Notes, books, and calculators are not authorized. Show all your work in the blank space you are given on the exam sheet. Answers with no justification will not be graded.

Question 1: Let $\nabla \times$ be the curl operator acting on vector fields: i.e., let $A = (A_1, A_2, A_3) : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be a three-dimensional vector field over \mathbb{R}^3 , then $\nabla \times A = (\partial_2 A_3 - \partial_3 A_2, \partial_3 A_1 - \partial_1 A_3, \partial_1 A_2 - \partial_2 A_1)$. Accept as a fact that $\nabla \cdot (A \times B) = B \cdot \nabla \times A - A \cdot \nabla \times B$ for all smooth vector fields A and B. Let Ω be a subset of \mathbb{R}^3 with a smooth boundary $\partial \Omega$. Find an integration by parts formula for $\int_{\Omega} B \cdot \nabla \times A dx$.

Using the divergence Theorem we infer that

$$\int_{\Omega} (B \cdot \nabla \times A - A \cdot \nabla \times B) \mathrm{d}x = \int_{\Omega} \nabla \cdot (A \times B) = \int_{\partial \Omega} (A \times B) \cdot n \mathrm{d}s.$$

which implies that

$$\int_{\Omega} B \cdot \nabla \times A \mathrm{d} x = \int_{\Omega} A \cdot \nabla \times B \mathrm{d} x + \int_{\partial \Omega} (A \times B) \cdot n \mathrm{d} s.$$

Question 2: Let $u, f : \mathbb{R} \longrightarrow \mathbb{R}$ be two functions of class C^1 . (a) Compute $\partial_x f(u(x))$.

Using the chain rule we obtain

$$\partial_x f(u(x)) = f'(u(x))\partial_x u.$$

where f' denotes the derive of f.

(b) Let $\psi : \mathbb{R} \longrightarrow \mathbb{R}$ be functions of class C^1 . Let $F : \mathbb{R} \longrightarrow \mathbb{R}$ be defined by $F(v) = \int_0^v f'(t)\psi'(t)dt$. Use (a) to compute $\partial_x(F(u(x)) - \partial_x(f(u(x)))\psi'(u(x)))$.

Using the chain rule we obtain

$$\partial_x (F(u(x)) = F'(u(x))\partial_x u(x) = f'(u(x))\psi'(u(x))\partial_x u(x) = \partial_x (f(u(x)))\psi'(u(x)).$$

This means that $\partial_x(F(u(x)) = \partial_x(f(u(x)))\psi'(u(x)))$.

(c) Using the notation of (a) and (b), assume that $u(\pm \infty) = 0$ and compute $\int_{-\infty}^{+\infty} \partial_x (f(u(x))) \psi'(u(x)) dx$.

Using (b) and $u(\pm\infty) = 0$ we have

$$\int_{-\infty}^{+\infty} \partial_x (f(u(x)))\psi'(u(x)) \mathrm{d}x = \int_{-\infty}^{+\infty} \partial_x (F(u(x))) \mathrm{d}x = F(u(x))|_{-\infty}^{+\infty} = F(0) - F(0) = 0.$$

Question 3: Let ϕ be a smooth scalar field in \mathbb{R}^d , (*d* is the space dimension). (a) Prove that $\nabla \phi \cdot \partial_i (\nabla \phi) = \|\nabla \phi\| \partial_i \|\nabla \phi\|$. Give all the details.

Using the product rule, we have

$$\nabla \phi \cdot \partial_i (\nabla \phi) = \sum_{j=1}^d \partial_j \phi \partial_i (\partial_j \phi) = \partial_i (\frac{1}{2} \sum_{j=1}^d (\partial_j \phi)^2) = \partial_i (\frac{1}{2} \|\nabla \phi\|^2) = \|\nabla \phi\| \partial_i \|\nabla \phi\|$$

(b) Let $\epsilon > 0$. Show that $\nabla \cdot (\sqrt{\|\nabla \phi\|^2 + \epsilon} e_i) = \frac{\nabla \phi}{\sqrt{\|\nabla \phi\|^2 + \epsilon}} \cdot \partial_i (\nabla \phi)$ where e_i is the unit vector in the direction i.

Using the chain rule, we have

$$\nabla \cdot (\sqrt{\|\nabla\phi\|^2 + \epsilon}e_i) = \partial_i (\sqrt{\|\nabla\phi\|^2 + \epsilon}) = \frac{1}{2} \frac{1}{\sqrt{\|\nabla\phi\|^2 + \epsilon}} \partial_i (\|\nabla\phi\|^2 + \epsilon)$$
$$= \frac{\|\nabla\phi\|}{\sqrt{\|\nabla\phi\|^2 + \epsilon}} \partial_i \|\nabla\phi\|.$$

Then using (a) we infer that

$$\nabla \cdot (\sqrt{\|\nabla \phi\|^2 + \epsilon} e_i) = \frac{\nabla \phi}{\sqrt{\|\nabla \phi\|^2 + \epsilon}} \cdot \partial_i (\nabla \phi).$$

(c) Assume that $\phi(x) = 0$ for all $||x|| \ge R$ where R is a positive real number. Compute $\int_{\mathbb{R}^d} \frac{\nabla \phi}{\sqrt{||\nabla \phi||^2 + \epsilon}} \cdot \partial_i(\nabla \phi) dx$, for all $i = 1, \ldots, d$. Give all the details.

Using (b) we have

$$\int_{\mathbb{R}^d} \frac{\nabla \phi}{\sqrt{\|\nabla \phi\|^2 + \epsilon}} \cdot \partial_i (\nabla \phi) \mathrm{d}x = \int_{\mathbb{R}^d} \nabla \cdot (\sqrt{\|\nabla \phi\|^2 + \epsilon} e_i) \mathrm{d}x,$$

where e_i is the unit vector in the direction *i*. The divergence theorem together with the assumption that $\phi(x) = 0$ for all $||x|| \ge R$ implies that

$$\int_{\mathbb{R}^d} \frac{\nabla \phi}{\sqrt{\|\nabla \phi\|^2 + \epsilon}} \cdot \partial_i (\nabla \phi) \mathrm{d}x = 0.$$

Question 4: Consider the vibrating beam equation $\partial_{tt}u(x,t) + \partial_{xx}\left(\frac{x^2 + \cos(x)}{1+x^2}\partial_{xx}u(x,t)\right) = 0, \ u(x,0) = f(x),$ $\partial_t u(x,0) = g(x), \ x \in (-\infty, +\infty), \ t > 0 \text{ with } u(\pm\infty,t) = 0, \ \partial_x u(\pm\infty,t) = 0, \ \partial_x u(\pm\infty,t) = 0.$ Use the energy method to compute $\int_{-\infty}^{+\infty} ([\partial_t u(x,t)]^2 + \frac{x^2 + \cos(x)}{1+x^2} [\partial_{xx}u(x,t)]^2) dx$ in terms of f and g. Give all the details. (Hint: test the equation with $\partial_t u(x,t)$).

Using the hint we have

$$0 = \int_{-\infty}^{+\infty} (\partial_{tt} u(x,t) \partial_t u(x,t) + \partial_{xx} \left(\frac{x^2 + \cos(x)}{1 + x^2} \partial_{xx} u(x,t) \right)) \mathrm{d}x$$

Using the product rule, $a\partial_t a = \frac{1}{2}\partial_t a^2$ where $a = \partial_t u(x,t)$, and integrating by parts two times (i.e., applying the fundamental theorem of calculus) we obtain

$$0 = \int_{-\infty}^{+\infty} \left(\frac{1}{2}\partial_t(\partial_t u(x,t))^2 - \partial_x\left(\frac{x^2 + \cos(x)}{1 + x^2}\partial_{xx}u(x,t)\right)\partial_t\partial_x u(x,t)\right) dx$$
$$= \int_{-\infty}^{+\infty} \left(\partial_t \frac{1}{2}(\partial_t u(x,t))^2 + \left(\frac{x^2 + \cos(x)}{1 + x^2}\right)\partial_{xx}u(x,t)\partial_t\partial_{xx}u(x,t)\right) dx.$$

We apply again the product rule $a\partial_t a = \frac{1}{2}\partial_t a^2$ where $a = \partial_{xx}u(x,t)$,

$$0 = \int_{-\infty}^{+\infty} (\partial_t \frac{1}{2} (\partial_t u(x,t))^2 + \frac{1}{2} \frac{x^2 + \cos(x)}{1 + x^2} \partial_t (\partial_{xx} u(x,t))^2) \mathrm{d}x.$$

Switching the derivative with respect to t and the integration with respect to x, this finally gives

$$0 = \frac{1}{2}\partial_t \int_{-\infty}^{+\infty} ([\partial_t u(x,t)]^2 + \frac{x^2 + \cos(x)}{1+x^2} [\partial_{xx} u(x,t)]^2) \mathrm{d}x.$$

In other words,

$$\int_{-\infty}^{+\infty} ([\partial_t u(x,t)]^2 + \frac{x^2 + \cos(x)}{1 + x^2} [\partial_{xx} u(x,t)]^2) \mathrm{d}x = \int_{-\infty}^{+\infty} (g(x)^2 + \frac{x^2 + \cos(x)}{1 + x^2} [\partial_x f(x)]^2) \mathrm{d}x.$$

Question 5: Let $k, f: [-1, +1] \longrightarrow \mathbb{R}$ be such that k(x) = 3, f(x) = -6 if $x \in [-1, 0]$ and k(x) = 1, f(x) = 2 if $x \in (0, 1]$. Consider the boundary value problem $-\partial_x(k(x)\partial_x T(x)) = f(x)$ with T(-1) = 1 and $\partial_x T(1) = 1$. (a) What should be the interface conditions at x = 0 for this problem to make sense?

The function T and the flux $k(x)\partial_x T(x)$ must be continuous at x = 0. Let T^- denote the solution on [-1,0] and T^+ the solution on [0,+1]. One should have $T^-(0) = T^+(0)$ and $k^-(0)\partial_x T^-(0) = k^+(0)\partial_x T^+(0)$, where $k^-(0) = 3$ and $k^+(0) = 1$.

(b) Solve the problem, i.e., find $T(x), x \in [-1, +1]$. Give all the details.

On [-1,0] we have $k^-(x) = 3$ and $f^-(x) = -6$ which implies $-3\partial_{xx}T^-(x) = -6$. This in turn implies $T^-(x) = x^2 + ax + b$. The Dirichlet condition at x = -1 implies that $T^-(-1) = 1 = 1 - a + b$. This gives a = b and $T^-(x) = x^2 + bx + b$.

We proceed similarly on [0,+1] and we obtain $-\partial_{xx}T^-(x) = 2$, which implies that $T^+(x) = -x^2 + cx + d$. The Neumann condition at x = 1 implies $T^+(1) = 1 = -2 + c$. This gives c = 3 and $T^-(x) = -x^2 + 3x + d$.

The interface conditions $T^{-}(0) = T^{+}(0)$ and $k^{-}(0)\partial_{x}T^{-}(0) = k^{+}(0)\partial_{x}T^{+}(0)$ give b = d and 3b = 3, respectively. In conclusion b = 1, d = 1 and

$$T(x) = \begin{cases} x^2 + x + 1 & \text{if } x \in [-1, 0], \\ -x^2 + 3x + 1 & \text{if } x \in [0, 1]. \end{cases}$$

The definition of SS(f)(x) implies that

$$b_m = \frac{2}{\pi} \int_0^{\pi} x \sin(mx) dx = -\frac{2}{\pi} \int_0^{\pi} -\frac{1}{m} \cos(mx) dx + \frac{2}{\pi} [-x\frac{1}{m} \cos(mx)]_0^{\pi}$$
$$= \frac{2}{m} (-1)^{m+1}.$$

As a result $SS(f)(x) = \sum_{m=1}^{+\infty} \frac{2}{m} (-1)^{m+1} \sin(mx)$.

(b) For which values of x in $[0, +\pi]$ does the sine series coincide with f(x)? (Explain).

The sine series coincides with the function f(x) over the entire interval $[0, +\pi)$ since f(0) = 0 and f is smooth over $[0, +\pi)$. The series does not coincide with $f(+\pi)$ since $f(+\pi) \neq 0$.

(c) The sine series of x^2 over $[0, +\pi]$ is $SS(x^2)(x) = \sum_{m=1}^{+\infty} (\frac{4}{m^3 \pi} ((-1)^m - 1) + \frac{2\pi}{m} (-1)^{m+1}) \sin(mx)$. Compute the sine series of $h(x) = x(\pi - x)$. (Hint: use (a))

Let $h(x) = x(\pi - x)$. Note that by linearity of the sine series we have

$$\mathsf{SS}(h)(x) = \mathsf{SS}(\pi x)(x) - \mathsf{SS}(x^2)(x),$$

as a result $b_m(h) = \pi b_m(x) - b_m(x^2)$, i.e.,

$$b_m(h) = \pi \frac{2}{m} (-1)^{m+1} - \left(\frac{4}{m^3 \pi} ((-1)^m - 1) + \frac{2\pi}{m} (-1)^{m+1}\right) = \frac{4}{m^3 \pi} (1 + (-1)^{m+1}).$$

In conclusion

$$SS(h)(x) = \sum_{m=1}^{\infty} \frac{4}{m^3 \pi} (1 + (-1)^{m+1}) \sin(mx).$$

(d) Compute the cosine series of the function $g(x) := \pi - 2x$ defined over $[0, +\pi]$. (Hint: $\partial_x(x(\pi - x)) = \pi - 2x$.)

Observe that $h(0) = h(\pi) = 0$; as a result the sine series of h is continuous at 0 and $+\pi$. This in turn implies that it is the legitimate to differentiate the sine series of h term by term to obtain the cosine series of h'(x) = g(x). In other words,

$$\mathsf{CS}(g)(x) = \partial_x \mathsf{SS}(h)(x) = \sum_{m=1}^{\infty} \frac{4}{m^2 \pi} (1 + (-1)^{m+1}) \cos(mx).$$

(e) Compute the sine series of $h(x) = \sin(x)$ for $x \in [0, +\pi]$.

Obviously

$$\mathsf{SS}(h)(x) = \sin(x), \quad \forall x \in \mathbb{R}.$$

Question 7: Using cylindrical coordinates and the method of separation of variables, solve the equation, $\frac{1}{r}\partial_r(r\partial_r u) + \frac{1}{r^2}\partial_{\theta\theta}u = 0$, inside the domain $D = \{\theta \in [0, \frac{3}{2}\pi], r \in [0, 3]\}$, subject to the boundary conditions $\partial_{\theta}u(r, 0) = 0$, $u(r, \frac{3}{2}\pi) = 0$, $u(3, \theta) = 9\cos(\theta)$. (Give all the details of all the steps.)

(1) We set $u(r,\theta) = \phi(\theta)g(r)$. This means $\phi'' = -\lambda\phi$, with $\phi'(0) = 0$ and $\phi(\frac{3}{2}\pi) = 0$, and $r\frac{d}{dr}(r\frac{d}{dr}g(r)) = \lambda g(r)$.

(2) The usual energy argument applied to the two-point boundary value problem

$$\phi'' = -\lambda\phi, \qquad \phi'(0) = 0, \qquad \phi(\frac{3}{2}\pi) = 0,$$

implies that λ is non-negative. If $\lambda = 0$, then $\phi(\theta) = c_1 + c_2\theta$ and the boundary conditions imply $c_1 = c_2 = 0$, i.e., $\phi = 0$, which in turns gives u = 0 and this solution is incompatible with the boundary condition $u(3, \theta) = 9\sin(2\theta)$. Hence $\lambda > 0$ and

$$\phi(\theta) = c_1 \cos(\sqrt{\lambda \theta}) + c_2 \sin(\sqrt{\lambda \theta}).$$

(3) The boundary condition $\phi'(0) = 0$ implies $c_2 = 0$. The boundary condition $\phi(\frac{3}{2}\pi) = 0$ implies that $\cos(\sqrt{\lambda}\frac{3}{2}\pi) = 0$, i.e., $\sqrt{\lambda}\frac{3}{2}\pi = (2n+1)\frac{\pi}{2}$ with $n \in \mathbb{N}$. This means $\sqrt{\lambda} = \frac{1}{3}(2n+1)$, $n = 0, 1, 2, \dots$

(4) From class we know that g(r) is of the form r^{α} , $\alpha \ge 0$. The equality $r\frac{d}{dr}(r\frac{d}{dr}r^{\alpha}) = \lambda r^{\alpha}$ gives $\alpha^2 = \lambda$. The condition $\alpha \ge 0$ implies $\frac{1}{3}(2n+1) = \alpha = \sqrt{\lambda}$. The boundary condition at r = 3 gives $9\cos(\theta) = c_1 3^{\frac{1}{3}(2n+1)}\cos(\frac{1}{3}(2n+1)\theta)$ for all $\theta \in [0, \frac{3}{2}\pi]$. This implies n = 1 and $c_1 = 3$.

(5) Finally, the solution to the problem is

$$\iota(r,\theta) = 3r\cos(\theta).$$

1

Question 8: Let $p, q : [-1, +1] \to \mathbb{R}$ be smooth functions. Assume that $p(x) \ge 0$ and $q(x) \ge q_0$ for all $x \in [-1, +1]$, where $q_0 \in \mathbb{R}$. Consider the eigenvalue problem $-\partial_x(p(x)\partial_x\phi(x)) + q(x)\phi(x) = \lambda\phi(x)$, supplemented with the boundary conditions $\partial_x\phi(-1) = 0$ and $-\partial_x\phi(1) = 2\phi(1)$.

(a) Prove that it is necessary that $\lambda \ge q_0$ for a non-zero (smooth) solution, ϕ , to exist. (Hint: $q_0 \int_{-1}^{+1} \phi^2(x) dx \le \int_{-1}^{+1} q(x) \phi^2(x) dx$.)

As usual we use the energy method. Let (ϕ, λ) be an eigenpair, then

$$\int_{-1}^{+1} (-\partial_x (p(x)\partial_x \phi(x))\phi(x) + q(x)\phi^2(x)) \mathrm{d}x = \lambda \int_{-1}^{+1} \phi^2(x) \mathrm{d}x.$$

After integration by parts and using the boundary conditions, we obtain

$$\lambda \int_{-1}^{+1} \phi^2(x) dx = \int_{-1}^{+1} (p(x)\partial_x \phi(x)\partial_x \phi(x) + q(x)\phi^2(x)) dx - 2p(x)\partial_x \phi(x)\phi(x)|_{-1}^{+1}$$
$$= \int_{-1}^{+1} (p(x)\partial_x \phi(x)\partial_x \phi(x) + q(x)\phi^2(x)) dx + 2p(1)\phi(1)^2$$

which, using the hint, can also be re-written

$$\int_{-1}^{+1} (p(x)\partial_x \phi(x)\partial_x \phi(x) + q_0 \phi^2(x)) \mathrm{d}x + 2p(1)\phi(1)^2 \le \lambda \int_{-1}^{+1} \phi^2(x) \mathrm{d}x.$$

Then

$$2p(1)\phi(1)^{2} + \int_{-1}^{+1} p(x)(\partial_{x}\phi(x))^{2} \mathrm{d}x \le (\lambda - q_{0}) \int_{-1}^{+1} \phi^{2}(x) \mathrm{d}x.$$

Assume that ϕ is non-zero, then

$$\lambda - q_0 \ge \frac{\int_{-1}^{+1} p(x) (\partial_x \phi(x))^2 \mathrm{d}x + 2p(1)\phi(1)^2}{\int_{-1}^{+1} \phi^2(x) \mathrm{d}x} \ge 0,$$

which proves that it is necessary that $\lambda \ge q_0$ for a non-zero (smooth) solution to exist.

(b) Assume that $p(x) \ge p_0 > 0$ for all $x \in [-1, +1]$ where $p_0 \in \mathbb{R}_+$. Show that $\lambda = q_0$ cannot be an eigenvalue, i.e., prove that $\phi = 0$ if $\lambda = q_0$. (Hint: $p_0 \int_{-1}^{+1} \psi^2(x) dx \le \int_{-1}^{+1} p(x) \psi^2(x) dx$.)

Assume that $\lambda = q_0$ is an eigenvalue. Then the above computation shows that

$$p_0 \int_{-1}^{+1} (\partial_x \phi(x))^2 \mathrm{d}x \le \int_{-1}^{+1} p(x) (\partial_x \phi(x))^2 \mathrm{d}x = 0,$$

which means that $\int_{-1}^{+1} (\partial_x \phi(x))^2 dx = 0$ since $p_0 > 0$. As a result $\partial_x \phi = 0$, i.e., $\phi(x) = c$ where c is a constant. The boundary condition $-\partial\phi(1) = 2\phi(1)$ implies that c = 0. In conclusion $\phi = 0$ if $\lambda = q_0$, thereby proving that (ϕ, q_0) is not an eigenpair.

Question 9: Use the Fourier transform technique to solve $\partial_t u(x,t) - \partial_{xx} u(x,t) + \cos(t) \partial_x u(x,t) + (1+2t)u(x,t) = 0$, $x \in \mathbb{R}, t > 0$, with $u(x,0) = u_0(x)$. (Hint: use the definition $\mathcal{F}(f)(\omega) := \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(x) e^{i\omega x} dx$), the result $\mathcal{F}(e^{-\alpha x^2})(\omega) = \frac{1}{\sqrt{4\pi\alpha}} e^{-\frac{\omega^2}{4\alpha}}$, the convolution theorem and the shift lemma: $\mathcal{F}(f(x-\beta))(\omega) = \mathcal{F}(f)(\omega) e^{i\omega\beta}$. Go slowly and give all the details.)

Applying the Fourier transform to the equation gives

$$\partial_t \mathcal{F}(u)(\omega, t) + \omega^2 \mathcal{F}(u)(\omega, t) + \cos(t)(-i\omega)\mathcal{F}(u)(\omega, t) + (1+2t)\mathcal{F}(u)(\omega, t) = 0$$

This can also be re-written as follows:

$$\frac{\partial_t \mathcal{F}(u)(\omega, t)}{\mathcal{F}(u)(\omega, t)} = -\omega^2 + i\omega\cos(t) - (1+2t).$$

Then applying the fundamental theorem of calculus between 0 and t, we obtain

$$\log(\mathcal{F}(u)(\omega,t)) - \log(\mathcal{F}(u)(\omega,0)) = -\omega^2 t + i\omega\sin(t) - (t+t^2).$$

This implies

$$\mathcal{F}(u)(\omega,t) = \mathcal{F}(u_0)(\omega) e^{-\omega^2 t} e^{i\omega \sin(t)} e^{-(t+t^2)}.$$

Using the result $\mathcal{F}(e^{-\alpha x^2})(\omega) = \frac{1}{\sqrt{4\pi\alpha}}e^{-\frac{\omega^2}{4\alpha}}$ where $\alpha = \frac{1}{4t}$, this implies that

$$\mathcal{F}(u)(\omega,t) = \sqrt{\frac{\pi}{t}} \mathcal{F}(u_0)(\omega) \mathcal{F}(\mathsf{e}^{-\frac{x^2}{4t}})(\omega) \mathsf{e}^{i\omega\sin(t)} \mathsf{e}^{-(t+t^2)}$$
$$= \sqrt{\frac{\pi}{t}} \mathcal{F}(u_0 * \mathsf{e}^{-\frac{x^2}{4t}})(\omega) \mathsf{e}^{i\omega\sin(t)} \mathsf{e}^{-(t+t^2)}.$$

Then setting $g = u_0 * e^{-\frac{x^2}{4t}}$ the convolution theorem followed by the shift lemma gives

$$\mathcal{F}(u)(\omega,t) = \frac{1}{2\pi} \sqrt{\frac{\pi}{t}} \mathcal{F}(g(x-\sin(t)))(\omega) e^{-(t+t^2)}$$

This finally gives

$$u(x,t) = \sqrt{\frac{1}{4\pi t}}g(x-\sin(t))\mathsf{e}^{-(t+t^2)} = e^{-(t+t^2)}\sqrt{\frac{1}{4\pi t}}\int_{-\infty}^{+\infty}u_0(y)\mathsf{e}^{-\frac{(x-\sin(t)-y)^2}{4t}}\mathsf{d}y$$