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Notes, books, and calculators are not authorized. Show all your work in the blank space you are given on the exam sheet.
Answers with no justification will not be graded. Here are some results you may want to use:

Question 1:

Let γ : R×R→ R be a smooth scalar-valued function. Let δ(x, t) := eγ(x,t).
(a) Compute ∂tδ(x, t).

Applying the chain rule, we obtain

∂tδ(x, t) = ∂tγ(x, t)eγ(x,t).

(b) Compute ∂xδ(x, t).

Applying the chain rule, we obtain

∂xδ(x, t) = ∂xγ(x, t)eγ(x,t).

(c) Let u : R×R → R be a smooth integrable scalar-valued solution such that
∫ +∞
−∞ |u(ξ, t)|dξ < ∞ for all t > 0. Let

ν > 0 and φ(x, t) := e−
1
2ν

∫ x
−∞ u(ξ,t)dξ. Compute ∂tφ, ∂xφ, and ∂xxφ.

The definition of φ, together with the chain rule, implies that

∂tφ(x, t) = ∂t

(
− 1

2ν

∫ x

−∞
u(ξ, t)dξ

)
e−

1
2ν

∫ x
−∞ u(ξ,t)dξ

=

(
− 1

2ν

∫ x

−∞
∂tu(ξ, t)dξ

)
e−

1
2ν

∫ x
−∞ u(ξ,t)dξ

and

∂xφ(x, t) = ∂x

(
− 1

2ν

∫ x

−∞
u(ξ, t)dξ

)
e−

1
2ν

∫ x
−∞ u(ξ,t)dξ

=

(
− 1

2ν
u(x, t)

)
e−

1
2ν

∫ x
−∞ u(ξ,t)dξ

and

∂xxφ(x, t) =

(
− 1

2ν
∂xu(x, t)

)
e−

1
2ν

∫ x
−∞ u(ξ,t)dξ +

(
− 1

2ν
u(x, t)

)2

e−
1
2ν

∫ x
−∞ u(ξ,t)dξ

=

(
− 1

2ν
∂xu(x, t) +

(
1

2ν
u(x, t)

)2
)

e−
1
2ν

∫ x
−∞ u(ξ,t)dξ
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(d) Compute ∂tφ− ν∂xxφ in terms of u.

The above computations give

−ν∂xxφ(x, t) = − 1

2ν

(
−ν∂xu(x, t) +

1

2
u2(x, t)

)
e−

1
2ν

∫ x
−∞ u(ξ,t)dξ

In conclusion

∂tφ− ν∂xxφ = − 1

2ν

(∫ x

−∞
∂tu(ξ, t)dξ +

1

2
u2(x, t)− ν∂xu(x, t)

)
e−

1
2ν

∫ x
−∞ u(ξ,t)dξ.

(e) What equation the function u must solve so that ∂tφ− ν∂xxφ = 0 for all x ∈ R and all t > 0?

The above computation shows that claiming that ∂tφ− ν∂xxφ = 0 is equivalent to saying∫ x

−∞
∂tu(ξ, t)dξ +

1

2
u2(x, t)− ν∂xu(x, t) = 0.

Remark: Notice in passing that taking the derivative of this equation with respect to x gives Burgers’ equation

∂tu(x, t) + ∂x(
1

2
u2)(x, t)− ν∂xxu(x, t) = 0.

The above technique is called Cole-Hopf transformation of Burger’s equation.

Question 2: Let u : R×R → R be a smooth integrable scalar-valued function such that lim|X|→∞ u(X, t) = 0,
lim|X|→∞ ∂xu(X, t) = 0, lim|X|→∞ ∂xxu(X, t) = 0, lim|X|→∞ ∂xxxu(X, t) = 0.

(a) Compute u∂x
(
1
2u

2
)
− ∂x

(
1
3u

3
)
.

Using the product rule, we obtain

u∂x
1

2
u2(x, t)− ∂x

1

3
u3(x, t) = 2

1

2
u2∂xu(x, t)− 3

1

3
u2∂xu(x, t) = 0.

(b) Compute ∂xu∂xxu− ∂x
(
1
2 (∂xu)2

)
.

Using the product rule, we obtain

∂xu∂xxu = ∂xu∂x(∂xu) = ∂x

(
1

2
(∂xu)2

)
.

Hence

∂xu∂xxu− ∂x
(

1

2
(∂xu)2

)
= 0.
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(c) Compute lim|X|→∞
∫X
−X u(ξ, t)∂xxxu(ξ, t)dξ.

Integrating by part once, we have∫ X

−X
u(ξ, t)∂xxxu(ξ, t)dξ = −

∫ X

−X
∂xu(ξ, t)∂xxu(ξ, t)dξ + [u(ξ, t)∂xx]X−X .

Now we notice that ∂xu(ξ, t)∂xxu(ξ, t) = ∂x
1
2 (∂xu(ξ, t))2.∫ X

−X
u(ξ, t)∂xxxu(ξ, t)dξ = −

∫ X

−X
∂x

(
1

2
(∂xu(ξ, t))2

)
dξ + [u(ξ, t)∂xxu(ξ, t)]X−X

= [−1

2
(∂xu(X, t))2]X−X + [u(ξ, t)∂xxu(ξ, t)]X−X .

Now taking the limit for X → +∞, we obtain ∫ X

−X
u(ξ, t)∂xxxu(ξ, t)dξ = 0

(d) Assume now that u solves ∂tu(x, t) + ∂x( 1
2u

2)(x, t)− κ∂xxxu(x, t) = 0 for all x ∈ R and all t > 0 with u(x, 0) = u0(x)

where κ ∈ R and u0 is a smooth integrable function. Compute
∫∞
−∞ u2(ξ, t)dξ in terms of

∫∞
−∞ u20(ξ)dξ. (Hint: Energy

method).

We apply the energy method. We multiply the equation by u and integrate over space and time. We start by integrating over
space.

0 =

∫ ∞
−∞

u∂tu(ξ, t) + u∂x(
1

2
u2)(ξ, t) + κu(∂xxxu)(ξ, t)dξ.

We use the results established above∫ ∞
−∞

u∂tu(ξ, t)dξ =

∫ ∞
−∞

∂t(
1

2
u)(ξ, t) = ∂t

∫ ∞
−∞

1

2
u(ξ, t)∫ ∞

−∞
u∂x(

1

2
u2)(ξ, t)dξ = 0∫ ∞

−∞
κu(∂xxxu)(ξ, t)dξ = 0.

Hence,

0 =∂t

∫ ∞
−∞

1

2
u(ξ, t).

This proves that ∫ ∞
−∞

1

2
u(ξ, t)dξ =

∫ ∞
−∞

1

2
u(ξ, 0)dξ =

∫ ∞
−∞

1

2
u0(ξ)dξ.
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Question 3: Let k : [0, 2]→ R be defined by k(x) = 1
4 if x ∈ [0, 12 ] and k(x) = 1

2 if x ∈ ( 1
2 , 1]. Let µ : [0, 2]→ R be defined

by µ(x) = 1 if x ∈ [0, 12 ] and µ(x) = 0 if x ∈ ( 1
2 , 1]. Let T : [0, 1] → R be the solution to µ(x)T (x) − ∂x(k∂xT )(x) = 0

with T (0) = 0 and ∂xT (1) = cosh(1). (Hint: do not try to simplify the expressions cosh(1) and sinh(1).)
(a) What should be the interface conditions at x = 1

2 for this problem to make sense?

The function T and the flux k(x)∂xT (x) must be continuous at x = 1
2 . Let T− denote the solution on [0, 12 ] and T+ the

solution on [ 12 , 1]. One should have T−( 1
2 ) = T+( 1

2 ) and k−( 1
2 )∂xT

−( 1
2 ) = k+( 1

2 )∂xT
+( 1

2 ), where k−( 1
2 ) = 1

4 and k+( 1
2 ) = 1

2 .

(b) Solve the problem, i.e., find T (x) for all x ∈ [0, 1].

(i) For all x ∈ [0, 12 ) we have
∂xxT (x) = 4T (x).

The generic solution to this problem is
T (x) = a cosh(2x) + b sinh(2x).

The boundary condition at 0 implies 0 = a. Hence

T (x) = b sinh(2x), ∀x ∈ [0,
1

2
].

(ii) For all x ∈ [ 12 , 1], we have ∂x( 1
9∂xT )(x) = 0. Hence

∂xxT = 0.

This gives T (x) = cx+ d. The boundary condition at 1 implies that c = cosh(1).

(iii) The interface conditions give

T (
1

2

−
) = T (

1

2

+

) =⇒ b sinh(1) =
1

2
c+ d

1

4
∂xT (

1

2

−
) =

1

2
∂xT (

1

2

+

) =⇒ 1

4
b 2 cosh(1) =

1

2
c =

1

2
cosh(1).

Hence

b = 1, d = sinh(1)− 1

2
cosh(1).

In conclusion

T (x) =

{
sinh(2x) x ∈ [0, 12 ]

cosh(1)(x− 1
2 ) + sinh(1)
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Question 4: Consider the following equation written in cylindrical coordinates 1
r∂r(r∂ru)+ 1

r2 ∂θθu = 0, inside the domain
D = {θ ∈ [0, 32π], r ∈ [0, 3]}, subject to the boundary conditions u(r, 0) = 0, u(r, 32π) = 0, u(3, θ) = 18 sin(2θ).
(a) Assuming that u(r, θ) = φ(θ)g(r), where φ 6≡ 0 and g 6≡ 0, derive the equations that φ and g must solve.

We insert the expression u(r, θ) = φ(θ)g(r) into the equation and we obtain

r2
1

r

∂r(r∂rg)

g(r)
= −∂θθφ

φ(θ)
.

As this equality must hold for all r ∈ [0, 3] and all θ ∈ [0, 3π2 ), there must exist a constant λ so that This means ∂θθφ = −λφ,

with φ(0) = 0 and φ( 3
2π) = 0, and r d

dr (r d
drg(r)) = λg(r).

(b) Use the energy method to determine the sign of λ in the following eigenvalue problem ∂θθφ = −λφ, φ(0) = 0,
φ( 3

2π) = 0, and solve the problem.

Using the usual energy method argument, we obtain that

−λ
∫ 3

2π

0

φ2(θ)dθ =

∫ 3
2π

0

φ∂θθφdθ = −
∫ 3

2π

0

(∂θφ)2dθ + φ(
3

2
π)∂θφ(

3

2
π)− φ(0)∂θφ(0).

This shows that

λ =

∫ 3
2π

0
(∂θφ)2dθ∫ 3

2π

0
φ2(θ)dθ

.

That is, λ is non-negative. If λ = 0, then φ(θ) = c1 + c2θ and the boundary conditions imply c1 = c2 = 0, i.e., φ = 0, which
in turns gives u = 0 and this solution is incompatible with the boundary condition u(3, θ) = 18 sin(2θ). Hence λ > 0.

The above argument proves that
φ(θ) = c1 cos(

√
λθ) + c2 sin(

√
λθ).

The boundary condition φ(0) = 0 implies c1 = 0. The boundary condition φ( 3
2π) = 0 implies

√
λ 3

2π = nπ with n ∈ N \ {0}.
This means

√
λ = 2

3n, n = 1, 2, . . . Hence

φ(θ) = c sin(
2

3
nθ).

(c) The generic solution to r∂r(r∂rg) = λg(r) is c rα where c ∈ R is arbitrary. Compute α assuming that α ≥ 0.

From class we know that g(r) is of the form rα, α ≥ 0. The equality r d
dr (r d

dr r
α) = λrα gives α2 = λ. The condition α ≥ 0

implies 2
3n = α =

√
λ.

(d) The solution to the problem can be written in the form u(r, θ) = cr
2
3n sin( 2

3nθ). Compute c and n.

The boundary condition at r = 3 gives 18 sin(2θ) = c23
2
3n sin( 2

3nθ) for all θ ∈ [0, 32π]. This implies n = 3 and c2 = 2.

Finally, the solution to the problem is
u(r, θ) = 2r2 sin(2θ).
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Question 5: Give the definition of a scalar-valued function being harmonic in a domain D in R2.

We say that u : D → R is harmonic if ∆u = 0 where ∆ denotes the Laplace operator.

Question 6: State the maximum and the minumum principle for smooth harmonic functions.

Let u : D → R be a smooth harmonic function. Then

min
x∈∂D

u(x) ≤ min
x∈D

u(x) ≤ max
x∈D

u(x) ≤ max
x∈∂D

u(x).

Question 7: Let D ⊂ R2 be defined in cylindrical coordinate by D := {(r, θ) ∈ R2; 0 ≤ r ≤ 1, 1
4π ≤ θ ≤ 7

8π}. Let u
be the unique smooth function that solves ∆u = 0 with u|∂D = f with f(r, θ) = r(r − 1) sin(θ). Compute the maximum
and the minumum of u in D.

As u is a smooth harmonic function, we can apply maximum principle. We have

f(1, θ) = 0, f(r,
1

4
π) = sin(

π

4
)r(r − 1), f(r,

7π

8
) = sin(

7

8
π)r(r − 1).

Notice that 1√
2

= sin( 1
4π) > sin( 1

8π) = sin(7π
8 ) > 0. We then have

min
1
4π≤θ≤

7
8π
f(1, θ) = 0, max

1
4π≤θ≤

7
8π
f(1, θ) = 0

min
0≤r≤1

f(r,
1

4
π) = −1

4
sin(

1

4
π), max

0≤r≤1
f(r,

1

4
π) = 0,

min
0≤r≤1

f(r,
7π

8
) = −1

4
sin(

1

8
π), max

0≤r≤1
f(r,

7

8
π) = 0.

Hence

min
x∈D

u(x) = − 1

4
√

2
, max

x∈D
u(x) = 0.
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Question 8: Let p, q : [−1,+1] −→ R be smooth functions. Assume that p(x) ≥ 0 and q(x) ≥ q0 for all x ∈ [−1,+1],
where q0 ∈ R. Consider the eigenvalue problem −∂x(p(x)∂xφ(x)) + q(x)φ(x) = λφ(x), supplemented with the boundary
conditions φ(−1) = 0 and φ(1) = 0.

(a) Prove if a non-zero (smooth) eigenvector exists, say φ, then λ ≥ q0. (Hint: observe that q0
∫ +1

−1 φ
2(x)dx ≤∫ +1

−1 q(x)φ2(x)dx.)

As usual we use the energy method. Let (φ, λ) be an eigenpair, then∫ +1

−1
(−∂x(p(x)∂xφ(x))φ(x) + q(x)φ2(x))dx = λ

∫ +1

−1
φ2(x)dx.

After integration by parts and using the boundary conditions, we obtain∫ +1

−1
(p(x)∂xφ(x)∂xφ(x) + q(x)φ2(x))dx = λ

∫ +1

−1
φ2(x)dx.

which, using the hint, can also be re-written∫ +1

−1
(p(x)∂xφ(x)∂xφ(x) + q0φ

2(x))dx ≤ λ
∫ +1

−1
φ2(x)dx.

Then ∫ +1

−1
p(x)(∂xφ(x))2dx ≤ (λ− q0)

∫ +1

−1
φ2(x)dx.

Assume that φ is non-zero, then

λ− q0 ≥
∫ +1

−1 p(x)(∂xφ(x))2dx∫ +1

−1 φ
2(x)dx

≥ 0,

which proves that it is necessary that λ ≥ q0 for a non-zero (smooth) solution to exist.

(b) Assume that p(x) ≥ p0 > 0 for all x ∈ [−1,+1] where p0 ∈ R+. Show that λ = q0 cannot be an eigenvalue, i.e., prove

that φ = 0 if λ = q0. (Hint: observe that p0
∫ +1

−1 ψ
2(x)dx ≤

∫ +1

−1 p(x)ψ2(x)dx.)

Assume that λ = q0 is an eigenvalue. Then the above computation shows that

p0

∫ +1

−1
(∂xφ(x))2dx ≤

∫ +1

−1
p(x)(∂xφ(x))2dx = 0,

which means that
∫ +1

−1 (∂xφ(x))2dx = 0 since p0 > 0. As a result ∂xφ = 0, i.e., φ(x) = c where c is a constant. The boundary
conditions φ(−1) = 0 = φ(1) imply that c = 0. In conclusion φ = 0 if λ = q0, thereby proving that (φ, q0) is not an eigenpair.


