Notes, books, and calculators are not authorized. Show all your work in the blank space you are given on the exam sheet. Answers with no justification will not be graded.

Question 1: Let u be a vector field in \mathbb{R}^d , (d is the space dimension). Let p be a scalar field in \mathbb{R}^d .

(a) Using the product rule, express $\operatorname{div}(pu)$ in terms of $\nabla \cdot u$ and ∇p . (You may use $\operatorname{div} u$ or $\nabla \cdot u$ to denote the divergence of u and ∇p or $\operatorname{grad} p$ to denote the gradient of p. The space dimension is d.)

Using the product rule we have

$$\nabla \cdot (pu) = \sum_{i=1}^{d} \partial_i (pu_i) = \sum_{i=1}^{d} u_i \partial_i p + p \partial_i u_i$$
$$= u \cdot \nabla p + p \nabla \cdot u$$

In conclusion $\nabla \cdot (pu) = u \cdot \nabla p + p \nabla \cdot u$.

(b) Let u be a smooth vector field in $\Omega \subset \mathbb{R}^d$ with zero divergence and zero normal component at the boundary of Ω . Let p be a smooth scalar field in Ω . Compute $\int_{\Omega} p(x) \nabla \cdot u(x) dx$ and $\int_{\Omega} u(x) \cdot \nabla p(x) dx$.

(i) Using (a) and the fact that u is divergence free, we have

$$\int_{\Omega} u \cdot \nabla p \mathrm{d}x = \int_{\Omega} (\nabla \cdot (pu) - p \nabla \cdot u) \mathrm{d}x = \int_{\Omega} \nabla \cdot (pu) \mathrm{d}x.$$

The divergence theorem (fundamental theorem of calculus in d space dimension) implies that

$$\int_{\Omega} u \cdot \nabla p \mathrm{d}x = \int_{\partial \Omega} p u \cdot n \mathrm{d}s,$$

where $\partial\Omega$ denotes the boundary of Ω . Since $u \cdot n = 0$ at the boundary, we finally infer that $\int_{\Omega} u \cdot \nabla p dx = 0$. (ii) Note finally that $\int_{\Omega} p \nabla \cdot u dx = 0$ since $\nabla \cdot u = 0$. Question 2: Consider the vibrating beam equation $\partial_{tt}u(x,t) + \partial_{xxxx}u(x,t) = 0, x \in (-\infty, +\infty), t > 0$ with $u(\pm\infty,t) = 0$, $\partial_x u(\pm\infty,t) = 0$, $\partial_{xx}u(\pm\infty,t) = 0$. Use the energy method to compute $\partial_t \int_{-\infty}^{+\infty} ([\partial_t u(x,t)]^2 + [\partial_{xx}u(x,t)]^2) dx$. (Hint: test the equation with $\partial_t u(x,t)$).

Using the hint we have

$$0 = \int_{-\infty}^{+\infty} (\partial_{tt} u(x,t) \partial_t u(x,t) + \partial_{xxxx} u(x,t) \partial_t u(x,t)) \mathrm{d}x$$

Using the product rule, $a\partial_t a = \frac{1}{2}\partial_t a^2$ where $a = \partial_t u(x,t)$, and integrating by parts two times (i.e., applying the fundamental theorem of calculus) we obtain

$$0 = \int_{-\infty}^{+\infty} (\frac{1}{2} \partial_t (\partial_t u(x,t))^2 - \partial_{xxx} u(x,t) \partial_t \partial_x u(x,t)) dx$$

=
$$\int_{-\infty}^{+\infty} (\partial_t \frac{1}{2} (\partial_t u(x,t))^2 + \partial_{xx} u(x,t) \partial_t \partial_{xx} u(x,t)) dx.$$

We apply again the product rule $a\partial_t a = \frac{1}{2}\partial_t a^2$ where $a = \partial_{xx}u(x,t)$,

$$0 = \int_{-\infty}^{+\infty} (\partial_t \frac{1}{2} (\partial_t u(x,t))^2 + \frac{1}{2} \partial_t (\partial_{xx} u(x,t))^2) \mathrm{d}x.$$

Switching the derivative with respect to t and the integration with respect to x, this finally gives

$$0 = \frac{1}{2}\partial_t \int_{-\infty}^{+\infty} ([\partial_t u(x,t)]^2 + [\partial_{xx} u(x,t)]^2) \mathsf{d}x.$$

Question 3: Let $k, f: [-1, +1] \longrightarrow \mathbb{R}$ be such that k(x) = 2, f(x) = 0 if $x \in [-1, 0]$ and k(x) = 1, f(x) = 2 if $x \in (0, 1]$. Consider the boundary value problem $-\partial_x(k(x)\partial_x T(x)) = f(x)$ with T(-1) = -2 and T(1) = 2. (a) What should be the interface conditions at x = 0 for this problem to make sense?

The function T and the flux $k(x)\partial_x T(x)$ must be continuous at x = 0. Let T^- denote the solution on [-1,0] and T^+ the solution on [0,+1]. One should have $T^-(0) = T^+(0)$ and $k^-(0)\partial_x T^-(0) = k^+(0)\partial_x T^+(0)$, where $k^-(0) = 2$ and $k^+(0) = 1$. (b) Solve the problem, i.e., find $T(x), x \in [-1,+1]$.

On [-1,0] we have $k^-(x) = 2$ and $f^-(x) = 0$ which implies $-\partial_{xx}T^-(x) = 0$. This in turn implies $T^-(x) = ax + b$. The Dirichlet condition at x = -1 implies that $T^-(-1) = -2 = -a + b$. This gives a = b + 2 and $T^-(x) = (b + 2)x + b$.

We proceed similarly on [0, +1] and we obtain $-\partial_{xx}T^-(x) = 2$, which implies that $T^+(x) = -x^2 + cx + d$. The Dirichlet condition at x = 1 implies $T^+(1) = 2 = -1 + c + d$. This gives c = 3 - d and $T^-(x) = -x^2 + (3 - d)x + d$.

The interface conditions $T^-(0) = T^+(0)$ and $k^-(0)\partial_x T^-(0) = k^+(0)\partial_x T^+(0)$ give b = d and 2(b+2) = 3 - d, respectively. In conclusion $b = -\frac{1}{3}$, $d = -\frac{1}{3}$ and

$$T(x) = \begin{cases} \frac{5}{3}x - \frac{1}{3} & \text{if } x \in [-1, 0], \\ -x^2 + \frac{10}{3}x - \frac{1}{3} & \text{if } x \in [0, 1]. \end{cases}$$

Question 4: Let $CS(f) = \frac{\pi^2}{6} - 2(\cos(x) - \frac{\cos(2x)}{2^2} + \frac{\cos(3x)}{3^2} - \frac{\cos(4x)}{4^2} \dots)$ be the Fourier cosine series of the function $f(x) := \frac{1}{2}x^2$ defined over $[0, +\pi]$.

(a) For which values of x in $[0, +\pi]$ does this series coincide with f(x)? (Explain).

The Fourier cosine series coincides with the function f(x) over the entire interval $[0, +\pi]$ since f is smooth over $[0, +\pi]$ (recall that the Fourier cosine series is the Fourier series of the even extension of f over $[-\pi, +\pi]$).

(b) Compute the Fourier sine series, SS(x), of the function g(x) := x defined over $[0, +\pi]$.

We know from class that it is always possible to obtain a Fourier sine series by differentiating term by term a Fourier cosine series, in other words

$$\mathsf{SS}(x) = \partial_x \mathsf{CS}(\frac{1}{2}x^2) = 2\left(\sin(x) - \frac{\sin(2x)}{2} + \frac{\sin(3x)}{3} - \frac{\sin(4x)}{4} \dots \frac{\sin(nx)}{n} \dots\right).$$

(c) For which values of $x \in [0, +\pi]$ does the Fourier sine series of g coincide with g(x)?.

The Fourier sine series coincides with the function g(x) := x over the interval $[0, +\pi)$ since g is smooth over $[0, +\pi]$ and g(0) = 0. The Fourier sine series of g is zero at $+\pi$, and thus differs from $g(+\pi)$.

Question 5: Using cylindrical coordinates and the method of separation of variables, solve the equation, $\frac{1}{r}\partial_r(r\partial_r u) + \frac{1}{r^2}\partial_{\theta\theta}u = 0$, inside the domain $D = \{\theta \in [0, \frac{3}{2}\pi], r \in [0, 3]\}$, subject to the boundary conditions $u(r, 0) = 0, u(r, \frac{3}{2}\pi) = 0, u(3, \theta) = 18\sin(2\theta)$. (Give all the details.)

(1) We set $u(r,\theta) = \phi(\theta)g(r)$. This means $\phi'' = -\lambda\phi$, with $\phi(0) = 0$ and $\phi(\frac{3}{2}\pi) = 0$, and $r\frac{d}{dr}(r\frac{d}{dr}g(r)) = \lambda g(r)$.

(2) The usual energy argument applied to the two-point boundary value problem

$$\phi^{\prime\prime}=-\lambda\phi,\qquad \phi(0)=0,\qquad \phi(\frac{3}{2}\pi)=0,$$

implies that λ is non-negative. If $\lambda = 0$, then $\phi(\theta) = c_1 + c_2\theta$ and the boundary conditions imply $c_1 = c_2 = 0$, i.e., $\phi = 0$, which in turns gives u = 0 and this solution is incompatible with the boundary condition $u(3, \theta) = 18 \sin(2\theta)$. Hence $\lambda > 0$ and

$$\phi(\theta) = c_1 \cos(\sqrt{\lambda}\theta) + c_2 \sin(\sqrt{\lambda}\theta).$$

(3) The boundary condition $\phi(0) = 0$ implies $c_1 = 0$. The boundary condition $\phi(\frac{3}{2}\pi) = 0$ implies $\sqrt{\lambda}\frac{3}{2}\pi = n\pi$ with $n \in \mathbb{N} \setminus \{0\}$. This means $\sqrt{\lambda} = \frac{2}{3}n$, n = 1, 2, ...

(4) From class we know that g(r) is of the form r^{α} , $\alpha \ge 0$. The equality $r\frac{d}{dr}(r\frac{d}{dr}r^{\alpha}) = \lambda r^{\alpha}$ gives $\alpha^2 = \lambda$. The condition $\alpha \ge 0$ implies $\frac{2}{3}n = \alpha = \sqrt{\lambda}$. The boundary condition at r = 3 gives $18\sin(2\theta) = c_2 3^{\frac{2}{3}n} \sin(\frac{2}{3}n\theta)$ for all $\theta \in [0, \frac{3}{2}\pi]$. This implies n = 3 and $c_2 = 2$.

(5) Finally, the solution to the problem is

$$u(r,\theta) = 2r^2\sin(2\theta).$$

Question 6: Let $p, q : [-1, +1] \longrightarrow \mathbb{R}$ be smooth functions. Assume that $p(x) \ge 0$ and $q(x) \ge q_0$ for all $x \in [-1, +1]$, where $q_0 \in \mathbb{R}$. Consider the eigenvalue problem $-\partial_x(p(x)\partial_x\phi(x)) + q(x)\phi(x) = \lambda\phi(x)$, supplemented with the boundary conditions $\phi(-1) = 0$ and $\phi(1) = 0$.

(a) Prove that it is necessary that $\lambda \geq q_0$ for a non-zero (smooth) solution, ϕ , to exist. (Hint: $q_0 \int_{-1}^{+1} \phi^2(x) dx \leq \int_{-1}^{+1} q(x) \phi^2(x) dx$.)

As usual we use the energy method. Let (ϕ, λ) be an eigenpair, then

$$\int_{-1}^{+1} (-\partial_x (p(x)\partial_x \phi(x))\phi(x) + q(x)\phi^2(x)) dx = \lambda \int_{-1}^{+1} \phi^2(x) dx.$$

After integration by parts and using the boundary conditions, we obtain

$$\int_{-1}^{+1} (p(x)\partial_x \phi(x)\partial_x \phi(x) + q(x)\phi^2(x)) \mathrm{d}x = \lambda \int_{-1}^{+1} \phi^2(x) \mathrm{d}x$$

which, using the hint, can also be re-written

$$\int_{-1}^{+1} (p(x)\partial_x \phi(x)\partial_x \phi(x) + q_0 \phi^2(x)) \mathrm{d}x \le \lambda \int_{-1}^{+1} \phi^2(x) \mathrm{d}x.$$

Then

$$\int_{-1}^{+1} p(x) (\partial_x \phi(x))^2 \mathrm{d}x \le (\lambda - q_0) \int_{-1}^{+1} \phi^2(x) \mathrm{d}x.$$

Assume that ϕ is non-zero, then

$$\lambda - q_0 \ge \frac{\int_{-1}^{+1} p(x) (\partial_x \phi(x))^2 \mathrm{d}x}{\int_{-1}^{+1} \phi^2(x) \mathrm{d}x} \ge 0,$$

which proves that it is necessary that $\lambda \ge q_0$ for a non-zero (smooth) solution to exist.

(b) Assume that $p(x) \ge p_0 > 0$ for all $x \in [-1, +1]$ where $p_0 \in \mathbb{R}_+$. Show that $\lambda = q_0$ cannot be an eigenvalue, i.e., prove that $\phi = 0$ if $\lambda = q_0$. (Hint: $p_0 \int_{-1}^{+1} \psi^2(x) dx \le \int_{-1}^{+1} p(x) \psi^2(x) dx$.)

Assume that $\lambda = q_0$ is an eigenvalue. Then the above computation shows that

$$p_0 \int_{-1}^{+1} (\partial_x \phi(x))^2 \mathsf{d}x \le \int_{-1}^{+1} p(x) (\partial_x \phi(x))^2 \mathsf{d}x = 0,$$

which means that $\int_{-1}^{+1} (\partial_x \phi(x))^2 dx = 0$ since $p_0 > 0$. As a result $\partial_x \phi = 0$, i.e., $\phi(x) = c$ where c is a constant. The boundary conditions $\phi(-1) = 0 = \phi(1)$ imply that c = 0. In conclusion $\phi = 0$ if $\lambda = q_0$, thereby proving that (ϕ, q_0) is not an eigenpair.

Question 7: Use the Fourier transform technique to solve $\partial_t u(x,t) + \cos(t)\partial_x u(x,t) + (1+3t^2)u(x,t) = 0, x \in \mathbb{R}, t > 0$, with $u(x,0) = u_0(x)$. (Use the shift lemma: $\mathcal{F}(f(x-\beta))(\omega) = \mathcal{F}(f)(\omega)e^{i\omega\beta}$ and the definition $\mathcal{F}(f)(\omega) := \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(x)e^{i\omega x} dx$)

Applying the Fourier transform to the equation gives

$$\partial_t \mathcal{F}(u)(\omega, t) + \cos(t)(-i\omega)\mathcal{F}(u)(\omega, t) + (1 + 3t^2)\mathcal{F}(u)(\omega, t) = 0$$

This can also be re-written as follows:

$$\frac{\partial_t \mathcal{F}(u)(\omega, t)}{\mathcal{F}(u)(\omega, t)} = i\omega\cos(t) - (1 + 3t^2)$$

Then applying the fundamental theorem of calculus between $\boldsymbol{0}$ and $\boldsymbol{t},$ we obtain

$$\log(\mathcal{F}(u)(\omega, t)) - \log(\mathcal{F}(u)(\omega, 0)) = i\omega\sin(t) - (t + t^3).$$

This implies

$$\mathcal{F}(u)(\omega,t) = \mathcal{F}(u_0)(\omega)e^{i\omega\sin(t)}e^{-(t+t^3)}.$$

Then the shift lemma gives

$$\mathcal{F}(u)(\omega,t) = \mathcal{F}(u_0(x-\sin(t))(\omega)e^{-(t+t^3)})$$

This finally gives

$$u(x,t) = u_0(x - \cos(t))e^{-(t+t^3)}$$

Question 8: Consider the triangular domain $D = \{(x, y); x \ge 0, y \ge 0, 1 - x - y \ge 0\}$. Let $f(x, y) = x^2 - y^2 - 3$. Let $u \in \mathcal{C}^2(D) \cap \mathcal{C}^0(\overline{D})$ solve $-\Delta u = 0$ in D and $u|_{\partial D} = f$. Compute $\min_{(x,y)\in\overline{D}} u(x,y)$ and $\max_{(x,y)\in\overline{D}} u(x,y)$.

We use the maximum principle (u is harmonic and has the required regularity). Then

$$\min_{(x,y)\in\overline{D}} u(x,y) = \min_{(x,y)\in\partial D} f(x,y), \quad \text{and} \quad \max_{(x,y)\in\overline{D}} u(x,y) = \max_{(x,y)\in\partial D} f(x,y)$$

A point (x, y) is at the boundary of D if and only if $\{x = 0 \text{ and } y \in [0, 1]\}$ or $\{y = 0 \text{ and } x \in [0, 1]\}$, or $\{1 - y - x = 0 \text{ and } x \in [0, 1]\}$.

(i) In the first case, x=0 and $y\in [0,1],$ we have

$$f(x,y) = -y^2 - 3, \qquad y \in [0,1].$$

The maximum is -3 and the minimum is -4.

(ii) In the second case, y = 0 and $x \in [0, 1]$, we have

$$f(x,y) = x^2 - 3, \qquad x \in [0,1].$$

The maximum is -2 and the minimum is -3. (iii) In the third case, 1 - x = y and $x \in [0, 1]$, we have

$$f(x,y) = x^2 - (1-x)^2 - 3 = 2x - 4, \qquad x \in [0,1].$$

The maximum is -2 and the minimum is -4. We finally can conclude

$$\min_{(x,y)\in\partial D} f(x,y) = -4, \quad \max_{(x,y)\in\partial D} f(x,y) = -2.$$

In conclusion

$$\min_{(x,y)\in\overline{D}}u(x,y)=-4,\quad \max_{(x,y)\in\overline{D}}u(x,y)=-2$$