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Notes, books, and calculators are not authorized. Show all your work in the blank space you are given on the exam sheet.
Answers with no justification will not be graded.

Question 1: Let ® € C}(R?*R) and ¥ € C'(R3;R) be defined by ®(x1, 22, 23) := 23 — sin(z2 — x3) and (21, 22, 23) :=
log(1 + 23 + x5 + 28) + 1.
(a) Compute V& and V.

Applying the chain rule we obtain

VO(x1,x2,23) = (Sx%, —cos(zg — x3), cos(xa — 3:3)) ,

and

2 4 3 5
V\I/(Il,l'g,zg) = <1 4 X1 Ty 6£E3 > )

I+22+ai+25 1+ 22+ a5 +2§" 1+ 23 + 28 + a5

Question 2: Let A € C°(R3;R3) and ¢ € C°(R3;R). Let D be a subset of R® with a smooth boundary D and unit
outward normal n. Compute [, A-(nx(pA))ds. (Hint: recall that (ExF)-G = E-(FxG).)

Using the definitions, and recalling that ExXE = 0 for all E € R3, we have

A (nx(pA))ds = /

oD

(nx(pA))-Ads — /

n-((pA)xA)ds = / (n-(AxA))pds = 0.
oD

oD oD

Question 3: Let Vx denote the curl operator acting on vector fields: i.e., let A = (Ay, Ay, A3) € CH(R3;R3) be a
three-dimensional vector field over R?, then Vx A := (0y A3 — 03 A5, 0341 — 01 43,01 As — 02 Ay).
(a) Let p € C*(R3%;R). Compute Vx(V¢?). (Hint: Recall that 9;;9 = 9;;1, for all i, j € {1,2,3} and all » € C'(R%;R).)

The definitions imply that Vi = (91, d2¢, d3¢). Hence,

Vx(Ve?) = (02059 — 03007, 03019% — 01057, 0102p% — 02019%) = 031> — 0137, 012> — 021%) = 0

(b) Show that 29V = V(1?) for all ¢ € C'(R%;R).
Let 1 € C'(R3;R). Then by the chain rule

V2 = (01?, 029%, 039%) = (20019, 20021, 208031)) = 20(D19), Do), D3p) = 20V .
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(c) Let ¢ and ¢ in C?(R3;R). Let D be a subset of R? with a smooth boundary D and unit outward normal n. Compute
Jop 2V exVi)-nds. (Hint: Accept as a fact that V-(AxB) = B-VxA — A-VxB for all A, B € C'(R%;R?).)

We first observe that

/(wwwi)-nds:/ (VipxVi?)-nds.
oD

oD
Then using the divergence theorem we infer that

/ (wxwﬂ)-nds:/ V-(VpxVi?)dz.
oD D

Then using the hint we have

/ (VxVi?)ds :/ (VX (V) Vi? — V- Vx(Vip?))dz.
oD D

But Vx(V¢) =0 and Vx(V4?) = 0. Hence

/ (29 VepxVi)-nds = 0.
oD

Question 4: Let u solve dyu — 0, ( cos(5%)u + (sin(%2) + 2)0,u) = f(z)e !, z € (0, L), with 20,u(0,t) + u(0,t) = 2,
Ozu(L,t) =1, u(z,0) = up(x), where f and uy are two smooth functions.
(a) Compute 4 fOL u(x,t)dx as a function of t.

Integrate the equation over the domain (0, L) and apply the fundamental Theorem of calculus:
d (- L L L
%/ u(x, t)de = / Opu(z, t)dx = / 9y (cos(ma/2L)u + (sin(rx/L) + 2)0,u)dx + 672'5/ f(z)dx
0 0 0 0
L
= cos(mL/2L)u(L,t) + (sin(nL/L) + 2)0,u(L,t) — cos(0)u(0,t) — (sin(0) + 2)9,u(0,t) + e~ / f(z)dx
0

L L
= 20,u(L,t) — u(0,t) — 20,u(0,1t) + efzt/ flx)dr=2—-2+ e*Qt/ f(x)dx
0 0

=e 2 /L f(z)dz.
0

That is
L

dt Jo

(b) Use (a) to compute fOL u(x, T)dx as a function of the time T'.

Applying the fundamental Theorem of calculus again gives

L L T4 L
/ u(x,T)dx:/ u(m,O)dx—F/ 7/ u(x, t)dzdt
0 0 o dtJo

= : 1 — e 2T : x)dx
= [ wla)da 50— [ payaa.

(c) What is the limit of fOL w(x, T)dx as T — +00?

The above formula gives

L

lim u(x, T)dx = /L uo(z)dx + ;/OL f(x)dx.

T—+o0 0 0
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Question 5: Consider the vibrating beam equation Oy u(x,t) + au(
u(£o0,t) = 0, dyu(Foo,t) =0, Opgpu(Foo,t) = 0.
(a) Show that d; fj:; (Byu(z,t))® dz = fj;o 20 u(x, t)Opu(z, t)de.

Opgu(z,t)) = 0, € (—00,+00), t > 0 with

We have N N N
d, / (Byu(z,t))* do = / Oy (Oyu(x, 1)) dz = / 20,u(z, )0y u(z, t)dz.

— 00 — 00 — 00

(b) Show that 8; [*2° (220, u(e, 1))?)de = [T2° 23208, u(z, 1)0, (Byu(z, t))da.

1+|z| 1+[z]
We have

< 2+ Ja] ) < 2+ o] oy _ [T 2%l
o [ Gl = [ G0 e = [ (G200l 00, s

2+ x|
_ /m (T o] 20 D0e (Do, )

(c) Show that fj:;(ﬂ‘wl )Ozatt(T, 1) Dps (Opu(z, t))dz = f+oo O ((ZHQEI)Bmu(:E,t)) Oyu(x,t)dz. (Hint: Integrate by parts

1+]a] 1+[a]
two times and use the boundary conditions at infinity: 9y, u(do0,t) = 0 and dyu(foo,t) =0.)

—00

We integrate by parts two times and use the boundary conditions at infinity.

+0o x Hoo x
/ 2 | |)amu(a:,t)am(atu(x,t))dx _ _/ o, <(2+| )amu(x,t)> 92 (Opu(z, t))da

o 14z oo 1+ [xf
“+o0 2+
/_Oo O ((H:;C:)amu(x,t)) Opu(x,t)dz.

(d) Use the energy method to compute 0; fjo(f([@tu(x,t)]Q + 229, yu(x, £)]2)dz. Give all the details. (Hint: Multiply

1+|x|
the equation by d;u(x,t), integrate over space and use (a), (c) and (b)).

Using the hint we have

I 2+ |a]
O:/ Opu(z, t)Opu(z,t) + O mﬁmu(z,t) Opu(x,t) | da

Using (a) and (c) we obtain

“+o0
_ 1 2 2+ ||

Using (b) we obtain

+oo
_ 1 2, 12+ 2]
0= /_OO (8t2(8tu(x7t)) +3 T+ 2]

0t (Oppu(z,t))?)d.

Switching the derivative with respect to ¢ and the integration with respect to z, this finally gives

_ 1 e 2, 2+ || 2
0= 50 [ (Dl P + T B )
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Question 6: Let k : [-1,+1] — R be such that k(z) = 2, if z € [-1,0] and k(x) = 1 if x € (0,1]. Solve the boundary
value problem —9,(k(x)0,T(x)) = 0 with —0,T(—1)+T(-1) = =1 and T(1) = 3.
(i) What should be the interface conditions at = 0 for this problem to make sense?

The function T and the flux k(z)d,T (z) must be continuous at z = 0. Let 7'~ denote the solution on [—1,0] and T the
solution on [0, +1]. One should have T~ (0) = T (0) and k= (0)9, T~ (0) = k™ (0)9,T*(0), where k= (0) = 2 and k*(0) = 1.

(ii) Solve the problem, i.e., find T'(z), « € [—1, +1].

On [-1,0] we have k~(z) = 1, which implies 9,7 (x) = 0. This in turn implies T~ (x) = a + bxz. The Robin boundary
condition at x = —1 implies =0, T~ (—1)+ T~ (—-1) = -1 = —2b+a. Thisgivesa=2b—1and T~ (z) =20 — 1 + bx.

We proceed similarly on [0,+1] and we obtain Tt (2:) = ¢ + dz. The Dirichlet boundary condition at x = +1 gives T (1) =
3=c+d. Thisimpliesc=3—d and T"(z) =3 — d + dx.

The interface conditions T~ (0) = T7(0) and £(0)8,7~(0) = k*(0)0,TF(0) give
W—1=3—d, and 2b=d.

This implies d = 2 and b = 1. In conclusion

T(z) = x+1 !fxe[fl,O],
2r+1 ifzel0,+1].
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Question 7: Consider the triangular domain D = {(x,y);z >0, y > 0,1 —x —y > 0}. Let f(z,y) = 22 —y? — 3. Let
u € C?2(D)NCO(D) solve —Au =0 in D and ulsp = f. (a) Compute min, .5 f(@,y) and max, 5 f(2,9)-

A point (z,y) is at the boundary of D if and only if {x =0 and y € [0,1]} or {y =0 and z € [0,1]}, or {1 —y — 2 =0 and
z € [0,1]}.
(i) In the first case, z = 0 and y € [0, 1], we have

f(xay):_y2_37 yE[O,l].

The maximum is —3 and the minimum is —4.
(ii) In the second case, y = 0 and z € [0, 1], we have

f(z,y) = 2% =3, z € 0,1].

The maximum is —2 and the minimum is —3.
(iii) In the third case, 1 —x =y and x € [0, 1], we have

flx,y) =2 - (1 —2)* -3=2z—4, z € 0,1].

The maximum is —2 and the minimum is —4.
We finally can conclude

i 9 = _47 ) = -2
(mﬁﬁlébpf(x Y) (mfyn)ng(fc Y)

(b) Compute min, ) 5 u(z,y) and max, 5 u(z,y)-

We use the maximum principle (u is harmonic and has the required regularity). Then

min_ u(z,y) = min z,y), and max u(z,y) = max z,9).
(w)@( Y) (m’y)ean( Y) (W)Eﬁ( Y) (xyy)ean( )
In conclusion
min_u(x,y) = —4, max u(z,y) = —2

(z,y)eD (z,y)€D
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Question 8: Consider the differential equation Ly _ Ao, t € (0,m), supplemented with the boundary conditions

$(0) = 0, 5¢(7) = —¢/ (). a

(a) Prove that it is necessary that A be positive for a non-zero solution to exist.

(i) Let ¢ be a non-zero solution to the problem. Multiply the equation by ¢ and integrate over the domain.

/W(cb’(t))z’dt — @' (m)$(m) + ¢'(0)$(0) = A /W ¢*(t)dt.
0 0

Using the BCs, we infer
| @y som? = [ o
0 0
which means that \ is non-negative since ¢ is non-zero.

(i) If A =0, then [ (¢(t))?dt = 0 and ¢(m)? = 0, which implies that ¢/(t) = 0 and ¢(m) = 0. The fundamental theorem of

calculus implies ¢(t) = ¢(7) + f; @' (T)dT = 0. Hence, ¢ is zero if A = 0. Since we want a nonzero solution, this implies that
A cannot be zero.

(iii) In conclusion, it is necessary that \ be positive for a nonzero solution to exist.

(b) Find the equation that A must solve for the above problem to have a nonzero solution (do not try to solve it).

Since A is positive, ¢ is of the following form
B(t) = ¢1 cos(VAL) + casin(VAL).

The boundary condition ¢(0) = 0 implies ¢; = 0. The other boundary condition ¢’(7) = —5¢(7) implies
VAey cos(VAT) = —bey sin(VAT).

The constant ¢o cannot be zero since we want ¢ to be nonzero; as a result, A must solve the following equation
VA cos(VAT) + 5sin(vVAr) = 0,

for a nonzero solution ¢ to exist.
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Question 9: Let L be a positive real number. Let P; = span{l, cos(nt/L),sin(nt/L)} and consider the norm || f||zz :=

(f_LL f(t)zdt)%.

(a) Compute the best approximation of h(t) = 5 + 72 cos(nt/L) 4+ 5sin(6mt/L) in Py.

Recall that the best approximation of h in P, say p, is such that p € P; and ffL(h(t) —p(t))p(t)dt = 0 for all p € P;.

The function p(t) := 5 + 72 cos(wt/L) is in P; and the function h(t) — p(t) = h(t) — 5 — w2 cos(wt/L = 5sin(6nt/L) is
orthogonal to all the members of Py since the functions cos(mmt/L) and sin(mnt/L) are orthogonal to both cos(nnt/L) and
sin(nmt/L) for all m # m; as a result, the best approximation of h in Py is p(t) = 5 + w2 cos(wt/L). In conclusion

p(t) = 5+ 7% cos(mt/L).

(b) Compute the best approximation of 1 + ¢? in P; with respect to the above norm. (Hint: [ ¢? cos(t)dt = 2t cos(t) +
(t> — 2)sin(t).)

We know from class that the truncated Fourier series

FSi(t) = ap + ay cos(nt/L) + by sin(nt/L)

is the best approximation. Now we compute ag, a1, as

1 L 2L3 1
=57 1+t)dt =14 =1+ -L?
aop 97 7L( + ) + 6L + 3 ,
1 " 2 1L3 g 2 1173 L2
“=7 [L(l +t°) cos(nt/L)dt = 13 77Tt cos(t)dt = Zﬁ(,gm) — 747T2

L
by = l/ (1 + t?) sin(rt/L)dt = 0.
LJ L

As a result A2
1
FSi(t)=1+ §L2 iy cos(mt/L)
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Question 10: Let p,q : [-1,+1] — R be smooth functions. Assume that p(z) > 0 and ¢(x) > qo for all x € [—1,+1],
where qo > 0. Let f € C°([—~1,1];R) and consider the boundary value problem —3,(p(z)d,u(z)) + q(z)u(z) = f(x),
supplemented with the boundary conditions d,u(—1) = 0 and —d,u(1) = 2u(1).

(a) Assume that the problem has a solution. Using the energy method, prove that this solution is unique. (Hint:

1 1
g J ) P*(@)dz < [ g(w)¢?(x)der.)
Let uy; and us be two solutions. Then letting ¢ := ¢2 — ¢1, we have

_az(p(m)az(b(x)) + q(l‘)(b(l‘) = 07 aaz(b(_l) = O> - m¢(1> = 2¢(1)

As usual we use the energy method. We multiply the equation by ¢ and integrate over the domain:

+1
/ (=0, ()0 $(2)) () + () 62 () )z = 0.

-1
After integration by parts and using the boundary conditions, we obtain

+1
0= / (p(2) 0 ¢(2)026/(x) + q(2)¢* ())dz — 2p(2) D P(w)$(w)| 1)

-1

+1
= / (p(2) 00 ¢(2)026() + q(2)¢* (x))dz + 2p(1)¢(1)

—1
which, using the hint, can also be re-written

+1 +1
w [ Pl / (p(2)02b(2)Dub(x) + a0 (2))de + 2p(1)d(1)? < 0.

-1

Then using that gp > 0 we obtain

which in turn implies that ¢ = 0. Whence u; = us.




