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Notes, books, and calculators are not authorized. Show all your work in the blank space you are given on the exam sheet.
Answers with no justification will not be graded.

Here are some formulae that you may want to use:

F(f)(ω)
def
=

1

2π

∫ +∞

−∞
f(x)eiωxdx, F−1(f)(x) =

∫ +∞

−∞
f(ω)e−iωxdω, F(f ∗ g) = 2πF(f)F(g), (1)

Question 1: (a) Prove that ∂ωF(f)(ω) = iF(xf(x))(ω) for all f ∈ L1(R).

Let f ∈ L1(R), then

∂ωF(f)(ω) = ∂ω

(
1

2π

∫ ∞
−∞

f(x)eiωxdx

)
=

1

2π

∫ ∞
−∞

f(x)∂ωe
iωxdx

= i
1

2π

∫ ∞
−∞

xf(x)eiωxdx,

which prove that ∂ωF(f)(ω) = iF(xf(x))(ω).

(b) Let α ∈ R with α > 0. Prove that F(∂xe
−αx2

)(ω) = 2αi∂ωF(e−αx
2

)(ω). (Hint: use (a).)

We use (a) to deduce that

F(∂xe
−αx2

)(ω) = F(−2αxe−αx
2

)(ω) = −2αF(xe−αx
2

)(ω)

= 2αi∂ωF(e−αx
2

)(ω).

(c) Using (b), show that ∂ωF(e−αx
2

)(ω) = − ω
2αF(e−αx

2

)(ω).

We use the property F(∂xf(x))(ω) = −iωF(f(x))(ω) and (b)

−iωF(e−αx
2

)(ω)) = F(∂xe
−αx2

)(ω) = 2αi∂ωF(e−αx
2

)(ω),

which implies the desired result.

(d) Given that
∫∞
−∞ e−x

2

dx =
√
π, compute F(e−αx

2

)(ω). (Hint: Observe that (c) is an ODE and solve it.)

The solution to the ODE ∂ωg(ω) = − ω
2αg(ω) is g(ω) = g(0)e−

ω2

4α . We apply this formula to g(ω) = F(e−αx
2

)(ω),

F(e−αx
2

)(ω) = F(e−αx
2

)(0)e−
ω2

4α .

We now need to compute F(e−αx
2

)(0),

F(e−αx
2

)(0) =
1

2π

∫ ∞
−∞

e−αx
2

dx =
1

2π

1√
α

∫ ∞
−∞

e−αx
2√
αdx =

1

2π

1√
α

∫ ∞
−∞

ex
2

dx =
1

2π

√
π√
α

=
1

4πα
.

Finally

F(e−αx
2

)(ω) =
1√
4πα

e−
ω2

4α .
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Question 2: Consider the Schrödinger equation i∂tu+ (1− iε)∂xxu = 0, u(x, 0) = u0(x), x ∈ R, t > 0, where ε > 0 and
i2 = −1. Note that u is complex-valued. (a) Solve the equation by using the Fourier technique assuming that u0 ∈ L1(R)

and decreases fast enough at infinity. (Hint: F(
√

π
αe
− x24α )(ω) = e−αω

2

for all α ∈ C with <(α) > 0).)

We take the Fourier transform of the equation.

i∂tF(u) + (iω)2(1− iε)F(u) = 0,

which gives the ODE
∂tF(u)− ω2(−ε− i)F(u) = 0.

The solution is
F(u)(ω) = F(u)(0)e−(ε+i)tω

2

= F(u0)e−(ε+i)tω
2

.

Observing that <(ε+ i)t > εt > 0, we can use the hint with α = (ε+ i)t,

F(u)(ω) = F(u0)F(

√
π

(ε+ i)t
e−

x2

4(ε+i)t )(ω) =
1

2π
F(u0 ∗

√
π

(ε+ i)t
e−

x2

4(ε+i)t )ω).

In conclusion

u(x, t) =
1

2π

√
π

(ε+ i)t

∫ ∞
−∞

u0(y)e−
(x−y)2
4(ε+i)t dy =

√
1

4π(ε+ i)t

∫ ∞
−∞

u0(y)e−
(x−y)2
4(ε+i)t dy.

(b) Let E(t) = 1
2

∫∞
−∞ |u(x, t)|2dx and P (t) =

∫∞
−∞ |∂xu(x, t)|2dx. Prove that ∂tE(t)+εP (t) = 0 assuming that u decreases

fast enough at infinity. (Hint: (1) Apply the energy method to the Schrödinger equation with ū, (2) Apply the energy
method to the complex conjugate of the Schrödinger equation with −u (3) Sum the two results. Recall that |v|2 = vv̄.)

We follow the hint. (1) we test the equation with ū and integrate over R,

0 = i

∫ ∞
∞

∂tuūdx+ (1− iε)
∫ ∞
∞

∂xxuūdx

= i

∫ ∞
∞

∂tuūdx− (1− iε)
∫ ∞
∞

∂xu∂xūdx, we used ū(±∞, t) = 0

= i

∫ ∞
∞

∂tuūdx+ (iε− 1)

∫ ∞
∞

∂xu∂xudx,

= i

∫ ∞
∞

∂tuūdx+ (iε− 1)

∫ ∞
∞
|∂xu|2dx.

(2) Now we take the conjugate of the equation and use the energy method with −u,

0 = i

∫ ∞
∞

∂tūudx− (1 + iε)

∫ ∞
∞

∂xxūudx

= i

∫ ∞
∞

∂tuūdx+ (1 + iε)

∫ ∞
∞

∂xū∂xudx, we used u(±∞, t) = 0

= i

∫ ∞
∞

∂tuūdx+ (iε+ 1)

∫ ∞
∞

∂xu∂xudx,

= i

∫ ∞
∞

∂tuūdx+ (iε+ 1)

∫ ∞
∞
|∂xu|2dx.

(3) Now we sum the two results

0 = i

∫ ∞
∞

(∂tuū+ ∂tuū)dx+ 2iε

∫ ∞
∞
|∂xu|2dx

= i

∫ ∞
∞

∂t(uū)dx+ 2iε

∫ ∞
∞
|∂xu|2dx

= i

∫ ∞
∞

∂t|u|2dx+ 2iε

∫ ∞
∞
|∂xu|2dx.

We obtain the desired result after dividing by 2i, ∂tE(t) + εP (t) = 0.

Question 3: Compute E(t) for ε = 0,

We have ∂tE(t) = 0, which implies that E(t) = E(0),

E(t) =
1

2

∫ ∞
−∞
|u0(x)|2dx.
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Question 4: Let u solve ∂tu = ∂xxu, u(x, 0) = u0(x), x ∈ R, t > 0. Let us define L(u)(x, s) =
∫∞
0
e−stu(x, t)dt for all

s ∈ R, s > 0. (a) Compute ∂xxL(u)(x, s) and show that ∂xxL(u)(x, s) = sL(u)(x, s)− u0(x) for all s > 0.

We apply the definition

∂xxL(u)(x, s) = ∂xx

∫ ∞
0

e−stu(x, t)dt =

∫ ∞
0

e−st∂xxu(x, t)dt =

∫ ∞
0

e−st∂tu(x, t)dt

= −
∫ ∞
0

∂t(e
−st)u(x, t)dt+ e−stu(x, t)|∞0 = s

∫ ∞
0

e−stu(x, t)dt− u0(x),

which proves the desired result ∂xxL(u)(x, s) = sL(u)(x, s)− u0(x).

(b) Let s > 0 and consider the equation sv − ∂xxv = u0(x), v(±∞) = 0, x ∈ R. Compute Green’s function, G(x, x0),
x, x0 ∈ R.

Let G(x, x0) be Green’s function. Since the operator is self-adjoint (shown in class many times), G satisfies

sG(x, x0)− ∂xxG(x, x0) = δx0
, G(±∞, x0) = 0.

Case 1: Assume x < x0, then G(x, x0) = ae
√
sx + be−

√
sx. The condition G(−∞, x0) = 0 implies that b = 0. Hence

G(x, x0) = ae
√
sx when x < x0.

Case 2: Assume x > x0, then G(x, x0) = ce
√
sx + de−

√
sx. The condition G(+∞, x0) = 0 implies that c = 0. Hence

G(x, x0) = de−
√
sx when x < x0.

Now we impose the continuity at x0: ae
√
sx0 = de−

√
sx0 . We conclude with the jump condition,∫ x0+ε

x0−ε
(sG(x, x0)− ∂xxG(x, x0))dx = 1,

implying that −∂xG(x+0 , x0) + ∂xG(x−0 , x0) = 1 when passing to the limit ε→ 0. Hence d
√
se−
√
sx0 + a

√
se
√
sx0 = 1. Then

using ae
√
sx0 = de−

√
sx0 , we infer that d

√
se−
√
sx0 + d

√
se−
√
sx0 = 1, i.e., d = 1

2
√
s
e
√
sx0 and a = 1

2
√
s
e−
√
sx0 . In conclusion

G(x, x0) =

{
1

2
√
s
e
√
s(x−x0) if x < x0,

1
2
√
s
e
√
s(x0−x) otherwise,

which can also be re-written G(x, x0) = 1
2
√
s
e−
√
s|x−x0|.

(c) Using (b), compute the solution to the equation sv − ∂xxv = u0(x), v(±∞) = 0, x ∈ R.

We have

v(x0) =

∫ ∞
−∞

(sG(x, x0)− ∂xxG(x, x0))v(x)dx, with the usual abuse of notation

=

∫ ∞
−∞

(sG(x, x0)v(x) +

∫ ∞
−∞

∂xG(x, x0)∂xv(x)dx =

∫ ∞
−∞

(sG(x, x0)v(x)−
∫ ∞
−∞

G(x, x0)∂xxv(x)dx

=

∫ ∞
−∞

G(x, x0)(sv(x)− ∂xxv(x))dx =

∫ ∞
−∞

G(x, x0)u0(x)dx.

Hence

v(x0) =

∫ ∞
−∞

1

2
√
s
e−
√
s|x−x0|u0(x)dx.
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Question 5: Let α := eπ. Consider the operator L : φ 7−→ ∂xxφ(x)) + 1
x∂xφ(x) + 1

x2φ(x), with domain D = {v ∈
C2(1, 2); v(1) = 0, v(α) = 0}.
(i) What is the Null space of L? (Hint: The general solution to Lφ = 0 is φ(x) = c1 cos(log(x)) + c2 sin(log(x)).)

Let φ be a member of the null space of L, say N(L). Then

∂xxφ(x) +
1

x
∂xφ(x) +

1

x2
φ(x) = 0

In other words, using the hint, φ(x) = c1 cos(log(x)) + c2 sin(log(x)). The boundary conditions imply that

φ(1) = 0 = c1, and φ(α) = c2 sin(log eπ) = c2 sin(π) = 0.

Note that the boundary condition φ(α) = 0 holds for all values of c2 due to the special value of α. In conclusion N(L) =
span{sin(log(x))}.
(iii) Give the formal adjoint of L and its domain.

Let u ∈ D and v ∈ DT, then∫ 2

1

(Lu(x))v(x)dx =

∫ α

1

(∂xxu(x) +
1

x
∂xu(x) +

1

x2
u(x))v(x)dx

=

∫ α

1

(u(x)∂xxv(x)− u(x)∂x(
1

x
v(x)) +

1

x2
u(x)v(x))dx+

1

x
u(x)v(x)|α1 + ∂xu(x)v(x)|α1 − ∂xv(x)u(x)|α1

We enforce v(1) = v(α) = 0 to get rid of the boundary terms. Then∫ 2

1

(Lu(x))v(x)dx =

∫ α

1

u(x)(∂xxv(x)− ∂x(
1

x
v(x)) +

1

x2
v(x))dx

This means that DT = {v ∈ C2(1, 2); v(1) = 0, v(α) = 0} = D and LTv = ∂xxv(x)− ∂x( 1
xv(x)) + 1

x2 v(x).

(iii) The general solution of ∂xxv(x)− ∂x( 1
xv(x)) + 1

x2 v(x) = 0, is φ(x) = c1x cos(log(x)) + c2x sin(log(x)). Under which
condition does the problem Lu = f(x), x ∈ (1, α), with u(1) = 0, u(α) = 0 has a solution?

We are in the second case of the Fredholm alternative. We must compute Null(LT). Let v ∈ Null(LT), i.e., LTv = 0 and
v ∈ D(LT), then v(x) = c1x cos(log(x)) + c2x sin(log(x)). The boundary conditions imply that

c1 = 0,

meaning that v(x) = c2x sin(log(x)). In conclusion, Null(LT) = span{x sin(log(x))}. There is a unique solution to the above
problem if and only if ∫ α

1

f(x)x sin(log(x))dx = 0.
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Question 6: Consider the conservation equation ∂tρ + ∂x(ρ3) = 0, x ∈ R, t > 0, with initial data ρ0(x) = 0 if x < 0,
ρ0(x) =

√
x if 0 < x < 1, and ρ0(x) = 0 if 1 < x. Draw the characteristics and give the explicit representation of the

solution without computing the location of the shock.

The implicit representation of the solution to the equation ∂tρ+ ∂xq(ρ) = 0, ρ(x, 0) = ρ0(x), is

X(s, t) = q′(ρ0(s))t+ s; ρ(X(s, t), t) = ρ0(s). (2)

The explicit representation is obtained by expressing s in terms of X and t and using q(ρ) = ρ3.
Case 1: s < 0, we have ρ0(s) = 0, q′(ρ0(s)) = 3ρ0(s) = 0, which implies X = s. Then

ρ(x, t) = 0 if x < 0.

Case 2: 0 < s < 1, we have ρ0(s) =
√
s, q′(ρ0(s)) = 3ρ0(s)2 = 3s, X = s+ 3ts, which means s = X/(1 + 3t). Then

ρ(x, t) =

√
x

1 + 3t
if 0 < x < 1 + 3t.

Case 3: 1 < 1. we have ρ0(s) = 0, q′(ρ0(s)) = 3ρ0(s) = 0, which implies X = s. Then

ρ(x, t) = 0 if 1 < x.

Here are the characteristics. There is a shock in the region between the two red lines.

x
0 1

t

x
0 1

t

(b) Compute the position of the shock and give the expression for the solution for all x ∈ R and all t > 0.

We apply the Rankin Hugoniot formula. On the left of the shock the solution is ρ− =
√
xs(t)/(1 + 3t), on the right it is

ρ+ = 0, then
dxs(t)

dt
=

(ρ−)3

ρ−
= (ρ−)2 = xs(t)(1 + 3t).

Hence
1

xs(t)

dxs(t)

dt
=

1

3

3

(1 + 3t)
,

which implies
d log(xs(t))

dt
=

1

3

d log(1 + 3t)

dt
.

Applying the fundamental theorem of calculus, we obtain log(xs(t))− log(1) = 1
3 (log(1 + 3t)− log(1)). This implies that

xs(t) = (1 + 3t)
1
3 .

Finally the solution is as follows:

ρ(x, t) =


0 if x < 0√

x
1+3t if 0 < x < (1 + 3t)

1
3

0 if (1 + 3t)
1
3 < x.

See figure above.
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Question 7: Let c > 0 and y(x, t) = 1
2c

∫ x+ct
x−ct h(ξ)dξ. Compute ∂ty(x, t), ∂tty(x, t), ∂ttty(x, t), ∂xy(x, t), ∂xxy(x, t),

∂txxy(x, t) and ∂ttty − c2∂xxty.

This exercise is meant to check whether you understand the notion of partial derivatives and the chain rule

∂ty(x, t) =
1

2
(h(x+ ct) + h(x− ct))

∂tty(x, t) =
1

2
(ch′(x+ ct)− ch′(x− ct))

∂ttty(x, t) =
1

2
(c2h′(x+ ct) + c2h′(x− ct))

∂xy(x, t) =
1

2c
(h(x+ ct)− h(x− ct))

∂xxy(x, t) =
1

2c
(h′(x+ ct)− h′(x− ct))

∂txxy(x, t) =
1

2
(h′(x+ ct) + h′(x− ct)).

In conclusion

∂ttty − c2∂xxty =
1

2
(c2h′(x+ ct) + c2h′(x− ct))− c2 1

2c
(ch′(x+ ct) + ch′(x− ct)) = 0,

that is to say, ∂ty(x, t) solve the wave equation ∂tt(∂ty)− c2∂xx(∂t(y)) = 0.

Question 8: Consider the eigenvalue problem − d
dt (t

1
2
d
dtφ(t)) = λt−

1
2φ(t), t ∈ (0, 1), supplemented with the boundary

condition φ(0) = 0, ∂tφ(1) = 0.
(a) What is the sign of λ? Is 0 an eigenvalue?

(i) Let φ be a non-zero smooth solution to the problem. Multiply the equation by φ and integrate over the domain. Use the
Fundamental Theorem of calculus (i.e., integration by parts) to obtain∫ 1

0

t
1
2 (φ′(t))2dt− [t

1
2φ′(t)φ(t)]10 = λ

∫ 1

0

t−
1
2φ2(t)dt.

Using the boundary conditions, we infer ∫ 1

0

t
1
2 (φ′(t))2dt = λ

∫ 1

0

t−
1
2φ2(t)dt,

which means that λ is non-negative since φ is non-zero.

(ii) If λ = 0, then
∫ 1

0
t
1
2 (φ′(t))2dt = 0, which implies that φ′(t) = 0 for all t ∈ (0, 1]. This implies that φ(t) is constant, and

this constant is zero since φ(0) = 0. Hence, φ is zero if λ = 0. Since we want a nonzero solution, this implies that λ cannot
be zero.

(iii) In conclusion, it is necessary that λ be positive for a nonzero smooth solution to exist.


