Notes, books, and calculators are not authorized. Show all your work in the blank space you are given on the exam sheet. Answers with no justification will not be graded.

Question 1: Let u be a vector field in \mathbb{R}^{d}, (d is the space dimension). Let p be a scalar field in \mathbb{R}^{d}.
(a) Using the product rule, express $\operatorname{div}(p u)$ in terms of $\nabla \cdot u$ and ∇p. (You may use divu or $\nabla \cdot u$ to denote the divergence of u and ∇p or $\operatorname{grad} p$ to denote the gradient of p. The space dimension is d.)
Using the product rule we have

$$
\begin{aligned}
\nabla \cdot(p u) & =\sum_{i=1}^{d} \partial_{i}\left(p u_{i}\right)=\sum_{i=1}^{d} u_{i} \partial_{i} p+p \partial_{i} u_{i} \\
& =u \cdot \nabla p+p \nabla \cdot u
\end{aligned}
$$

In conclusion $\nabla \cdot(p u)=u \cdot \nabla p+p \nabla \cdot u$.
(b) Let u be a smooth vector field in $\Omega \subset \mathbb{R}^{d}$ with zero divergence and zero normal component at the boundary of Ω. Let p be a smooth scalar field in Ω. Compute $\int_{\Omega} p(x) \nabla \cdot u(x) \mathrm{d} x$ and $\int_{\Omega} u(x) \cdot \nabla p(x) \mathrm{d} x$.
(i) Using (a) and the fact that u is divergence free, we have

$$
\int_{\Omega} u \cdot \nabla p \mathrm{~d} x=\int_{\Omega}(\nabla \cdot(p u)-p \nabla \cdot u) \mathrm{d} x=\int_{\Omega} \nabla \cdot(p u) \mathrm{d} x .
$$

The divergence theorem (fundamental theorem of calculus in d space dimension) implies that

$$
\int_{\Omega} u \cdot \nabla p \mathrm{~d} x=\int_{\partial \Omega} p u \cdot n \mathrm{~d} s
$$

where $\partial \Omega$ denotes the boundary of Ω. Since $u \cdot n=0$ at the boundary, we finally infer that $\int_{\Omega} u \cdot \nabla p \mathrm{~d} x=0$.
(ii) Note finally that $\int_{\Omega} p \nabla \cdot u \mathrm{~d} x=0$ since $\nabla \cdot u=0$.

Question 2: Consider the vibrating beam equation $\partial_{t t} u(x, t)+\partial_{x x x x} u(x, t)=0, x \in(-\infty,+\infty), t>0$ with $u(\pm \infty, t)=0$, $\partial_{x} u(\pm \infty, t)=0, \partial_{x x} u(\pm \infty, t)=0$. Use the energy method to compute $\partial_{t} \int_{-\infty}^{+\infty}\left(\left[\partial_{t} u(x, t)\right]^{2}+\left[\partial_{x x} u(x, t)\right]^{2}\right) \mathrm{d} x$. (Hint: test the equation with $\left.\partial_{t} u(x, t)\right)$.
Using the hint we have

$$
0=\int_{-\infty}^{+\infty}\left(\partial_{t t} u(x, t) \partial_{t} u(x, t)+\partial_{x x x x} u(x, t) \partial_{t} u(x, t)\right) \mathrm{d} x
$$

Using the product rule, $a \partial_{t} a=\frac{1}{2} \partial_{t} a^{2}$ where $a=\partial_{t} u(x, t)$, and integrating by parts two times (i.e., applying the fundamental theorem of calculus) we obtain

$$
\begin{aligned}
0 & =\int_{-\infty}^{+\infty}\left(\frac{1}{2} \partial_{t}\left(\partial_{t} u(x, t)\right)^{2}-\partial_{x x x} u(x, t) \partial_{t} \partial_{x} u(x, t)\right) \mathrm{d} x \\
& =\int_{-\infty}^{+\infty}\left(\partial_{t} \frac{1}{2}\left(\partial_{t} u(x, t)\right)^{2}+\partial_{x x} u(x, t) \partial_{t} \partial_{x x} u(x, t)\right) \mathrm{d} x
\end{aligned}
$$

We apply again the product rule $a \partial_{t} a=\frac{1}{2} \partial_{t} a^{2}$ where $a=\partial_{x x} u(x, t)$,

$$
0=\int_{-\infty}^{+\infty}\left(\partial_{t} \frac{1}{2}\left(\partial_{t} u(x, t)\right)^{2}+\frac{1}{2} \partial_{t}\left(\partial_{x x} u(x, t)\right)^{2}\right) \mathrm{d} x
$$

Switching the derivative with respect to t and the integration with respect to x, this finally gives

$$
0=\frac{1}{2} \partial_{t} \int_{-\infty}^{+\infty}\left(\left[\partial_{t} u(x, t)\right]^{2}+\left[\partial_{x x} u(x, t)\right]^{2}\right) \mathrm{d} x
$$

Question 3: Let $k, f:[-1,+1] \longrightarrow \mathbb{R}$ be such that $k(x)=2, f(x)=0$ if $x \in[-1,0]$ and $k(x)=1, f(x)=2$ if $x \in(0,1]$. Consider the boundary value problem $-\partial_{x}\left(k(x) \partial_{x} T(x)\right)=f(x)$ with $T(-1)=-2$ and $T(1)=2$.
(a) What should be the interface conditions at $x=0$ for this problem to make sense?

The function T and the flux $k(x) \partial_{x} T(x)$ must be continuous at $x=0$. Let T^{-}denote the solution on $[-1,0]$ and T^{+}the solution on $[0,+1]$. One should have $T^{-}(0)=T^{+}(0)$ and $k^{-}(0) \partial_{x} T^{-}(0)=k^{+}(0) \partial_{x} T^{+}(0)$, where $k^{-}(0)=2$ and $k^{+}(0)=1$.
(b) Solve the problem, i.e., find $T(x), x \in[-1,+1]$.

On $[-1,0]$ we have $k^{-}(x)=2$ and $f^{-}(x)=0$ which implies $-\partial_{x x} T^{-}(x)=0$. This in turn implies $T^{-}(x)=a x+b$. The Dirichlet condition at $x=-1$ implies that $T^{-}(-1)=-2=-a+b$. This gives $a=b+2$ and $T^{-}(x)=(b+2) x+b$.
We proceed similarly on $[0,+1]$ and we obtain $-\partial_{x x} T^{-}(x)=2$, which implies that $T^{+}(x)=-x^{2}+c x+d$. The Dirichlet condition at $x=1$ implies $T^{+}(1)=2=-1+c+d$. This gives $c=3-d$ and $T^{-}(x)=-x^{2}+(3-d) x+d$.

The interface conditions $T^{-}(0)=T^{+}(0)$ and $k^{-}(0) \partial_{x} T^{-}(0)=k^{+}(0) \partial_{x} T^{+}(0)$ give $b=d$ and $2(b+2)=3-d$, respectively. In conclusion $b=-\frac{1}{3}, d=-\frac{1}{3}$ and

$$
T(x)= \begin{cases}\frac{5}{3} x-\frac{1}{3} & \text { if } x \in[-1,0] \\ -x^{2}+\frac{10}{3} x-\frac{1}{3} & \text { if } x \in[0,1]\end{cases}
$$

Question 4: Let $\operatorname{CS}(f)=\frac{\pi^{2}}{6}-2\left(\cos (x)-\frac{\cos (2 x)}{2^{2}}+\frac{\cos (3 x)}{3^{2}}-\frac{\cos (4 x)}{4^{2}} \ldots\right)$ be the Fourier cosine series of the function $f(x):=\frac{1}{2} x^{2}$ defined over $[0,+\pi]$.
(a) For which values of x in $[0,+\pi]$ does this series coincide with $f(x)$? (Explain).

The Fourier cosine series coincides with the function $f(x)$ over the entire interval $[0,+\pi]$ since f is smooth over $[0,+\pi]$ (recall that the Fourier cosine series is the Fourier series of the even extension of f over $[-\pi,+\pi])$.
(b) Compute the Fourier sine series, $\operatorname{SS}(x)$, of the function $g(x):=x$ defined over $[0,+\pi]$.

We know from class that it is always possible to obtain a Fourier sine series by differentiating term by term a Fourier cosine series, in other words

$$
\mathrm{SS}(x)=\partial_{x} \mathrm{CS}\left(\frac{1}{2} x^{2}\right)=2\left(\sin (x)-\frac{\sin (2 x)}{2}+\frac{\sin (3 x)}{3}-\frac{\sin (4 x)}{4} \ldots \frac{\sin (n x)}{n} \ldots\right)
$$

(c) For which values of $x \in[0,+\pi]$ does the Fourier sine series of g coincide with $g(x)$?.

The Fourier sine series coincides with the function $g(x):=x$ over the interval $[0,+\pi)$ since g is smooth over $[0,+\pi]$ and $g(0)=0$. The Fourier sine series of g is zero at $+\pi$, and thus differs from $g(+\pi)$.
Question 5: Using cylindrical coordinates and the method of separation of variables, solve the equation, $\frac{1}{r} \partial_{r}\left(r \partial_{r} u\right)+$ $\frac{1}{r^{2}} \partial_{\theta \theta} u=0$, inside the domain $D=\left\{\theta \in\left[0, \frac{3}{2} \pi\right], r \in[0,3]\right\}$, subject to the boundary conditions $u(r, 0)=0, u\left(r, \frac{3}{2} \pi\right)=0$, $u(3, \theta)=18 \sin (2 \theta)$. (Give all the details.)
(1) We set $u(r, \theta)=\phi(\theta) g(r)$. This means $\phi^{\prime \prime}=-\lambda \phi$, with $\phi(0)=0$ and $\phi\left(\frac{3}{2} \pi\right)=0$, and $r \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r \frac{\mathrm{~d}}{\mathrm{~d} r} g(r)\right)=\lambda g(r)$.
(2) The usual energy argument applied to the two-point boundary value problem

$$
\phi^{\prime \prime}=-\lambda \phi, \quad \phi(0)=0, \quad \phi\left(\frac{3}{2} \pi\right)=0
$$

implies that λ is non-negative. If $\lambda=0$, then $\phi(\theta)=c_{1}+c_{2} \theta$ and the boundary conditions imply $c_{1}=c_{2}=0$, i.e., $\phi=0$, which in turns gives $u=0$ and this solution is incompatible with the boundary condition $u(3, \theta)=18 \sin (2 \theta)$. Hence $\lambda>0$ and

$$
\phi(\theta)=c_{1} \cos (\sqrt{\lambda} \theta)+c_{2} \sin (\sqrt{\lambda} \theta)
$$

(3) The boundary condition $\phi(0)=0$ implies $c_{1}=0$. The boundary condition $\phi\left(\frac{3}{2} \pi\right)=0$ implies $\sqrt{\lambda} \frac{3}{2} \pi=n \pi$ with $n \in \mathbb{N} \backslash\{0\}$. This means $\sqrt{\lambda}=\frac{2}{3} n, n=1,2, \ldots$.
(4) From class we know that $g(r)$ is of the form $r^{\alpha}, \alpha \geq 0$. The equality $r \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r \frac{\mathrm{~d}}{\mathrm{~d} r} r^{\alpha}\right)=\lambda r^{\alpha}$ gives $\alpha^{2}=\lambda$. The condition $\alpha \geq 0$ implies $\frac{2}{3} n=\alpha=\sqrt{\lambda}$. The boundary condition at $r=3$ gives $18 \sin (2 \theta)=c_{2} 3^{\frac{2}{3} n} \sin \left(\frac{2}{3} n \theta\right)$ for all $\theta \in\left[0, \frac{3}{2} \pi\right]$. This implies $n=3$ and $c_{2}=2$.
(5) Finally, the solution to the problem is

$$
u(r, \theta)=2 r^{2} \sin (2 \theta)
$$

Question 6: Let $p, q:[-1,+1] \longrightarrow \mathbb{R}$ be smooth functions. Assume that $p(x) \geq 0$ and $q(x) \geq q_{0}$ for all $x \in[-1,+1]$, where $q_{0} \in \mathbb{R}$. Consider the eigenvalue problem $-\partial_{x}\left(p(x) \partial_{x} \phi(x)\right)+q(x) \phi(x)=\lambda \phi(x)$, supplemented with the boundary conditions $\phi(-1)=0$ and $\phi(1)=0$.
(a) Prove that it is necessary that $\lambda \geq q_{0}$ for a non-zero (smooth) solution, ϕ, to exist. (Hint: $q_{0} \int_{-1}^{+1} \phi^{2}(x) \mathrm{d} x \leq$ $\underline{\left.\int_{-1}^{+1} q(x) \phi^{2}(x) \mathrm{d} x .\right)}$
As usual we use the energy method. Let (ϕ, λ) be an eigenpair, then

$$
\int_{-1}^{+1}\left(-\partial_{x}\left(p(x) \partial_{x} \phi(x)\right) \phi(x)+q(x) \phi^{2}(x)\right) \mathrm{d} x=\lambda \int_{-1}^{+1} \phi^{2}(x) \mathrm{d} x
$$

After integration by parts and using the boundary conditions, we obtain

$$
\int_{-1}^{+1}\left(p(x) \partial_{x} \phi(x) \partial_{x} \phi(x)+q(x) \phi^{2}(x)\right) \mathrm{d} x=\lambda \int_{-1}^{+1} \phi^{2}(x) \mathrm{d} x
$$

which, using the hint, can also be re-written

$$
\int_{-1}^{+1}\left(p(x) \partial_{x} \phi(x) \partial_{x} \phi(x)+q_{0} \phi^{2}(x)\right) \mathrm{d} x \leq \lambda \int_{-1}^{+1} \phi^{2}(x) \mathrm{d} x .
$$

Then

$$
\int_{-1}^{+1} p(x)\left(\partial_{x} \phi(x)\right)^{2} \mathrm{~d} x \leq\left(\lambda-q_{0}\right) \int_{-1}^{+1} \phi^{2}(x) \mathrm{d} x
$$

Assume that ϕ is non-zero, then

$$
\lambda-q_{0} \geq \frac{\int_{-1}^{+1} p(x)\left(\partial_{x} \phi(x)\right)^{2} \mathrm{~d} x}{\int_{-1}^{+1} \phi^{2}(x) \mathrm{d} x} \geq 0
$$

which proves that it is necessary that $\lambda \geq q_{0}$ for a non-zero (smooth) solution to exist.
(b) Assume that $p(x) \geq p_{0}>0$ for all $x \in[-1,+1]$ where $p_{0} \in \mathbb{R}_{+}$. Show that $\lambda=q_{0}$ cannot be an eigenvalue, i.e., prove that $\phi=0$ if $\lambda=q_{0}$. (Hint: $p_{0} \int_{-1}^{+1} \psi^{2}(x) \mathrm{d} x \leq \int_{-1}^{+1} p(x) \psi^{2}(x) \mathrm{d} x$.)

Assume that $\lambda=q_{0}$ is an eigenvalue. Then the above computation shows that

$$
p_{0} \int_{-1}^{+1}\left(\partial_{x} \phi(x)\right)^{2} \mathrm{~d} x \leq \int_{-1}^{+1} p(x)\left(\partial_{x} \phi(x)\right)^{2} \mathrm{~d} x=0
$$

which means that $\int_{-1}^{+1}\left(\partial_{x} \phi(x)\right)^{2} \mathrm{~d} x=0$ since $p_{0}>0$. As a result $\partial_{x} \phi=0$, i.e., $\phi(x)=c$ where c is a constant. The boundary conditions $\phi(-1)=0=\phi(1)$ imply that $c=0$. In conclusion $\phi=0$ if $\lambda=q_{0}$, thereby proving that $\left(\phi, q_{0}\right)$ is not an eigenpair.

Question 7: Use the Fourier transform technique to solve $\partial_{t} u(x, t)+\cos (t) \partial_{x} u(x, t)+\left(1+3 t^{2}\right) u(x, t)=0, x \in \mathbb{R}, t>0$, with $u(x, 0)=u_{0}(x)$. (Use the shift lemma: $\mathcal{F}(f(x-\beta))(\omega)=\mathcal{F}(f)(\omega) e^{i \omega \beta}$ and the definition $\left.\mathcal{F}(f)(\omega):=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} f(x) e^{i \omega x} d x\right)$

Applying the Fourier transform to the equation gives

$$
\partial_{t} \mathcal{F}(u)(\omega, t)+\cos (t)(-i \omega) \mathcal{F}(u)(\omega, t)+\left(1+3 t^{2}\right) \mathcal{F}(u)(\omega, t)=0
$$

This can also be re-written as follows:

$$
\frac{\partial_{t} \mathcal{F}(u)(\omega, t)}{\mathcal{F}(u)(\omega, t)}=i \omega \cos (t)-\left(1+3 t^{2}\right)
$$

Then applying the fundamental theorem of calculus between 0 and t, we obtain

$$
\log (\mathcal{F}(u)(\omega, t))-\log (\mathcal{F}(u)(\omega, 0))=i \omega \sin (t)-\left(t+t^{3}\right)
$$

This implies

$$
\mathcal{F}(u)(\omega, t)=\mathcal{F}\left(u_{0}\right)(\omega) e^{i \omega \sin (t)} e^{-\left(t+t^{3}\right)}
$$

Then the shift lemma gives

$$
\mathcal{F}(u)(\omega, t)=\mathcal{F}\left(u_{0}(x-\sin (t))(\omega) e^{-\left(t+t^{3}\right)}\right.
$$

This finally gives

$$
u(x, t)=u_{0}(x-\cos (t)) e^{-\left(t+t^{3}\right)}
$$

Question 8: Consider the triangular domain $D=\{(x, y) ; x \geq 0, y \geq 0,1-x-y \geq 0\}$. Let $f(x, y)=x^{2}-y^{2}-3$. Let $u \in \mathcal{C}^{2}(D) \cap \mathcal{C}^{0}(\bar{D})$ solve $-\Delta u=0$ in D and $\left.u\right|_{\partial D}=f$. Compute $\min _{(x, y) \in \bar{D}} u(x, y)$ and $\max _{(x, y) \in \bar{D}} u(x, y)$.
We use the maximum principle (u is harmonic and has the required regularity). Then

$$
\min _{(x, y) \in \bar{D}} u(x, y)=\min _{(x, y) \in \partial D} f(x, y), \quad \text { and } \max _{(x, y) \in \bar{D}} u(x, y)=\max _{(x, y) \in \partial D} f(x, y) .
$$

A point (x, y) is at the boundary of D if and only if $\{x=0$ and $y \in[0,1]\}$ or $\{y=0$ and $x \in[0,1]\}$, or $\{1-y-x=0$ and $x \in[0,1]\}$.
(i) In the first case, $x=0$ and $y \in[0,1]$, we have

$$
f(x, y)=-y^{2}-3, \quad y \in[0,1] .
$$

The maximum is -3 and the minimum is -4 .
(ii) In the second case, $y=0$ and $x \in[0,1]$, we have

$$
f(x, y)=x^{2}-3, \quad x \in[0,1] .
$$

The maximum is -2 and the minimum is -3 .
(iii) In the third case, $1-x=y$ and $x \in[0,1]$, we have

$$
f(x, y)=x^{2}-(1-x)^{2}-3=2 x-4, \quad x \in[0,1]
$$

The maximum is -2 and the minimum is -4 .
We finally can conclude

$$
\min _{(x, y) \in \partial D} f(x, y)=-4, \max _{(x, y) \in \partial D} f(x, y)=-2
$$

In conclusion

$$
\min _{(x, y) \in \bar{D}} u(x, y)=-4, \quad \max _{(x, y) \in \bar{D}} u(x, y)=-2
$$

