Notes, books, and calculators are not authorized. Show all your work in the blank space you are given on the exam sheet. Answers with no justification will not be graded.
Question 1: Let $\nabla \times$ be the curl operator acting on vector fields: i.e., let $A=\left(A_{1}, A_{2}, A_{3}\right): \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ be a three-dimensional vector field over \mathbb{R}^{3}, then $\nabla \times A=\left(\partial_{2} A_{3}-\partial_{3} A_{2}, \partial_{3} A_{1}-\partial_{1} A_{3}, \partial_{1} A_{2}-\partial_{2} A_{1}\right)$. Accept as a fact that $\nabla \cdot(A \times B)=B \cdot \nabla \times A-A \cdot \nabla \times B$ for all smooth vector fields A and B. Let Ω be a subset of \mathbb{R}^{3} with a smooth boundary $\partial \Omega$. Find an integration by parts formula for $\int_{\Omega} B \cdot \nabla \times A \mathrm{~d} x$.
Using the divergence Theorem we infer that

$$
\int_{\Omega}(B \cdot \nabla \times A-A \cdot \nabla \times B) \mathrm{d} x=\int_{\Omega} \nabla \cdot(A \times B)=\int_{\partial \Omega}(A \times B) \cdot n \mathrm{~d} s
$$

which implies that

$$
\int_{\Omega} B \cdot \nabla \times A \mathrm{~d} x=\int_{\Omega} A \cdot \nabla \times B \mathrm{~d} x+\int_{\partial \Omega}(A \times B) \cdot n \mathrm{~d} s
$$

Question 2: Let $u, f: \mathbb{R} \longrightarrow \mathbb{R}$ be two functions of class C^{1}. (a) Compute $\partial_{x} f(u(x))$.
Using the chain rule we obtain

$$
\partial_{x} f(u(x))=f^{\prime}(u(x)) \partial_{x} u
$$

where f^{\prime} denotes the derive of f.
(b) Let $\psi: \mathbb{R} \longrightarrow \mathbb{R}$ be functions of class C^{1}. Let $F: \mathbb{R} \longrightarrow \mathbb{R}$ be defined by $F(v)=\int_{0}^{v} f^{\prime}(t) \psi^{\prime}(t) \mathrm{d} t$. Use (a) to compute $\partial_{x}\left(F(u(x))-\partial_{x}(f(u(x))) \psi^{\prime}(u(x))\right.$.
Using the chain rule we obtain

$$
\partial_{x}\left(F(u(x))=F^{\prime}(u(x)) \partial_{x} u(x)=f^{\prime}(u(x)) \psi^{\prime}(u(x)) \partial_{x} u(x)=\partial_{x}(f(u(x))) \psi^{\prime}(u(x))\right.
$$

This means that $\partial_{x}\left(F(u(x))=\partial_{x}(f(u(x))) \psi^{\prime}(u(x))\right.$.
(c) Using the notation of (a) and (b), assume that $u(\pm \infty)=0$ and compute $\int_{-\infty}^{+\infty} \partial_{x}(f(u(x))) \psi^{\prime}(u(x)) \mathrm{d} x$.

Using (b) and $u(\pm \infty)=0$ we have

$$
\int_{-\infty}^{+\infty} \partial_{x}(f(u(x))) \psi^{\prime}(u(x)) \mathrm{d} x=\int_{-\infty}^{+\infty} \partial_{x}(F(u(x))) \mathrm{d} x=\left.F(u(x))\right|_{-\infty} ^{+\infty}=F(0)-F(0)=0
$$

Question 3: Let ϕ be a smooth scalar field in \mathbb{R}^{d}, (d is the space dimension). (a) Prove that $\nabla \phi \cdot \partial_{i}(\nabla \phi)=$ $\|\nabla \phi\| \partial_{i}\|\nabla \phi\|$. Give all the details.
Using the product rule, we have

$$
\nabla \phi \cdot \partial_{i}(\nabla \phi)=\sum_{j=1}^{d} \partial_{j} \phi \partial_{i}\left(\partial_{j} \phi\right)=\partial_{i}\left(\frac{1}{2} \sum_{j=1}^{d}\left(\partial_{j} \phi\right)^{2}\right)=\partial_{i}\left(\frac{1}{2}\|\nabla \phi\|^{2}\right)=\|\nabla \phi\| \partial_{i}\|\nabla \phi\|
$$

(b) Let $\epsilon>0$. Show that $\nabla \cdot\left(\sqrt{\|\nabla \phi\|^{2}+\epsilon} e_{i}\right)=\frac{\nabla \phi}{\sqrt{\|\nabla \phi\|^{2}+\epsilon}} \cdot \partial_{i}(\nabla \phi)$ where e_{i} is the unit vector in the direction i.

Using the chain rule, we have

$$
\begin{aligned}
\nabla \cdot\left(\sqrt{\|\nabla \phi\|^{2}+\epsilon} e_{i}\right) & =\partial_{i}\left(\sqrt{\|\nabla \phi\|^{2}+\epsilon}\right)=\frac{1}{2} \frac{1}{\sqrt{\|\nabla \phi\|^{2}+\epsilon}} \partial_{i}\left(\|\nabla \phi\|^{2}+\epsilon\right) \\
& =\frac{\|\nabla \phi\|}{\sqrt{\|\nabla \phi\|^{2}+\epsilon}} \partial_{i}\|\nabla \phi\|
\end{aligned}
$$

Then using (a) we infer that

$$
\nabla \cdot\left(\sqrt{\|\nabla \phi\|^{2}+\epsilon} e_{i}\right)=\frac{\nabla \phi}{\sqrt{\|\nabla \phi\|^{2}+\epsilon}} \cdot \partial_{i}(\nabla \phi)
$$

(c) Assume that $\phi(x)=0$ for all $\|x\| \geq R$ where R is a positive real number. Compute $\int_{\mathbb{R}^{d}} \frac{\nabla \phi}{\sqrt{\|\nabla \phi\|^{2}+\epsilon}} \cdot \partial_{i}(\nabla \phi) \mathrm{d} x$, for all $i=1, \ldots, d$. Give all the details.
Using (b) we have

$$
\int_{\mathbb{R}^{d}} \frac{\nabla \phi}{\sqrt{\|\nabla \phi\|^{2}+\epsilon}} \cdot \partial_{i}(\nabla \phi) \mathrm{d} x=\int_{\mathbb{R}^{d}} \nabla \cdot\left(\sqrt{\|\nabla \phi\|^{2}+\epsilon} e_{i}\right) \mathrm{d} x
$$

where e_{i} is the unit vector in the direction i. The divergence theorem together with the assumption that $\phi(x)=0$ for all $\|x\| \geq R$ implies that

$$
\int_{\mathbb{R}^{d}} \frac{\nabla \phi}{\sqrt{\|\nabla \phi\|^{2}+\epsilon}} \cdot \partial_{i}(\nabla \phi) \mathrm{d} x=0
$$

Question 4: Consider the vibrating beam equation $\partial_{t t} u(x, t)+\partial_{x x}\left(\frac{x^{2}+\cos (x)}{1+x^{2}} \partial_{x x} u(x, t)\right)=0, u(x, 0)=f(x)$, $\partial_{t} u(x, 0)=g(x), x \in(-\infty,+\infty), t>0$ with $u(\pm \infty, t)=0, \partial_{x} u(\pm \infty, t)=0, \partial_{x x} u(\pm \infty, t)=0$. Use the energy method to compute $\int_{-\infty}^{+\infty}\left(\left[\partial_{t} u(x, t)\right]^{2}+\frac{x^{2}+\cos (x)}{1+x^{2}}\left[\partial_{x x} u(x, t)\right]^{2}\right) \mathrm{d} x$ in terms of f and g. Give all the details. (Hint: test the equation with $\left.\partial_{t} u(x, t)\right)$.
Using the hint we have

$$
0=\int_{-\infty}^{+\infty}\left(\partial_{t t} u(x, t) \partial_{t} u(x, t)+\partial_{x x}\left(\frac{x^{2}+\cos (x)}{1+x^{2}} \partial_{x x} u(x, t)\right)\right) \mathrm{d} x
$$

Using the product rule, $a \partial_{t} a=\frac{1}{2} \partial_{t} a^{2}$ where $a=\partial_{t} u(x, t)$, and integrating by parts two times (i.e., applying the fundamental theorem of calculus) we obtain

$$
\begin{aligned}
0 & =\int_{-\infty}^{+\infty}\left(\frac{1}{2} \partial_{t}\left(\partial_{t} u(x, t)\right)^{2}-\partial_{x}\left(\frac{x^{2}+\cos (x)}{1+x^{2}} \partial_{x x} u(x, t)\right) \partial_{t} \partial_{x} u(x, t)\right) \mathrm{d} x \\
& =\int_{-\infty}^{+\infty}\left(\partial_{t} \frac{1}{2}\left(\partial_{t} u(x, t)\right)^{2}+\left(\frac{x^{2}+\cos (x)}{1+x^{2}}\right) \partial_{x x} u(x, t) \partial_{t} \partial_{x x} u(x, t)\right) \mathrm{d} x
\end{aligned}
$$

We apply again the product rule $a \partial_{t} a=\frac{1}{2} \partial_{t} a^{2}$ where $a=\partial_{x x} u(x, t)$,

$$
0=\int_{-\infty}^{+\infty}\left(\partial_{t} \frac{1}{2}\left(\partial_{t} u(x, t)\right)^{2}+\frac{1}{2} \frac{x^{2}+\cos (x)}{1+x^{2}} \partial_{t}\left(\partial_{x x} u(x, t)\right)^{2}\right) \mathrm{d} x
$$

Switching the derivative with respect to t and the integration with respect to x, this finally gives

$$
0=\frac{1}{2} \partial_{t} \int_{-\infty}^{+\infty}\left(\left[\partial_{t} u(x, t)\right]^{2}+\frac{x^{2}+\cos (x)}{1+x^{2}}\left[\partial_{x x} u(x, t)\right]^{2}\right) \mathrm{d} x
$$

In other words,

$$
\int_{-\infty}^{+\infty}\left(\left[\partial_{t} u(x, t)\right]^{2}+\frac{x^{2}+\cos (x)}{1+x^{2}}\left[\partial_{x x} u(x, t)\right]^{2}\right) \mathrm{d} x=\int_{-\infty}^{+\infty}\left(g(x)^{2}+\frac{x^{2}+\cos (x)}{1+x^{2}}\left[\partial_{x} f(x)\right]^{2}\right) \mathrm{d} x
$$

Question 5: Let $k, f:[-1,+1] \longrightarrow \mathbb{R}$ be such that $k(x)=3, f(x)=-6$ if $x \in[-1,0]$ and $k(x)=1, f(x)=2$ if $x \in(0,1]$. Consider the boundary value problem $-\partial_{x}\left(k(x) \partial_{x} T(x)\right)=f(x)$ with $T(-1)=1$ and $\partial_{x} T(1)=1$.
(a) What should be the interface conditions at $x=0$ for this problem to make sense?

The function T and the flux $k(x) \partial_{x} T(x)$ must be continuous at $x=0$. Let T^{-}denote the solution on $[-1,0]$ and T^{+} the solution on $[0,+1]$. One should have $T^{-}(0)=T^{+}(0)$ and $k^{-}(0) \partial_{x} T^{-}(0)=k^{+}(0) \partial_{x} T^{+}(0)$, where $k^{-}(0)=3$ and $\underline{k^{+}}(0)=1$.
(b) Solve the problem, i.e., find $T(x), x \in[-1,+1]$. Give all the details.

On $[-1,0]$ we have $k^{-}(x)=3$ and $f^{-}(x)=-6$ which implies $-3 \partial_{x x} T^{-}(x)=-6$. This in turn implies $T^{-}(x)=$ $x^{2}+a x+b$. The Dirichlet condition at $x=-1$ implies that $T^{-}(-1)=1=1-a+b$. This gives $a=b$ and $T^{-}(x)=x^{2}+b x+b$.

We proceed similarly on $[0,+1]$ and we obtain $-\partial_{x x} T^{-}(x)=2$, which implies that $T^{+}(x)=-x^{2}+c x+d$. The Neumann condition at $x=1$ implies $T^{+}(1)=1=-2+c$. This gives $c=3$ and $T^{-}(x)=-x^{2}+3 x+d$.
The interface conditions $T^{-}(0)=T^{+}(0)$ and $k^{-}(0) \partial_{x} T^{-}(0)=k^{+}(0) \partial_{x} T^{+}(0)$ give $b=d$ and $3 b=3$, respectively. In conclusion $b=1, d=1$ and

$$
T(x)= \begin{cases}x^{2}+x+1 & \text { if } x \in[-1,0] \\ -x^{2}+3 x+1 & \text { if } x \in[0,1]\end{cases}
$$

Question 6: (a) Compute the coefficients of the sine series of $f(x)=x$ for $x \in[0,+\pi]$. (Recall that by definition $\underline{\left.\mathrm{SS}(f)(x)=\sum_{m=1}^{+\infty} b_{m} \sin (m x) \text { with } b_{m}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (m x) \mathrm{d} x \text {.) }\right) ~}$
The definition of $\mathrm{SS}(f)(x)$ implies that

$$
\begin{aligned}
b_{m} & =\frac{2}{\pi} \int_{0}^{\pi} x \sin (m x) \mathrm{d} x=-\frac{2}{\pi} \int_{0}^{\pi}-\frac{1}{m} \cos (m x) \mathrm{d} x+\frac{2}{\pi}\left[-x \frac{1}{m} \cos (m x)\right]_{0}^{\pi} \\
& =\frac{2}{m}(-1)^{m+1}
\end{aligned}
$$

As a result $\mathrm{SS}(f)(x)=\sum_{m=1}^{+\infty} \frac{2}{m}(-1)^{m+1} \sin (m x)$.
(b) For which values of x in $[0,+\pi]$ does the sine series coincide with $f(x)$? (Explain).

The sine series coincides with the function $f(x)$ over the entire interval $[0,+\pi)$ since $f(0)=0$ and f is smooth over $[0,+\pi)$. The series does not coincide with $f(+\pi)$ since $f(+\pi) \neq 0$.
(c) The sine series of x^{2} over $[0,+\pi]$ is $\operatorname{SS}\left(x^{2}\right)(x)=\sum_{m=1}^{+\infty}\left(\frac{4}{m^{3} \pi}\left((-1)^{m}-1\right)+\frac{2 \pi}{m}(-1)^{m+1}\right) \sin (m x)$. Compute the sine series of $h(x)=x(\pi-x)$. (Hint: use (a))
Let $h(x)=x(\pi-x)$. Note that by linearity of the sine series we have

$$
\mathrm{SS}(h)(x)=\operatorname{SS}(\pi x)(x)-\operatorname{SS}\left(x^{2}\right)(x)
$$

as a result $b_{m}(h)=\pi b_{m}(x)-b_{m}\left(x^{2}\right)$, i.e.,

$$
b_{m}(h)=\pi \frac{2}{m}(-1)^{m+1}-\left(\frac{4}{m^{3} \pi}\left((-1)^{m}-1\right)+\frac{2 \pi}{m}(-1)^{m+1}\right)=\frac{4}{m^{3} \pi}\left(1+(-1)^{m+1}\right)
$$

In conclusion

$$
\mathrm{SS}(h)(x)=\sum_{m=1}^{\infty} \frac{4}{m^{3} \pi}\left(1+(-1)^{m+1}\right) \sin (m x)
$$

(d) Compute the cosine series of the function $g(x):=\pi-2 x$ defined over $[0,+\pi]$. (Hint: $\partial_{x}(x(\pi-x))=\pi-2 x$.) Observe that $h(0)=h(\pi)=0$; as a result the sine series of h is continuous at 0 and $+\pi$. This in turn implies that it is the legitimate to differentiate the sine series of h term by term to obtain the cosine series of $h^{\prime}(x)=g(x)$. In other words,

$$
\mathrm{CS}(g)(x)=\partial_{x} \mathrm{SS}(h)(x)=\sum_{m=1}^{\infty} \frac{4}{m^{2} \pi}\left(1+(-1)^{m+1}\right) \cos (m x)
$$

(e) Compute the sine series of $h(x)=\sin (x)$ for $x \in[0,+\pi]$.

Obviously

$$
\mathrm{SS}(h)(x)=\sin (x), \quad \forall x \in \mathbb{R}
$$

Question 7: Using cylindrical coordinates and the method of separation of variables, solve the equation, $\frac{1}{r} \partial_{r}\left(r \partial_{r} u\right)+$ $\frac{1}{r^{2}} \partial_{\theta \theta} u=0$, inside the domain $D=\left\{\theta \in\left[0, \frac{3}{2} \pi\right], r \in[0,3]\right\}$, subject to the boundary conditions $\partial_{\theta} u(r, 0)=0$, $u\left(r, \frac{3}{2} \pi\right)=0, u(3, \theta)=9 \cos (\theta)$. (Give all the details of all the steps.)
(1) We set $u(r, \theta)=\phi(\theta) g(r)$. This means $\phi^{\prime \prime}=-\lambda \phi$, with $\phi^{\prime}(0)=0$ and $\phi\left(\frac{3}{2} \pi\right)=0$, and $r \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r \frac{\mathrm{~d}}{\mathrm{~d} r} g(r)\right)=\lambda g(r)$.
(2) The usual energy argument applied to the two-point boundary value problem

$$
\phi^{\prime \prime}=-\lambda \phi, \quad \phi^{\prime}(0)=0, \quad \phi\left(\frac{3}{2} \pi\right)=0
$$

implies that λ is non-negative. If $\lambda=0$, then $\phi(\theta)=c_{1}+c_{2} \theta$ and the boundary conditions imply $c_{1}=c_{2}=0$, i.e., $\phi=0$, which in turns gives $u=0$ and this solution is incompatible with the boundary condition $u(3, \theta)=9 \sin (2 \theta)$. Hence $\lambda>0$ and

$$
\phi(\theta)=c_{1} \cos (\sqrt{\lambda} \theta)+c_{2} \sin (\sqrt{\lambda} \theta)
$$

(3) The boundary condition $\phi^{\prime}(0)=0$ implies $c_{2}=0$. The boundary condition $\phi\left(\frac{3}{2} \pi\right)=0$ implies that $\cos \left(\sqrt{\lambda} \frac{3}{2} \pi\right)=0$, i.e., $\sqrt{\lambda} \frac{3}{2} \pi=(2 n+1) \frac{\pi}{2}$ with $n \in \mathbb{N}$. This means $\sqrt{\lambda}=\frac{1}{3}(2 n+1), n=0,1,2, \ldots$.
(4) From class we know that $g(r)$ is of the form $r^{\alpha}, \alpha \geq 0$. The equality $r \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r \frac{\mathrm{~d}}{\mathrm{~d} r} r^{\alpha}\right)=\lambda r^{\alpha}$ gives $\alpha^{2}=\lambda$. The condition $\alpha \geq 0$ implies $\frac{1}{3}(2 n+1)=\alpha=\sqrt{\lambda}$. The boundary condition at $r=3$ gives $9 \cos (\theta)=c_{1} 3^{\frac{1}{3}(2 n+1)} \cos \left(\frac{1}{3}(2 n+1) \theta\right)$ for all $\theta \in\left[0, \frac{3}{2} \pi\right]$. This implies $n=1$ and $c_{1}=3$.
(5) Finally, the solution to the problem is

$$
u(r, \theta)=3 r \cos (\theta)
$$

Question 8: Let $p, q:[-1,+1] \longrightarrow \mathbb{R}$ be smooth functions. Assume that $p(x) \geq 0$ and $q(x) \geq q_{0}$ for all $x \in[-1,+1]$, where $q_{0} \in \mathbb{R}$. Consider the eigenvalue problem $-\partial_{x}\left(p(x) \partial_{x} \phi(x)\right)+q(x) \phi(x)=\lambda \phi(x)$, supplemented with the boundary conditions $\partial_{x} \phi(-1)=0$ and $-\partial_{x} \phi(1)=2 \phi(1)$.
(a) Prove that it is necessary that $\lambda \geq q_{0}$ for a non-zero (smooth) solution, ϕ, to exist. (Hint: $q_{0} \int_{-1}^{+1} \phi^{2}(x) \mathrm{d} x \leq$ $\underline{\left.\int_{-1}^{+1} q(x) \phi^{2}(x) \mathrm{d} x .\right)}$
As usual we use the energy method. Let (ϕ, λ) be an eigenpair, then

$$
\int_{-1}^{+1}\left(-\partial_{x}\left(p(x) \partial_{x} \phi(x)\right) \phi(x)+q(x) \phi^{2}(x)\right) \mathrm{d} x=\lambda \int_{-1}^{+1} \phi^{2}(x) \mathrm{d} x
$$

After integration by parts and using the boundary conditions, we obtain

$$
\begin{aligned}
\lambda \int_{-1}^{+1} \phi^{2}(x) \mathrm{d} x & =\int_{-1}^{+1}\left(p(x) \partial_{x} \phi(x) \partial_{x} \phi(x)+q(x) \phi^{2}(x)\right) \mathrm{d} x-\left.2 p(x) \partial_{x} \phi(x) \phi(x)\right|_{-1} ^{+1} \\
& =\int_{-1}^{+1}\left(p(x) \partial_{x} \phi(x) \partial_{x} \phi(x)+q(x) \phi^{2}(x)\right) \mathrm{d} x+2 p(1) \phi(1)^{2}
\end{aligned}
$$

which, using the hint, can also be re-written

$$
\int_{-1}^{+1}\left(p(x) \partial_{x} \phi(x) \partial_{x} \phi(x)+q_{0} \phi^{2}(x)\right) \mathrm{d} x+2 p(1) \phi(1)^{2} \leq \lambda \int_{-1}^{+1} \phi^{2}(x) \mathrm{d} x
$$

Then

$$
2 p(1) \phi(1)^{2}+\int_{-1}^{+1} p(x)\left(\partial_{x} \phi(x)\right)^{2} \mathrm{~d} x \leq\left(\lambda-q_{0}\right) \int_{-1}^{+1} \phi^{2}(x) \mathrm{d} x
$$

Assume that ϕ is non-zero, then

$$
\lambda-q_{0} \geq \frac{\int_{-1}^{+1} p(x)\left(\partial_{x} \phi(x)\right)^{2} \mathrm{~d} x+2 p(1) \phi(1)^{2}}{\int_{-1}^{+1} \phi^{2}(x) \mathrm{d} x} \geq 0
$$

which proves that it is necessary that $\lambda \geq q_{0}$ for a non-zero (smooth) solution to exist.
(b) Assume that $p(x) \geq p_{0}>0$ for all $x \in[-1,+1]$ where $p_{0} \in \mathbb{R}_{+}$. Show that $\lambda=q_{0}$ cannot be an eigenvalue, i.e., prove that $\phi=0$ if $\lambda=q_{0}$. (Hint: $p_{0} \int_{-1}^{+1} \psi^{2}(x) \mathrm{d} x \leq \int_{-1}^{+1} p(x) \psi^{2}(x) \mathrm{d} x$.)

Assume that $\lambda=q_{0}$ is an eigenvalue. Then the above computation shows that

$$
p_{0} \int_{-1}^{+1}\left(\partial_{x} \phi(x)\right)^{2} \mathrm{~d} x \leq \int_{-1}^{+1} p(x)\left(\partial_{x} \phi(x)\right)^{2} \mathrm{~d} x=0
$$

which means that $\int_{-1}^{+1}\left(\partial_{x} \phi(x)\right)^{2} \mathrm{~d} x=0$ since $p_{0}>0$. As a result $\partial_{x} \phi=0$, i.e., $\phi(x)=c$ where c is a constant. The boundary condition $-\partial \phi(1)=2 \phi(1)$ implies that $c=0$. In conclusion $\phi=0$ if $\lambda=q_{0}$, thereby proving that $\left(\phi, q_{0}\right)$ is not an eigenpair.

Question 9: Use the Fourier transform technique to solve $\partial_{t} u(x, t)-\partial_{x x} u(x, t)+\cos (t) \partial_{x} u(x, t)+(1+2 t) u(x, t)=0$, $x \in \mathbb{R}, t>0$, with $u(x, 0)=u_{0}(x)$. (Hint: use the definition $\left.\mathcal{F}(f)(\omega):=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} f(x) \mathrm{e}^{i \omega x} \mathrm{~d} x\right)$, the result $\mathcal{F}\left(\mathrm{e}^{-\alpha x^{2}}\right)(\omega)=\frac{1}{\sqrt{4 \pi \alpha}} \mathrm{e}^{-\frac{\omega^{2}}{4 \alpha}}$, the convolution theorem and the shift lemma: $\mathcal{F}(f(x-\beta))(\omega)=\mathcal{F}(f)(\omega) \mathrm{e}^{i \omega \beta}$. Go slowly and give all the details.)

Applying the Fourier transform to the equation gives

$$
\partial_{t} \mathcal{F}(u)(\omega, t)+\omega^{2} \mathcal{F}(u)(\omega, t)+\cos (t)(-i \omega) \mathcal{F}(u)(\omega, t)+(1+2 t) \mathcal{F}(u)(\omega, t)=0
$$

This can also be re-written as follows:

$$
\frac{\partial_{t} \mathcal{F}(u)(\omega, t)}{\mathcal{F}(u)(\omega, t)}=-\omega^{2}+i \omega \cos (t)-(1+2 t)
$$

Then applying the fundamental theorem of calculus between 0 and t, we obtain

$$
\log (\mathcal{F}(u)(\omega, t))-\log (\mathcal{F}(u)(\omega, 0))=-\omega^{2} t+i \omega \sin (t)-\left(t+t^{2}\right)
$$

This implies

$$
\mathcal{F}(u)(\omega, t)=\mathcal{F}\left(u_{0}\right)(\omega) \mathrm{e}^{-\omega^{2} t} \mathrm{e}^{i \omega \sin (t)} \mathrm{e}^{-\left(t+t^{2}\right)}
$$

Using the result $\mathcal{F}\left(\mathrm{e}^{-\alpha x^{2}}\right)(\omega)=\frac{1}{\sqrt{4 \pi \alpha}} \mathrm{e}^{-\frac{\omega^{2}}{4 \alpha}}$ where $\alpha=\frac{1}{4 t}$, this implies that

$$
\begin{aligned}
\mathcal{F}(u)(\omega, t) & =\sqrt{\frac{\pi}{t}} \mathcal{F}\left(u_{0}\right)(\omega) \mathcal{F}\left(\mathrm{e}^{-\frac{x^{2}}{4 t}}\right)(\omega) \mathrm{e}^{i \omega \sin (t)} \mathrm{e}^{-\left(t+t^{2}\right)} \\
& =\sqrt{\frac{\pi}{t}} \mathcal{F}\left(u_{0} * \mathrm{e}^{-\frac{x^{2}}{4 t}}\right)(\omega) \mathrm{e}^{i \omega \sin (t)} \mathrm{e}^{-\left(t+t^{2}\right)}
\end{aligned}
$$

Then setting $g=u_{0} * \mathrm{e}^{-\frac{x^{2}}{4 t}}$ the convolution theorem followed by the shift lemma gives

$$
\mathcal{F}(u)(\omega, t)=\frac{1}{2 \pi} \sqrt{\frac{\pi}{t}} \mathcal{F}(g(x-\sin (t)))(\omega) \mathrm{e}^{-\left(t+t^{2}\right)}
$$

This finally gives

$$
u(x, t)=\sqrt{\frac{1}{4 \pi t}} g(x-\sin (t)) \mathrm{e}^{-\left(t+t^{2}\right)}=e^{-\left(t+t^{2}\right)} \sqrt{\frac{1}{4 \pi t}} \int_{-\infty}^{+\infty} u_{0}(y) \mathrm{e}^{-\frac{(x-\sin (t)-y)^{2}}{4 t}} \mathrm{~d} y
$$

