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Notes, books, and calculators are not authorized. Show all your work in the blank space you are given on the exam sheet.
Answers with no justification will not be graded.

Question 1: Let u be a vector field in Rd, (d is the space dimension). Let p be a scalar field in Rd.
(a) Using the product rule, express div(pu) in terms of ∇·u and ∇p. (You may use divu or ∇·u to denote the divergence
of u and ∇p or gradp to denote the gradient of p. The space dimension is d.)

Using the product rule we have

∇·(pu) =

d∑
i=1

∂i(pui) =

d∑
i=1

ui∂ip+ p∂iui

= u·∇p+ p∇·u

In conclusion ∇·(pu) = u·∇p+ p∇·u.

(b) Let u be a smooth vector field in Ω ⊂ Rd with zero divergence and zero normal component at the boundary of Ω. Let
p be a smooth scalar field in Ω. Compute

∫
Ω
p(x)∇·u(x)dx and

∫
Ω
u(x)·∇p(x)dx.

(i) Using (a) and the fact that u is divergence free, we have∫
Ω

u·∇pdx =

∫
Ω

(∇·(pu)− p∇·u)dx =

∫
Ω

∇·(pu)dx.

The divergence theorem (fundamental theorem of calculus in d space dimension) implies that∫
Ω

u·∇pdx =

∫
∂Ω

pu·nds,

where ∂Ω denotes the boundary of Ω. Since u·n = 0 at the boundary, we finally infer that
∫

Ω
u·∇pdx = 0.

(ii) Note finally that
∫

Ω
p∇·udx = 0 since ∇·u = 0.
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Question 2: Consider the vibrating beam equation ∂ttu(x, t)+∂xxxxu(x, t) = 0, x ∈ (−∞,+∞), t > 0 with u(±∞, t) = 0,

∂xu(±∞, t) = 0, ∂xxu(±∞, t) = 0. Use the energy method to compute ∂t
∫ +∞
−∞ ([∂tu(x, t)]2 + [∂xxu(x, t)]2)dx. (Hint: test

the equation with ∂tu(x, t)).

Using the hint we have

0 =

∫ +∞

−∞
(∂ttu(x, t)∂tu(x, t) + ∂xxxxu(x, t)∂tu(x, t))dx

Using the product rule, a∂ta = 1
2∂ta

2 where a = ∂tu(x, t), and integrating by parts two times (i.e., applying the fundamental
theorem of calculus) we obtain

0 =

∫ +∞

−∞
(
1

2
∂t(∂tu(x, t))2 − ∂xxxu(x, t)∂t∂xu(x, t))dx

=

∫ +∞

−∞
(∂t

1

2
(∂tu(x, t))2 + ∂xxu(x, t)∂t∂xxu(x, t))dx.

We apply again the product rule a∂ta = 1
2∂ta

2 where a = ∂xxu(x, t),

0 =

∫ +∞

−∞
(∂t

1

2
(∂tu(x, t))2 +

1

2
∂t(∂xxu(x, t))2)dx.

Switching the derivative with respect to t and the integration with respect to x, this finally gives

0 =
1

2
∂t

∫ +∞

−∞
([∂tu(x, t)]2 + [∂xxu(x, t)]2)dx.
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Question 3: Let k, f : [−1,+1] −→ R be such that k(x) = 2, f(x) = 0 if x ∈ [−1, 0] and k(x) = 1, f(x) = 2 if x ∈ (0, 1].
Consider the boundary value problem −∂x(k(x)∂xT (x)) = f(x) with T (−1) = −2 and T (1) = 2.
(a) What should be the interface conditions at x = 0 for this problem to make sense?

The function T and the flux k(x)∂xT (x) must be continuous at x = 0. Let T− denote the solution on [−1, 0] and T+ the
solution on [0,+1]. One should have T−(0) = T+(0) and k−(0)∂xT

−(0) = k+(0)∂xT
+(0), where k−(0) = 2 and k+(0) = 1.

(b) Solve the problem, i.e., find T (x), x ∈ [−1,+1].

On [−1, 0] we have k−(x) = 2 and f−(x) = 0 which implies −∂xxT−(x) = 0. This in turn implies T−(x) = ax + b. The
Dirichlet condition at x = −1 implies that T−(−1) = −2 = −a+ b. This gives a = b+ 2 and T−(x) = (b+ 2)x+ b.

We proceed similarly on [0,+1] and we obtain −∂xxT−(x) = 2, which implies that T+(x) = −x2 + cx + d. The Dirichlet
condition at x = 1 implies T+(1) = 2 = −1 + c+ d. This gives c = 3− d and T−(x) = −x2 + (3− d)x+ d.

The interface conditions T−(0) = T+(0) and k−(0)∂xT
−(0) = k+(0)∂xT

+(0) give b = d and 2(b+ 2) = 3− d, respectively.
In conclusion b = − 1

3 , d = − 1
3 and

T (x) =

{
5
3x−

1
3 if x ∈ [−1, 0],

−x2 + 10
3 x−

1
3 if x ∈ [0, 1].

Question 4: Let CS(f) = π2

6 − 2(cos(x) − cos(2x)
22 + cos(3x)

32 − cos(4x)
42 . . .) be the Fourier cosine series of the function

f(x) := 1
2x

2 defined over [0,+π].
(a) For which values of x in [0,+π] does this series coincide with f(x)? (Explain).

The Fourier cosine series coincides with the function f(x) over the entire interval [0,+π] since f is smooth over [0,+π] (recall
that the Fourier cosine series is the Fourier series of the even extension of f over [−π,+π]).

(b) Compute the Fourier sine series, SS(x), of the function g(x) := x defined over [0,+π].

We know from class that it is always possible to obtain a Fourier sine series by differentiating term by term a Fourier cosine
series, in other words

SS(x) = ∂xCS(
1

2
x2) = 2

(
sin(x)− sin(2x)

2
+

sin(3x)

3
− sin(4x)

4
. . .

sin(nx)

n
. . .

)
.
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(c) For which values of x ∈ [0,+π] does the Fourier sine series of g coincide with g(x)?.

The Fourier sine series coincides with the function g(x) := x over the interval [0,+π) since g is smooth over [0,+π]and
g(0) = 0. The Fourier sine series of g is zero at +π, and thus differs from g(+π).

Question 5: Using cylindrical coordinates and the method of separation of variables, solve the equation, 1
r∂r(r∂ru) +

1
r2 ∂θθu = 0, inside the domain D = {θ ∈ [0, 3

2π], r ∈ [0, 3]}, subject to the boundary conditions u(r, 0) = 0, u(r, 3
2π) = 0,

u(3, θ) = 18 sin(2θ). (Give all the details.)

(1) We set u(r, θ) = φ(θ)g(r). This means φ′′ = −λφ, with φ(0) = 0 and φ( 3
2π) = 0, and r d

dr (r d
drg(r)) = λg(r).

(2) The usual energy argument applied to the two-point boundary value problem

φ′′ = −λφ, φ(0) = 0, φ(
3

2
π) = 0,

implies that λ is non-negative. If λ = 0, then φ(θ) = c1 + c2θ and the boundary conditions imply c1 = c2 = 0, i.e., φ = 0,
which in turns gives u = 0 and this solution is incompatible with the boundary condition u(3, θ) = 18 sin(2θ). Hence λ > 0
and

φ(θ) = c1 cos(
√
λθ) + c2 sin(

√
λθ).

(3) The boundary condition φ(0) = 0 implies c1 = 0. The boundary condition φ( 3
2π) = 0 implies

√
λ 3

2π = nπ with n ∈ N\{0}.
This means

√
λ = 2

3n, n = 1, 2, . . ..

(4) From class we know that g(r) is of the form rα, α ≥ 0. The equality r d
dr (r d

dr r
α) = λrα gives α2 = λ. The condition

α ≥ 0 implies 2
3n = α =

√
λ. The boundary condition at r = 3 gives 18 sin(2θ) = c23

2
3n sin( 2

3nθ) for all θ ∈ [0, 3
2π]. This

implies n = 3 and c2 = 2.

(5) Finally, the solution to the problem is
u(r, θ) = 2r2 sin(2θ).
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Question 6: Let p, q : [−1,+1] −→ R be smooth functions. Assume that p(x) ≥ 0 and q(x) ≥ q0 for all x ∈ [−1,+1],
where q0 ∈ R. Consider the eigenvalue problem −∂x(p(x)∂xφ(x)) + q(x)φ(x) = λφ(x), supplemented with the boundary
conditions φ(−1) = 0 and φ(1) = 0.

(a) Prove that it is necessary that λ ≥ q0 for a non-zero (smooth) solution, φ, to exist. (Hint: q0

∫ +1

−1
φ2(x)dx ≤∫ +1

−1
q(x)φ2(x)dx.)

As usual we use the energy method. Let (φ, λ) be an eigenpair, then∫ +1

−1

(−∂x(p(x)∂xφ(x))φ(x) + q(x)φ2(x))dx = λ

∫ +1

−1

φ2(x)dx.

After integration by parts and using the boundary conditions, we obtain∫ +1

−1

(p(x)∂xφ(x)∂xφ(x) + q(x)φ2(x))dx = λ

∫ +1

−1

φ2(x)dx.

which, using the hint, can also be re-written∫ +1

−1

(p(x)∂xφ(x)∂xφ(x) + q0φ
2(x))dx ≤ λ

∫ +1

−1

φ2(x)dx.

Then ∫ +1

−1

p(x)(∂xφ(x))2dx ≤ (λ− q0)

∫ +1

−1

φ2(x)dx.

Assume that φ is non-zero, then

λ− q0 ≥
∫ +1

−1
p(x)(∂xφ(x))2dx∫ +1

−1
φ2(x)dx

≥ 0,

which proves that it is necessary that λ ≥ q0 for a non-zero (smooth) solution to exist.

(b) Assume that p(x) ≥ p0 > 0 for all x ∈ [−1,+1] where p0 ∈ R+. Show that λ = q0 cannot be an eigenvalue, i.e., prove

that φ = 0 if λ = q0. (Hint: p0

∫ +1

−1
ψ2(x)dx ≤

∫ +1

−1
p(x)ψ2(x)dx.)

Assume that λ = q0 is an eigenvalue. Then the above computation shows that

p0

∫ +1

−1

(∂xφ(x))2dx ≤
∫ +1

−1

p(x)(∂xφ(x))2dx = 0,

which means that
∫ +1

−1
(∂xφ(x))2dx = 0 since p0 > 0. As a result ∂xφ = 0, i.e., φ(x) = c where c is a constant. The boundary

conditions φ(−1) = 0 = φ(1) imply that c = 0. In conclusion φ = 0 if λ = q0, thereby proving that (φ, q0) is not an eigenpair.
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Question 7: Use the Fourier transform technique to solve ∂tu(x, t)+cos(t)∂xu(x, t)+(1+3t2)u(x, t) = 0, x ∈ R, t > 0, with

u(x, 0) = u0(x). (Use the shift lemma: F(f(x−β))(ω) = F(f)(ω)eiωβ and the definition F(f)(ω) := 1
2π

∫ +∞
−∞ f(x)eiωxdx)

Applying the Fourier transform to the equation gives

∂tF(u)(ω, t) + cos(t)(−iω)F(u)(ω, t) + (1 + 3t2)F(u)(ω, t) = 0

This can also be re-written as follows:
∂tF(u)(ω, t)

F(u)(ω, t)
= iω cos(t)− (1 + 3t2).

Then applying the fundamental theorem of calculus between 0 and t, we obtain

log(F(u)(ω, t))− log(F(u)(ω, 0)) = iω sin(t)− (t+ t3).

This implies

F(u)(ω, t) = F(u0)(ω)eiω sin(t)e−(t+t3).

Then the shift lemma gives

F(u)(ω, t) = F(u0(x− sin(t))(ω)e−(t+t3).

This finally gives

u(x, t) = u0(x− cos(t))e−(t+t3).

Question 8: Consider the triangular domain D = {(x, y);x ≥ 0, y ≥ 0, 1 − x − y ≥ 0}. Let f(x, y) = x2 − y2 − 3. Let
u ∈ C2(D) ∩ C0(D) solve −∆u = 0 in D and u|∂D = f . Compute min(x,y)∈D u(x, y) and max(x,y)∈D u(x, y).

We use the maximum principle (u is harmonic and has the required regularity). Then

min
(x,y)∈D

u(x, y) = min
(x,y)∈∂D

f(x, y), and max
(x,y)∈D

u(x, y) = max
(x,y)∈∂D

f(x, y).

A point (x, y) is at the boundary of D if and only if {x = 0 and y ∈ [0, 1]} or {y = 0 and x ∈ [0, 1]}, or {1− y − x = 0 and
x ∈ [0, 1]}.
(i) In the first case, x = 0 and y ∈ [0, 1], we have

f(x, y) = −y2 − 3, y ∈ [0, 1].

The maximum is −3 and the minimum is −4.
(ii) In the second case, y = 0 and x ∈ [0, 1], we have

f(x, y) = x2 − 3, x ∈ [0, 1].

The maximum is −2 and the minimum is −3.
(iii) In the third case, 1− x = y and x ∈ [0, 1], we have

f(x, y) = x2 − (1− x)2 − 3 = 2x− 4, x ∈ [0, 1].

The maximum is −2 and the minimum is −4.
We finally can conclude

min
(x,y)∈∂D

f(x, y) = −4, max
(x,y)∈∂D

f(x, y) = −2.

In conclusion
min

(x,y)∈D
u(x, y) = −4, max

(x,y)∈D
u(x, y) = −2


