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Notes, books, and calculators are not authorized. Show all your work in the blank space you are given on the exam sheet.
Answers with no justification will not be graded.

Question 1: Let Φ ∈ C1(R3;R) and Ψ ∈ C1(R3;R) be defined by Φ(x1, x2, x3) := x31 − sin(x2 − x3) and Ψ(x1, x2, x3) :=
log(1 + x21 + x42 + x63) + x1.
(a) Compute ∇Φ and ∇Ψ.

Applying the chain rule we obtain

∇Φ(x1, x2, x3) =
(
3x21,− cos(x2 − x3), cos(x2 − x3)

)
,

and

∇Ψ(x1, x2, x3) =

(
1 +

2x1
1 + x21 + x42 + x63

,
4x32

1 + x21 + x42 + x63
,

6x53
1 + x21 + x42 + x63

)
.

Question 2: Let A ∈ C0(R3;R3) and ϕ ∈ C0(R3;R). Let D be a subset of R3 with a smooth boundary ∂D and unit
outward normal n. Compute

∫
∂D

A·(n×(ϕA))ds. (Hint: recall that (E×F )·G = E·(F×G).)

Using the definitions, and recalling that E×E = 0 for all E ∈ R3, we have∫
∂D

A·(n×(ϕA))ds =

∫
∂D

(n×(ϕA))·Ads =

∫
∂D

n·((ϕA)×A)ds =

∫
∂D

(n·(A×A))ϕds = 0.

Question 3: Let ∇× denote the curl operator acting on vector fields: i.e., let A = (A1, A2, A3) ∈ C1(R3;R3) be a
three-dimensional vector field over R3, then ∇×A := (∂2A3 − ∂3A2, ∂3A1 − ∂1A3, ∂1A2 − ∂2A1).
(a) Let ϕ ∈ C2(R3;R). Compute ∇×(∇ϕ2). (Hint: Recall that ∂ijψ = ∂jiψ, for all i, j ∈ {1, 2, 3} and all ψ ∈ C1(R3;R).)

The definitions imply that ∇ϕ = (∂1ϕ, ∂2ϕ, ∂3ϕ). Hence,

∇×(∇ϕ2) = (∂2∂3ϕ
2 − ∂3∂2ϕ2, ∂3∂1ϕ

2 − ∂1∂3ϕ2, ∂1∂2ϕ
2 − ∂2∂1ϕ2) = ∂31ϕ

2 − ∂13ϕ2, ∂12ϕ
2 − ∂21ϕ2) = 0

(b) Show that 2ψ∇ψ = ∇(ψ2) for all ψ ∈ C1(R3;R).

Let ψ ∈ C1(R3;R). Then by the chain rule

∇ψ2 = (∂1ψ
2, ∂2ψ

2, ∂3ψ
2) = (2ψ∂1ψ, 2ψ∂2ψ, 2ψ∂3ψ) = 2ψ(∂1ψ, ∂2ψ, ∂3ψ) = 2ψ∇ψ.
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(c) Let ϕ and ψ in C2(R3;R). Let D be a subset of R3 with a smooth boundary ∂D and unit outward normal n. Compute∫
∂D

(2ψ∇ϕ×∇ψ)·nds. (Hint: Accept as a fact that ∇·(A×B) = B·∇×A−A·∇×B for all A,B ∈ C1(R3;R3).)

We first observe that ∫
∂D

(2ψ∇ϕ×∇ψ)·nds =

∫
∂D

(∇ϕ×∇ψ2)·nds.

Then using the divergence theorem we infer that∫
∂D

(∇ϕ×∇ψ2)·nds =

∫
D

∇·(∇ϕ×∇ψ2)dx.

Then using the hint we have ∫
∂D

(∇ϕ×∇ψ2)ds =

∫
D

(
∇×(∇ϕ)·∇ψ2 −∇ϕ·∇×(∇ψ2)

)
dx.

But ∇×(∇ϕ) = 0 and ∇×(∇ψ2) = 0. Hence ∫
∂D

(2ψ∇ϕ×∇ψ)·nds = 0.

Question 4: Let u solve ∂tu − ∂x
(

cos(πx2L )u + (sin(πxL ) + 2)∂xu
)

= f(x)e−2t, x ∈ (0, L), with 2∂xu(0, t) + u(0, t) = 2,
∂xu(L, t) = 1, u(x, 0) = u0(x), where f and u0 are two smooth functions.

(a) Compute d
dt

∫ L
0
u(x, t)dx as a function of t.

Integrate the equation over the domain (0, L) and apply the fundamental Theorem of calculus:

d

dt

∫ L

0

u(x, t)dx =

∫ L

0

∂tu(x, t)dx =

∫ L

0

∂x
(

cos(πx/2L)u+ (sin(πx/L) + 2)∂xu
)
dx+ e−2t

∫ L

0

f(x)dx

= cos(πL/2L)u(L, t) + (sin(πL/L) + 2)∂xu(L, t)− cos(0)u(0, t)− (sin(0) + 2)∂xu(0, t) + e−2t
∫ L

0

f(x)dx

= 2∂xu(L, t)− u(0, t)− 2∂xu(0, t) + e−2t
∫ L

0

f(x)dx = 2− 2 + e−2t
∫ L

0

f(x)dx

= e−2t
∫ L

0

f(x)dx.

That is
d

dt

∫ L

0

u(x, t)dx = e−2t
∫ L

0

f(x)dx.

(b) Use (a) to compute
∫ L
0
u(x, T )dx as a function of the time T .

Applying the fundamental Theorem of calculus again gives∫ L

0

u(x, T )dx =

∫ L

0

u(x, 0)dx+

∫ T

0

d

dt

∫ L

0

u(x, t)dxdt

=

∫ L

0

u0(x)dx+
1

2
(1− e−2T )

∫ L

0

f(x)dx.

(c) What is the limit of
∫ L
0
u(x, T )dx as T → +∞?

The above formula gives

lim
T→+∞

∫ L

0

u(x, T )dx =

∫ L

0

u0(x)dx+
1

2

∫ L

0

f(x)dx.
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Question 5: Consider the vibrating beam equation ∂ttu(x, t) + ∂xx
( 2+|x|
1+|x|∂xxu(x, t)

)
= 0, x ∈ (−∞,+∞), t > 0 with

u(±∞, t) = 0, ∂xu(±∞, t) = 0, ∂xxu(±∞, t) = 0.

(a) Show that ∂t
∫ +∞
−∞ (∂tu(x, t))

2
dx =

∫ +∞
−∞ 2∂ttu(x, t)∂tu(x, t)dx.

We have

∂t

∫ +∞

−∞
(∂tu(x, t))

2 dx =

∫ +∞

−∞
∂t (∂tu(x, t))

2 dx =

∫ +∞

−∞
2∂tu(x, t)∂ttu(x, t)dx.

(b) Show that ∂t
∫ +∞
−∞ ( 2+|x|

1+|x| [∂xxu(x, t)]2)dx =
∫ +∞
−∞ 2( 2+|x|

1+|x| )∂xxu(x, t)∂xx(∂tu(x, t))dx.

We have

∂t

∫ +∞

−∞
(
2 + |x|
1 + |x|

[∂xxu(x, t)]2)dx =

∫ +∞

−∞
(
2 + |x|
1 + |x|

)∂t[∂xxu(x, t)]2dx =

∫ +∞

−∞
(
2 + |x|
1 + |x|

)2∂xxu(x, t)∂t∂xxu(x, t)dx

=

∫ +∞

−∞
(
2 + |x|
1 + |x|

)2∂xxu(x, t)∂xx(∂tu(x, t))dx.

(c) Show that
∫ +∞
−∞ ( 2+|x|

1+|x| )∂xxu(x, t)∂xx(∂tu(x, t))dx =
∫ +∞
−∞ ∂xx

(
( 2+|x|
1+|x| )∂xxu(x, t)

)
∂tu(x, t)dx. (Hint: Integrate by parts

two times and use the boundary conditions at infinity: ∂txu(±∞, t) = 0 and ∂tu(±∞, t) = 0.)

We integrate by parts two times and use the boundary conditions at infinity.∫ +∞

−∞
(
2 + |x|
1 + |x|

)∂xxu(x, t)∂xx(∂tu(x, t))dx = −
∫ +∞

−∞
∂x

(
(
2 + |x|
1 + |x|

)∂xxu(x, t)

)
∂x(∂tu(x, t))dx∫ +∞

−∞
∂xx

(
(
2 + |x|
1 + |x|

)∂xxu(x, t)

)
∂tu(x, t)dx.

(d) Use the energy method to compute ∂t
∫ +∞
−∞ ([∂tu(x, t)]2 + 2+|x|

1+|x| [∂xxu(x, t)]2)dx. Give all the details. (Hint: Multiply

the equation by ∂tu(x, t), integrate over space and use (a), (c) and (b)).

Using the hint we have

0 =

∫ +∞

−∞

(
∂ttu(x, t)∂tu(x, t) + ∂xx

(
2 + |x|
1 + |x|

∂xxu(x, t)

)
∂tu(x, t)

)
dx

Using (a) and (c) we obtain

0 =

∫ +∞

−∞
(∂t

1

2
(∂tu(x, t))2 +

(
2 + |x|
1 + |x|

)
∂xxu(x, t)∂t∂xxu(x, t))dx.

Using (b) we obtain

0 =

∫ +∞

−∞
(∂t

1

2
(∂tu(x, t))2 +

1

2

2 + |x|
1 + |x|

∂t(∂xxu(x, t))2)dx.

Switching the derivative with respect to t and the integration with respect to x, this finally gives

0 =
1

2
∂t

∫ +∞

−∞
([∂tu(x, t)]2 +

2 + |x|
1 + |x|

[∂xxu(x, t)]2)dx.
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Question 6: Let k : [−1,+1] −→ R be such that k(x) = 2, if x ∈ [−1, 0] and k(x) = 1 if x ∈ (0, 1]. Solve the boundary
value problem −∂x(k(x)∂xT (x)) = 0 with −∂xT (−1) + T (−1) = −1 and T (1) = 3.
(i) What should be the interface conditions at x = 0 for this problem to make sense?

The function T and the flux k(x)∂xT (x) must be continuous at x = 0. Let T− denote the solution on [−1, 0] and T+ the
solution on [0,+1]. One should have T−(0) = T+(0) and k−(0)∂xT

−(0) = k+(0)∂xT
+(0), where k−(0) = 2 and k+(0) = 1.

(ii) Solve the problem, i.e., find T (x), x ∈ [−1,+1].

On [−1, 0] we have k−(x) = 1, which implies ∂xxT
−(x) = 0. This in turn implies T−(x) = a + bx. The Robin boundary

condition at x = −1 implies −∂xT−(−1) + T−(−1) = −1 = −2b+ a. This gives a = 2b− 1 and T−(x) = 2b− 1 + bx.

We proceed similarly on [0,+1] and we obtain T+(x) = c + dx. The Dirichlet boundary condition at x = +1 gives T+(1) =
3 = c+ d. This implies c = 3− d and T+(x) = 3− d+ dx.

The interface conditions T−(0) = T+(0) and k−(0)∂xT
−(0) = k+(0)∂xT

+(0) give

2b− 1 = 3− d, and 2b = d.

This implies d = 2 and b = 1. In conclusion

T (x) =

{
x+ 1 if x ∈ [−1, 0],

2x+ 1 if x ∈ [0,+1].
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Question 7: Consider the triangular domain D = {(x, y);x ≥ 0, y ≥ 0, 1 − x − y ≥ 0}. Let f(x, y) = x2 − y2 − 3. Let
u ∈ C2(D) ∩ C0(D) solve −∆u = 0 in D and u|∂D = f . (a) Compute min(x,y)∈D f(x, y) and max(x,y)∈D f(x, y).

A point (x, y) is at the boundary of D if and only if {x = 0 and y ∈ [0, 1]} or {y = 0 and x ∈ [0, 1]}, or {1− y − x = 0 and
x ∈ [0, 1]}.
(i) In the first case, x = 0 and y ∈ [0, 1], we have

f(x, y) = −y2 − 3, y ∈ [0, 1].

The maximum is −3 and the minimum is −4.
(ii) In the second case, y = 0 and x ∈ [0, 1], we have

f(x, y) = x2 − 3, x ∈ [0, 1].

The maximum is −2 and the minimum is −3.
(iii) In the third case, 1− x = y and x ∈ [0, 1], we have

f(x, y) = x2 − (1− x)2 − 3 = 2x− 4, x ∈ [0, 1].

The maximum is −2 and the minimum is −4.
We finally can conclude

min
(x,y)∈∂D

f(x, y) = −4, max
(x,y)∈∂D

f(x, y) = −2.

(b) Compute min(x,y)∈D u(x, y) and max(x,y)∈D u(x, y).

We use the maximum principle (u is harmonic and has the required regularity). Then

min
(x,y)∈D

u(x, y) = min
(x,y)∈∂D

f(x, y), and max
(x,y)∈D

u(x, y) = max
(x,y)∈∂D

f(x, y).

In conclusion
min

(x,y)∈D
u(x, y) = −4, max

(x,y)∈D
u(x, y) = −2



Last name: name: 6

Question 8: Consider the differential equation −d
2φ
dt2 = λφ, t ∈ (0, π), supplemented with the boundary conditions

φ(0) = 0, 5φ(π) = −φ′(π).
(a) Prove that it is necessary that λ be positive for a non-zero solution to exist.

(i) Let φ be a non-zero solution to the problem. Multiply the equation by φ and integrate over the domain.∫ π

0

(φ′(t))2dt− φ′(π)φ(π) + φ′(0)φ(0) = λ

∫ π

0

φ2(t)dt.

Using the BCs, we infer ∫ π

0

(φ′(t))2dt+ 5φ(π)2 = λ

∫ π

0

φ2(t)dt,

which means that λ is non-negative since φ is non-zero.

(ii) If λ = 0, then
∫ π
0

(φ′(t))2dt = 0 and φ(π)2 = 0, which implies that φ′(t) = 0 and φ(π) = 0. The fundamental theorem of

calculus implies φ(t) = φ(π) +
∫ t
π
φ′(τ)dτ = 0. Hence, φ is zero if λ = 0. Since we want a nonzero solution, this implies that

λ cannot be zero.

(iii) In conclusion, it is necessary that λ be positive for a nonzero solution to exist.

(b) Find the equation that λ must solve for the above problem to have a nonzero solution (do not try to solve it).

Since λ is positive, φ is of the following form

φ(t) = c1 cos(
√
λt) + c2 sin(

√
λt).

The boundary condition φ(0) = 0 implies c1 = 0. The other boundary condition φ′(π) = −5φ(π) implies

√
λc2 cos(

√
λπ) = −5c2 sin(

√
λπ).

The constant c2 cannot be zero since we want φ to be nonzero; as a result, λ must solve the following equation

√
λ cos(

√
λπ) + 5 sin(

√
λπ) = 0,

for a nonzero solution φ to exist.
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Question 9: Let L be a positive real number. Let P1 = span{1, cos(πt/L), sin(πt/L)} and consider the norm ‖f‖L2 :=(∫ L
−L f(t)2dt

) 1
2

.

(a) Compute the best approximation of h(t) = 5 + π2 cos(πt/L) + 5 sin(6πt/L) in P1.

Recall that the best approximation of h in P1, say p, is such that p ∈ P1 and
∫ L
−L(h(t)− p(t))p(t)dt = 0 for all p ∈ P1.

The function p(t) := 5 + π2 cos(πt/L) is in P1 and the function h(t) − p(t) = h(t) − 5 − π2 cos(πt/L = 5 sin(6πt/L) is
orthogonal to all the members of P1 since the functions cos(mπt/L) and sin(mπt/L) are orthogonal to both cos(nπt/L) and
sin(nπt/L) for all m 6= m; as a result, the best approximation of h in P1 is p(t) = 5 + π2 cos(πt/L). In conclusion

p(t) = 5 + π2 cos(πt/L).

(b) Compute the best approximation of 1 + t2 in P1 with respect to the above norm. (Hint:
∫
t2 cos(t)dt = 2t cos(t) +

(t2 − 2) sin(t).)

We know from class that the truncated Fourier series

FS1(t) = a0 + a1 cos(πt/L) + b1 sin(πt/L)

is the best approximation. Now we compute a0, a1, a2

a0 =
1

2L

∫ L

−L
(1 + t2)dt = 1 +

2L3

6L
= 1 +

1

3
L2,

a1 =
1

L

∫ L

−L
(1 + t2) cos(πt/L)dt =

1

L

L3

π3

∫ π

−π
t2 cos(t)dt =

1

L

L3

π3
(−4π) = −4

L2

π2

b1 =
1

L

∫ L

−L
(1 + t2) sin(πt/L)dt = 0.

As a result

FS1(t) = 1 +
1

3
L2 − 4L2

π2
cos(πt/L)
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Question 10: Let p, q : [−1,+1] −→ R be smooth functions. Assume that p(x) ≥ 0 and q(x) ≥ q0 for all x ∈ [−1,+1],
where q0 > 0. Let f ∈ C0([−1, 1];R) and consider the boundary value problem −∂x(p(x)∂xu(x)) + q(x)u(x) = f(x),
supplemented with the boundary conditions ∂xu(−1) = 0 and −∂xu(1) = 2u(1).
(a) Assume that the problem has a solution. Using the energy method, prove that this solution is unique. (Hint:

q0
∫ +1

−1 φ
2(x)dx ≤

∫ +1

−1 q(x)φ2(x)dx.)

Let u1 and u2 be two solutions. Then letting φ := φ2 − φ1, we have

−∂x(p(x)∂xφ(x)) + q(x)φ(x) = 0, ∂xφ(−1) = 0, −∂xφ(1) = 2φ(1).

As usual we use the energy method. We multiply the equation by φ and integrate over the domain:∫ +1

−1
(−∂x(p(x)∂xφ(x))φ(x) + q(x)φ2(x))dx = 0.

After integration by parts and using the boundary conditions, we obtain

0 =

∫ +1

−1
(p(x)∂xφ(x)∂xφ(x) + q(x)φ2(x))dx− 2p(x)∂xφ(x)φ(x)|+1

−1

=

∫ +1

−1
(p(x)∂xφ(x)∂xφ(x) + q(x)φ2(x))dx+ 2p(1)φ(1)2

which, using the hint, can also be re-written

q0

∫ +1

−1
φ2(x)dx ≤

∫ +1

−1
(p(x)∂xφ(x)∂xφ(x) + q0φ

2(x))dx+ 2p(1)φ(1)2 ≤ 0.

Then using that q0 > 0 we obtain

0 ≤
∫ +1

−1
φ2(x)dx ≤ 0,

which in turn implies that φ = 0. Whence u1 = u2.


