, t) = (x/(1 + 4t))
1
3 for all 0 ≤ x ≤ xs(t), we have

3

4
= (1 + 4t)−

1
3

∫ xs(t)

0

x
1
3 dx = (1 + 4t)−

1
3

3

4
xs(t)

4
3 .

This again gives
xs(t) = (1 + 4t)

1
4 .

Conclusion: The solution is finally expressed as follows:

u(x, t) =


0 if x < 0(

x
1+4t

) 1
3

if 0 < x < (1 + 4t)
1
4

0 if (1 + 4t)
1
4 < x
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Question 5: Consider the equation −∂x(x∂xu(x)) = f(x) for all x ∈ (1, 2) with u(1) = a and u(2) = b. Let
G(x, x0) be the associated Green’s function.
(i) Give the equation and boundary conditions satisfied by G and give the integral representation of u(x0) for all
x0 ∈ (1, 2) in terms of G, f , and the boundary data. (Do not compute G in this question).

We have a second-order PDE and the operator is clearly self-adjoint. The Green’s function solves the equation

−∂x(x∂xG(x, x0)) = δ(x− x0), G(1, x0) = 0, G(2, x0) = 0.

We multiply the equation by u and integrate over the domain (1, 2) (in the distribution sense).

〈δ(x− x0), u〉 = u(x0) = −
∫ 2

1

∂x(x∂xG(x, x0))u(x)dx.

We integrate by parts and we obtain,

u(x0) =

∫ 2

1

x∂xG(x, x0)∂xu(x)dx− [x∂xG(x, x0)u(x)]21

= −
∫ 2

1

G(x, x0)∂x(x∂xu(x))dx− 2∂xG(2, x0)u(2) + ∂xG(1, x0)u(1).

Now, using the boundary conditions and the fact that −∂x(x∂xu(x)) = f(x), we finally have

u(x0) =

∫ 2

1

G(x, x0)f(x)dx− 2∂xG(2, x0)b+ ∂xG(1, x0)a.

(ii) Compute G(x, x0) for all x, x0 ∈ (1, 2).

For all x 6= x0 we have
−∂x(x∂xG(x, x0)) = 0.

The solution is

G(x, x0) =

{
a log(x) + b if 1 < x < x0

c log(x) + d if x0 < x < 2

The boundary conditions give b = 0 and d = −c log(2); as a result,

G(x, x0) =

{
a log(x) if 1 < x < x0

c log(x/2) if x0 < x < 2

G must be continuous at x0,
a log(x0) = c log(x0)− c log(2)

and must satisfy the gap condition

−
∫ x0+ε

x0−ε
∂x(x∂xG(x, x0))dx = 1, ∀ε > 0.

This gives

−x0

(
∂xG(x+

0 , x0)−G(x−0 , x0)
)

= 1

−x0(
c

x0
− a

x0
) = 1

This gives
a− c = 1.

In conclusion log(x0) = −c log 2 and

c = − log(x0)/ log(2), a = 1− log(x0)/ log(2) = log(2/x0)/ log(2).

This means

G(x, x0) =

{
log(2/x0)

log(2) log(x) if 1 < x < x0

log(x0)
log(2) log(2/x) if x0 < x < 2
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Question 6: Solve utt − 4uxx = 0, x ∈ (0, 1) and t ≥ 0, with u(0, t) = 0, ∂xu(1, t) = 0, u(x, 0) = 0, ∂tu(x, 0) =
g(x) := 2π sin(π2x). (Hint: Pay attention to the boundary conditions. Use three extensions.)

To be able to apply the d’Alembert formula, we need to extend the above problem to the (−∞,+∞). the Dirichlet
condition a x = 0 requires an odd extension and the Neumann condition requires an even extension.

We define go to be the odd extension of g over (−1,+1) to account for the Dirichlet boundary condition at x = 0.

go(x) =

{
g(x) for all x ∈ (0, 1),

−g(−x) for all x ∈ (−1, 0)

Clearly go(x) = 2π sin(π2x) since sin(π2x) is odd. More precisely,

go(x) =

{
g(x) = 2π sin(π2x) for all x ∈ (0, 1),

−g(−x) = −2π sin(π2 (−x)) = 2π sin(π2x) for all x ∈ (−1, 0).

Now we need to consider the even extension of go about the point x = 1 to account for the Neumann boundary condition
at x = 1. Let us denote goe(x) this extension. The function goe(x) is such that

goe(x) =

{
goe(x) = go(x) for all x ∈ (−1, 1),

goe(x) = go(2− x) for all x ∈ (1, 3)

Now we observe that sin(π2 (2− x)) = sin(π − π
2x) = sin(π2x), which means that goe(x) = 2π sin(π2x). More precisely,

goe(x) =

{
goe(x) = go(x) = 2π sin(π2x) for all x ∈ (−1, 1),

goe(x) = go(2− x) = 2π sin(π2 (2− x)) = 2π sin(π2x) for all x ∈ (1, 3).

Now we consider the periodic extension of goe of period 4, say goep. Clearly goep = 2π sin(π2x), since 42π sin(π2x) is
periodic of period 4. See Figure

We notice finally that the wave speed is 2. From class we know that the solution to the above problem is given by the
restriction of the D’Alembert formula to the interval [0, 1]:

u(x, t) =
1

4

∫ x+2t

x−2t

goep(ξ)dξ =
1

4

∫ x+2t

x−2t

2π sin(
π

2
ξ)dξ,

= −
(

cos(
π

2
(x+ 2t))− cos(

π

2
(x− 2t))

)
= 2 sin(

π

2
(x)) sin(

π

2
(2t))

= 2 sin(
π

2
x) sin(πt), ∀x ∈ [0, 1],∀t ≥ 0.
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Question 7: Let Ω = {(x, t) ∈ R2 | t > 0, x ≥ 1
t }. Solve the following PDE in explicit form with the method of

characteristics: (Solution: u(x, t) = (2 + cos(s))e
1
s−t with s = 1

2 [(x− 2t) +
√

(x− 2t)2 + 8])

∂tu(x, t) + 2∂xu(x, t) = −u(x, t), in Ω, and u(x, t) = 2 + cos(x), if x = 1/t.

(i) First we parameterize the boundary of Ω by setting Γ = {x = xΓ(s), t = tΓ(s); s ∈ R} with xΓ(s) = s and tΓ(s) = 1
s

. This choice implies
u(xΓ(s), tΓ(s)) := uΓ(s) := 2 + cos(s).

(ii) We compute the characteristics
∂tX(t, s) = 2, X(tΓ(s), s) = xΓ(s).

The solution is X(t, s) = 2(t− tΓ(s)) + xΓ(s).

(iii) Set Φ(t, s) := u(X(t, s), t) and compute ∂tΦ(t, s). This gives

∂tΦ(t, s) = ∂tu(X(t, s), t) + ∂xu(X(t, s), t)∂tX(t, s)

= ∂tu(X(t, s), t) + 2∂xu(X(t, s), t) = u(X(t, s), t) = −Φ(t, s).

The solution is Φ(t, s) = Φ(tΓ(s), s)e−t+tΓ(s).

(iv) The implicit representation of the solution is

X(t, s) = 2(t− tΓ(s)) + xΓ(s), u(X(t, s)) = uΓ(s)e−t+tΓ(s).

(v) The explicit representation is obtained by using the definitions of −tΓ(s), xΓ(s) and uΓ(s).

X(s, t) = 2(t− 1

s
) + s = 2t− 2

s
+ s

which gives the equation
s2 − s(X − 2t)− 2 = 0

The solutions are s± = 1
2

(
(X − 2t)±

√
(X − 2t)2 + 8

)
. The only legitimate solution is the positive one:

s =
1

2

(
(X − 2t) +

√
(X − 2t)2 + 8

)
The solution is

u(x, t) = (2 + cos(s))e
1
s−t

with s =
1

2
((x− 2t) +

√
(x− 2t)2 + 8)
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Question 8: Consider the quasilinear Klein-Gordon equation: ∂ttφ(x, t)−c2∂xxφ(x, t)+m2φ(x, t)+β2φ3(x, t) = 0,
x ∈ R, t > 0, with φ(x, 0) = f(x), ∂tφ(x, 0) = g(x) and φ(±∞, t) = 0, ∂tφ(±∞, t) = 0, ∂xφ(±∞, t) = 0. Find an
energy E(t) which is invariant with respect to time (Hint: test with ∂tφ(x, t) and use φpφ′ = ( 1

p+1φ
p+1)′.)

Testing with ∂tφ(x, t) and integrating over R and using the property ∂tφ(±∞, t) = 0, ∂xφ(±∞, t) = 0, we obtain

0 =

∫ +∞

−∞
∂t(

1

2
(∂tφ)2)dx− c2

∫ +∞

−∞
∂xxφ∂tφdx+m2

∫ +∞

−∞
∂t(

1

2
φ2)dx+ β2

∫ +∞

−∞
∂t(

1

4
φ4)dx

= dt

∫ +∞

−∞

1

2
(∂tφ)2dx+ c2

∫ +∞

−∞
∂xφ∂t∂xφdx+ dt

∫ +∞

−∞
(
m2

2
φ2 +

β2

4
φ4)dx

= dt

∫ +∞

−∞

1

2
(∂tφ)2dx+ dt

∫ +∞

−∞

c2

2
(∂xφ)2dx+ dt

∫ +∞

−∞
(
m2

2
φ2 +

β2

4
φ4)dx

= dt

∫ +∞

−∞

(
1

2
(∂tφ)2 +

c2

2
(∂xφ)2 +

m2

2
φ2 +

β2

4
φ4

)
dx.

Introduce

E(t) =

∫ +∞

−∞

(
1

2
(∂tφ)2 +

c2

2
(∂xφ)2 +

m2

2
φ2 +

β2

4
φ4

)
)dx.

Then
dtE(t) = 0.

The fundamental Theorem of calculus gives
E(t) = E(0).

In conclusion the quantity E(t) is invariant with respect to time, as requested.


