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Notes, books, and calculators are not authorized.

Show all your work in the blank space you are given on the exam sheet. Always justify your
answer. Answers with no justification will not be graded.

Question 1: Let u solve ∂tu − ∂x((sin(x) + 2)∂xu) = g(x)e−t, x ∈ (0, L), with ∂xu(0, t) =
sin(L) + 2, ∂xu(L, t) = 2, u(x, 0) = f(x), where f and g are two smooth functions.

(a) Compute d
dt

∫ L
0
u(x, t)dx as a function of t.

Integrate the equation over the domain (0, L) and apply the fundamental Theorem of calculus:

d

dt

∫ L

0

u(x, t)dx =

∫ L

0

∂tu(x, t)dx =

∫ L

0

∂x((sin(x) + 2)∂xu)dx+ e−t
∫ L

0

g(x)dx

= (sin(L) + 2)∂xu(L)− (sin(0) + 2)∂xu(0) + e−t
∫ L

0

g(x)dx

= (sin(L) + 2)2− 2(sin(L) + 2) + e−t
∫ L

0

g(x)dx

= e−t
∫ L

0

g(x)dx.

That is
d

dt

∫ L

0

u(x, t)dx = e−t
∫ L

0

g(x)dx.

(b) Use (a) to compute
∫ L
0
u(x, t)dx as a function of t.

Applying the fundamental Theorem of calculus again gives∫ L

0

u(x, T )dx =

∫ L

0

u(x, 0)dx+

∫ T

0

d

dt

∫ L

0

u(x, t)dxdt

=

∫ L

0

f(x)dx+ (1− e−T )

∫ L

0

g(x)dx.

(c) What is the limit of
∫ L
0
u(x, t)dx as t→ +∞?

The above formula gives

lim
T→+∞

∫ L

0

u(x, T )dx =

∫ L

0

f(x)dx+

∫ L

0

g(x)dx.
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Question 2: Consider the eigenvalue problem − d2

dt2φ(t) + 2 d
dtφ(t) = λφ(t), t ∈ (0, π), supple-

mented with the boundary condition φ(0) = 0, φ(π) = 0. (Hint: 2φ(t) ddtφ(t) = d
dtφ

2(t).)
(a) Prove that it is necessary that λ be positive for a non-zero solution to exist.

(i) Let φ be a non-zero solution to the problem. Multiply the equation by φ and integrate over the
domain. Use the fundamental Theorem of calculus and use the hint to obtain∫ π

0

(φ′(t))2dt− φ′(π)φ(π) + φ′(0)φ(0) +

∫ π

0

d

dt
(φ2(t))dt = λ

∫ π

0

φ2(t)dt∫ π

0

(φ′(t))2dt− φ′(π)φ(π) + φ′(0)φ(0) + φ2(π)− φ2(0) = λ

∫ π

0

φ2(t)dt

Using the boundary conditions, we infer∫ π

0

(φ′(t))2dt = λ

∫ π

0

φ2(t)dt,

which means that λ is non-negative since φ is non-zero.

(ii) If λ = 0, then
∫ π
0

(φ′(t))2dt = 0 and φ(π)2 = 0, which implies that φ′(t) = 0. The fundamental

theorem of calculus implies φ(t) = φ(0) +
∫ t
0
φ′(τ)dτ = 0. Hence, φ is zero if λ = 0. Since we

want a nonzero solution, this implies that λ cannot be zero.

(iii) In conclusion, it is necessary that λ be positive for a nonzero solution to exist.

(b) The general solution to −φ′′ + 2φ′ = λφ is φ(t) = et(c1 cos(t
√
λ− 1) + c2 sin(t

√
λ− 1)) for

λ ≥ 1. Find all the eigenvalues λ ≥ 1 and the associated nonzero eigenfunctions.

Since λ ≥ 1 by hypothesis, φ is of the following form

φ(t) = et(c1 cos(
√
λ− 1t) + c2 sin(

√
λ− 1t)).

The boundary condition φ(0) = 0 implies c1 = 0. The other boundary condition implies φ(π) =
0 = eπc2 sin(

√
λ− 1π). The constant c2 cannot be zero since we want φ to be nonzero; as a result,√

λ− 1 = n, n = 1, 2, . . .. In conclusion

λ = n2 + 1, n = 1, 2, . . . , φ(t) = cet sin(nt)



Last name: name: 3

Question 3: Consider the equation −∆u = 0 in the rectangle {(x, y); x ∈ [0, L], y ∈ [0, H]}
with the boundary conditions u(0, y) = 0, u(L, y) = −5 cos( 3

2π
y
H ), ∂yu(x, 0) = 0, u(x,H) = 0.

Solve the equation using the method of separation of variables. (Give all the details.)

Let u(x) = φ(x)ψ(y). Then, provided ψ and φ are non zero functions, this implies φ”(x)
φ(x) = −ψ”(y)ψ(y) =

λ. Observe that ψ′(0) = 0 and ψ(H) = 0. The energy technique applied to −ψ”(y) = λψ(y) gives∫ H

0

−ψ”(y)ψ(y)dy =

∫ H

0

ψ′(y)2dy − ψ′(H)ψ(H) + ψ′(0)ψ(0) = λ

∫ H

0

ψ(y)2y,

which implies
∫H
0
ψ′(y)2dy = λ

∫H
0
ψ(y)2dy since ψ′(0) = 0 and ψ(H) = 0. This in turn implies

that λ is nonnegative. Actually λ cannot be zero since it would mean that ψ = 0, which would
contradict the fact that the solution u is nonzero (λ = 0 ⇒ ψ′(y) = 0 ⇒ ψ(y) = ψ(H) = 0 for all
y ∈ [0, H]). As a result λ is positive and

ψ(y) = a cos(
√
λy) + b sin(

√
λy).

The Neumann condition at y = 0 gives b = 0. The Dirichlet condition at H implies cos(
√
λH) = 0,

which implies
√
λH = (n+ 1

2 )π, where n is any integer. This means that ψ(y) = a cos((n+ 1
2 )π y

H ).

The fact that λ is positive implies φ(x) = c cosh(
√
λx) + d sinh(

√
λx). The boundary condition at

x = 0 implies c = 0. Then

u(x, y) = A cos((n+ 1
2 )π

y

H
) sinh((n+ 1

2 )π
x

H
).

The boundary condition at x = L gives

−5 cos(
3

2
π
y

H
) = A cos((n+ 1

2 )π
y

H
) sinh((n+ 1

2 )π
L

H
),

which, by identification, implies 1 = 2 and A = −5 sinh−1
(

3
2πL

H

)
, i.e.,

u(x, y) = −5
sinh

(
3
2πx

H

)
sinh

(
3
2πL

H

) cos(
3

2
π
y

H
).
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Question 4: Let k : [−1,+1] −→ R be such that k(x) = 1, if x ∈ [−1, 0] and k(x) = 2 if
x ∈ (0, 1]. Solve the boundary value problem −∂x(k(x)∂xT (x)) = 0 with ∂xT (−1) = T (−1)
and ∂xT (1) = 1.
(i) What should be the interface conditions at x = 0 for this problem to make sense?

The function T and the flux k(x)∂xT (x) must be continuous at x = 0. Let T− denote the solution
on [−1, 0] and T+ the solution on [0,+1]. One should have T−(0) = T+(0) and k−(0)∂xT

−(0) =
k+(0)∂xT

+(0), where k−(0) = 1 and k+(0) = 2.

(ii) Solve the problem, i.e., find T (x), x ∈ [−1,+1].

On [−1, 0] we have k−(x) = 1, which implies ∂xxT
−(x) = 0. This in turn implies T−(x) = a+ bx.

The Robin boundary condition at x = −1 implies ∂xT
−1(−1)− T−(−1) = 0 = 2b− a. This gives

a = 2b and T−(x) = b(2 + x).

We proceed similarly on [0,+1] and we obtain T+(x) = c+ dx. The Neumann boundary condition
at x = +1 gives ∂xT

+(+1) = 1 = d and T+(x) = c+ x.

The interface conditions T−(0) = T+(0) and k−(0)∂xT
−(0) = k+(0)∂xT

+(0) give

2b = c, and b = 2.

In conclusion

T (x) =

{
2(2 + x) if x ∈ [−1, 0],

4 + x if x ∈ [0,+1].
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Question 5: Consider (1 +x)φ(x) +∂xφ(x)−∂x((2 +x2)∂xφ) = f(x), x ∈ (0, 1) with φ(0) = 1,
∂xφ(1) = 2. Assume that φ1 and φ2 are two smooth solutions (φ1 ∈ C2([0, 1]) and φ2 ∈
C2([0, 1])). Use the energy argument to prove that φ1 = φ2. (Hint: 2φ(x)∂xφ(x) = ∂xφ

2(x).)

The difference φ := φ1 − φ2 satisfies

(1 + x)φ(x) + ∂xφ(x)− ∂x((2 + x2)∂xφ) = 0, x ∈ (0, 1), and φ(0) = 1, ∂xφ(1) = 0.

Multiply this equation by φ and integrate over the domain to obtain

0 =

∫ 1

0

(1 + x)φ(x)2dx+

∫ 1

0

φ(x)∂xφ(x)dx−
∫ 1

0

φ(x)∂x((2 + x2)∂xφ(x))dx

=

∫ 1

0

(1 + x)φ(x)2dx+
1

2

∫ 1

0

∂x(φ(x)2)dx+

∫ 1

0

(2 + x2)∂xφ(x)∂xφ(x)dx− [(2 + x2)∂xφ(x)]|10.

The boundary term [(2 + x2)∂xφ(x)]|10 is zero owing to the boundary conditions. We apply the
fundamental Theorem of calculus one more time to obtain

0 =

∫ 1

0

(1 + x)φ(x)2dx+
1

2
[φ(x)2]|10 +

∫ 1

0

(2 + x2)[∂xφ(x)]2dx

=

∫ 1

0

(1 + x)φ(x)2dx+
1

2
φ(1)2 +

∫ 1

0

(2 + x2)[∂xφ(x)]2dx.

Since all the terms are non negative, this means that all the terms are zero:

0 =

∫ 1

0

(1 + x)φ(x)2dx, 0 =
1

2
φ(1), 0 =

∫ 1

0

(2 + x2)[∂xφ(x)]2dx.

This means in particular that

0 = (1 + x)φ(x)2, for all x ∈ (0, 1).

Since 1 + x ≥ 1 in the interval (0, 1), this implies that φ(x) = 0 for all x ∈ (0, 1). In conclusion
φ1 = φ2.
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Question 6: Consider the disk D centered at (0, 0) of radius 1. Let f(x, y) = x2− y2 + 4y− 3.
Let u ∈ C2(D) ∩ C0(D) solve −∇2u = 0 in D and u|∂D = f . Compute min(x,y)∈D u(x, y) and

max(x,y)∈D u(x, y).

We use the maximum principle (u is harmonic and has the required regularity). Then

min
(x,y)∈D

u(x, y) = min
(x,y)∈∂D

f(x, y), and max
(x,y)∈D

u(x, y) = max
(x,y)∈∂D

f(x, y).

A point (x, y) is at the boundary of D if and only if x2 + y2 = 1; as a result, the following holds
for all (x, y) ∈ ∂D:

f(x, y) = x2 − y2 + 4y − 3 = 1− y2 − y2 + 4y − 3 = −2(1− y)2.

We obtain

min
(x,y)∈∂D

f(x, y) = min
−1≤y≤1

−2(1− y)2 = −8, max
(x,y)∈∂D

f(x, y) = max
−1≤y≤1

−2(1− y)2 = 0.

In conclusion
min

(x,y)∈D
u(x, y) = −8, max

(x,y)∈D
u(x, y) = 0


