Notes, books, and calculators are not authorized. Show all your work in the blank space you are given on the exam sheet. Answers with no justification will not be graded.
Question 1: Let u solve $\partial_{t} u-\partial_{x}\left(\mu(x, t) \partial_{x} u\right)=g(x) e^{-t}, x \in(0, L), t>0$, with $\mu(0, t) \partial_{x} u(0, t)=$ $1, \mu(L, t) \partial_{x} u(L, t)=1+2 e^{-t}, u(x, 0)=f(x)$, where $\mu>0, f$ and g are three smooth functions. (a) Compute $\frac{d}{d t} \int_{0}^{L} u(x, t) d x$ as a function of t.

Integrate the equation over the domain $(0, L)$ and apply the fundamental Theorem of calculus:

$$
\begin{aligned}
\frac{d}{d t} \int_{0}^{L} u(x, t) \mathrm{d} x & =\int_{0}^{L} \partial_{t} u(x, t) \mathrm{d} x=\int_{0}^{L} \partial_{x}\left(\mu(x, t) \partial_{x} u\right) \mathrm{d} x+e^{-t} \int_{0}^{L} g(x) \mathrm{d} x \\
& =\mu(L, t) \partial_{x} u(L)-\mu(0, t) \partial_{x} u(0)+e^{-t} \int_{0}^{L} g(x) \mathrm{d} x \\
& =1+2 e^{-t}-1+e^{-t} \int_{0}^{L} g(x) \mathrm{d} x
\end{aligned}
$$

That is

$$
\frac{d}{d t} \int_{0}^{L} u(x, t) \mathrm{d} x=e^{-t}\left(\int_{0}^{L} g(x) \mathrm{d} x+2\right)
$$

(b) Use (a) to compute $\int_{0}^{L} u(x, t) d x$ as a function of t.

Applying the fundamental Theorem of calculus again gives

$$
\begin{aligned}
\int_{0}^{L} u(x, T) \mathrm{d} x & =\int_{0}^{L} u(x, 0) \mathrm{d} x+\int_{0}^{T} e^{-t} \mathrm{~d} t\left(\int_{0}^{L} g(x) \mathrm{d} x+2\right) \\
& =\int_{0}^{L} f(x) d x+\left(1-e^{-T}\right)\left(\int_{0}^{L} g(x) d x+2\right)
\end{aligned}
$$

(c) What is the limit of $\int_{0}^{L} u(x, t) d x$ as $t \rightarrow+\infty$?

The above formula gives

$$
\lim _{T \rightarrow+\infty} \int_{0}^{L} u(x, T) d x=\int_{0}^{L} f(x) d x+\int_{0}^{L} g(x) d x+2
$$

Question 2: Consider the eigenvalue problem $-\frac{d}{d t}\left(t^{\frac{1}{2}} \frac{d}{d t} \phi(t)\right)=\lambda t^{-\frac{1}{2}} \phi(t), t \in(0,1)$, supplemented with the boundary condition $\phi(0)=0, \phi(1)=0$.
(a) Prove that it is necessary that λ be positive for a non-zero smooth solution to exist.
(i) Let ϕ be a non-zero smooth solution to the problem. Multiply the equation by ϕ and integrate over the domain. Use the fundamental Theorem of calculus (i.e., integration by parts) to obtain

$$
\int_{0}^{1} t^{\frac{1}{2}}\left(\phi^{\prime}(t)\right)^{2} \mathrm{~d} t-\left[t^{\frac{1}{2}} \phi^{\prime}(t) \phi(t)\right]_{0}^{1}=\lambda \int_{0}^{1} t^{-\frac{1}{2}} \phi^{2}(t) \mathrm{d} t
$$

Using the boundary conditions, we infer

$$
\int_{0}^{1} t^{\frac{1}{2}}\left(\phi^{\prime}(t)\right)^{2} \mathrm{~d} t=\lambda \int_{0}^{1} t^{-\frac{1}{2}} \phi^{2}(t) \mathrm{d} t
$$

which means that λ is non-negative since ϕ is non-zero.
(ii) If $\lambda=0$, then $\int_{0}^{1} t^{\frac{1}{2}}\left(\phi^{\prime}(t)\right)^{2} \mathrm{~d} t=0$, which implies that $\phi^{\prime}(t)=0$ for all $t \in(0,1]$. The fundamental theorem of calculus applied between t and 1 implies $\phi(t)=\phi(1)+\int_{1}^{t} \phi^{\prime}(\tau) d \tau=0$ since $\phi(1)=0$ and $\phi^{\prime}(\tau)=0$ for all $\tau \in(t, 1]$. Hence, ϕ is zero if $\lambda=0$. Since we want a nonzero solution, this implies that λ cannot be zero.
(iii) In conclusion, it is necessary that λ be positive for a nonzero smooth solution to exist.
(b) The general solution to $-\frac{d}{d t}\left(t^{\frac{1}{2}} \frac{d}{d t} \phi(t)\right)=\lambda t^{-\frac{1}{2}} \phi(t)$ is $\phi(t)=c_{1} \cos (2 \sqrt{t} \sqrt{\lambda})+c_{2} \sin (2 \sqrt{t} \sqrt{\lambda})$ for $\lambda \geq 0$. Find all the eigenvalues $\lambda \geq 0$ and the associated nonzero eigenfunctions.
Since $\lambda \geq 0$ by hypothesis, ϕ is of the following form

$$
\phi(t)=\phi(t)=c_{1} \cos (2 \sqrt{t} \sqrt{\lambda})+c_{2} \sin (2 \sqrt{t} \sqrt{\lambda}) .
$$

The boundary condition $\phi(0)=0$ implies $c_{1}=0$. The other boundary condition implies $\phi(1)=$ $0=c_{2} \sin (2 \sqrt{\lambda})$. The constant c_{2} cannot be zero since we want ϕ to be nonzero; as a result, $2 \sqrt{\lambda}=n \pi, n=1,2, \ldots$. In conclusion

$$
\lambda=(n \pi)^{2} / 4, \quad n=1,2, \ldots, \quad \phi(t)=c \sin (n \pi \sqrt{t}) .
$$

Question 3: Using cylindrical coordinates and the method of separation of variables, solve the equation, $\frac{1}{r} \partial_{r}\left(r \partial_{r} u\right)+\frac{1}{r^{2}} \partial_{\theta \theta} u=0$, inside the domain $D=\left\{\theta \in\left[0, \frac{3 \pi}{2}\right], r \in[0,1]\right\}$, subject to the boundary conditions $u(r, 0)=0, u\left(r, \frac{3 \pi}{2}\right)=0, u(1, \theta)=\sin \left(\frac{4}{3} \theta\right)$. (Give all the details.)
(1) We set $u(r, \theta)=\phi(\theta) g(r)$. This means $\phi^{\prime \prime}=-\lambda \phi$, with $\phi(0)=0$ and $\phi\left(\frac{3 \pi}{2}\right)=0$, and $r \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r \frac{\mathrm{~d}}{\mathrm{~d} r} g(r)\right)=\lambda g(r)$.
(2) The usual energy argument applied to the two-point boundary value problem

$$
\phi^{\prime \prime}=-\lambda \phi, \quad \phi(0)=0, \quad \phi\left(\frac{3 \pi}{2}\right)=0
$$

implies that λ is non-negative. If $\lambda=0$, then $\phi(\theta)=c_{1}+c_{2} \theta$ and the boundary conditions imply $c_{1}=c_{2}=0$, i.e., $\phi=0$, which in turns gives $u=0$ and this solution is incompatible with the boundary condition $u(1, \theta)=\sin \left(\frac{4}{3} \theta\right)$. Hence $\lambda>0$ and

$$
\phi(\theta)=c_{1} \cos (\sqrt{\lambda} \theta)+c_{2} \sin (\sqrt{\lambda} \theta) .
$$

(3) The boundary condition $\phi(0)=0$ implies $c_{1}=0$. The boundary condition $\phi\left(\frac{3 \pi}{2}\right)=0$ implies $\sqrt{\lambda} \frac{3 \pi}{2}=n \pi$ with $n \in \mathbb{N}$. This means $\sqrt{\lambda}=\frac{2}{3} n$.
(4) From class we know that $g(r)$ is of the form $r^{\alpha}, \alpha \geq 0$. The equality $r \frac{d}{d r}\left(r \frac{d}{d r} r^{\alpha}\right)=\lambda r^{\alpha}$ gives $\alpha^{2}=\lambda$. The condition $\alpha \geq 0$ implies $\frac{2}{3} n=\alpha$. The boundary condition at $r=1$ gives $\sin \left(\frac{4}{3} \theta\right)=1^{\frac{2}{3} n} \sin \left(\frac{2}{3} n \theta\right)$ for all $\theta \in\left[0, \frac{3 \pi}{2}\right]$. This implies $n=2$.
(5) Finally, the solution to the problem is

$$
u(r, \theta)=r^{\frac{4}{3}} \sin \left(\frac{4}{3} \theta\right)
$$

Question 4: Let $k:[-1,+1] \longrightarrow \mathbb{R}$ be such that $k(x)=2$, if $x \in[-1,0]$ and $k(x)=3$ if $x \in(0,1]$. Solve the boundary value problem $-\partial_{x}\left(k(x) \partial_{x} T(x)\right)=0$ with $\partial_{x} T(-1)=T(-1)+3$ and $-\partial_{x} T(1)=T(1)-7$.
(i) What should be the interface conditions at $x=0$ for this problem to make sense?

The function T and the flux $k(x) \partial_{x} T(x)$ must be continuous at $x=0$. Let T^{-}denote the solution on $[-1,0]$ and T^{+}the solution on $[0,+1]$. One should have $T^{-}(0)=T^{+}(0)$ and $k^{-}(0) \partial_{x} T^{-}(0)=$ $k^{+}(0) \partial_{x} T^{+}(0)$, where $k^{-}(0)=2$ and $k^{+}(0)=3$.
(ii) Solve the problem, i.e., find $T(x), x \in[-1,+1]$.

On $[-1,0]$ we have $k^{-}(x)=1$, which implies $\partial_{x x} T^{-}(x)=0$. This in turn implies $T^{-}(x)=a+b x$. The Robin boundary condition at $x=-1$ implies $\partial_{x} T^{-}(-1)-T^{-}(-1)=3=2 b-a$. This gives $a=2 b-3$ and $T^{-}(x)=2 b-3+b x$.
We proceed similarly on $[0,+1]$ and we obtain $T^{+}(x)=c+d x$. The Robin boundary condition at $x=+1$ gives $-\partial_{x} T^{+}(+1)-T^{+}(1)=-7=-2 d-c$. This implies $c=-2 d+7$ and $T^{+}(x)=$ $-2 d+7+d x$.

The interface conditions $T^{-}(0)=T^{+}(0)$ and $k^{-}(0) \partial_{x} T^{-}(0)=k^{+}(0) \partial_{x} T^{+}(0)$ give

$$
2 b-3=-2 d+7, \quad \text { and } \quad 2 b=3 d
$$

This implies $d=2$ and $b=3$. In conclusion

$$
T(x)= \begin{cases}3 x+3 & \text { if } x \in[-1,0] \\ 2 x+3 & \text { if } x \in[0,+1]\end{cases}
$$

Question 5: Consider the square $D=(-1,+1) \times(-1,+1)$. Let $f(x, y)=x^{2}-y^{2}-3$. Let $u \in \mathcal{C}^{2}(D) \cap \mathcal{C}^{0}(\bar{D})$ solve $-\nabla^{2} u=0$ in D and $\left.u\right|_{\partial D}=f$. Compute $\min _{(x, y) \in \bar{D}} u(x, y)$ and $\max _{(x, y) \in \bar{D}} u(x, y)$.
We use the maximum principle (u is harmonic and has the required regularity). Then

$$
\min _{(x, y) \in \bar{D}} u(x, y)=\min _{(x, y) \in \partial D} f(x, y), \quad \text { and } \max _{(x, y) \in \bar{D}} u(x, y)=\max _{(x, y) \in \partial D} f(x, y)
$$

A point (x, y) is at the boundary of D if and only if $x^{2}=1$ and $y \in(-1,1)$ or $y^{2}=1$ and $x \in(-1,1)$. In the first case, $x^{2}=1$ and $y \in(-1,1)$, we have

$$
f(x, y)=1-y^{2}-3, \quad y \in(-1,1)
$$

The maximum is -2 and the minimum is -3 . In the second case, $y^{2}=1$ and $x \in(-1,1)$, we have

$$
f(x, y)=x^{2}-1-3, \quad x \in(-1,1)
$$

The maximum is -3 and the minimum is -4 . We finally can conclude

$$
\min _{(x, y) \in \partial D} f(x, y)=\min _{-1 \leq x \leq 1} x^{2}-4,=-4, \quad \max _{(x, y) \in \partial D} f(x, y)=\max _{-1 \leq y \leq 1}-2-y^{2}=-2
$$

In conclusion

$$
\min _{(x, y) \in \bar{D}} u(x, y)=-4, \quad \max _{(x, y) \in \bar{D}} u(x, y)=-2
$$

Question 6: Consider $f:[-L, L] \longrightarrow \mathbb{R}, f(x)=x^{4}$. (a) Sketch the graph of the Fourier series of f.
$\underline{F S}(f)$ is equal to the periodic extension of $f(x)$ over \mathbb{R}.
(b) For what values of $x \in \mathbb{R}$ is $F S(f)$ equal to x^{4} ? (Explain)

The periodic extension of $f(x)=x^{4}$ over \mathbb{R} is piecewise smooth and globally continuous since $f(L)=f(-L)$. This means that the Fourier series is equal to x^{4} over the entire interval $[-L,+L]$.
(c) Is it possible to obtain $F S\left(x^{3}\right)$ by differentiating $\frac{1}{4} F S\left(x^{4}\right)$ term by term? (Explain)

Yes it is possible since the periodic extension of $f(x)=x^{4}$ over \mathbb{R} is continuous and piecewise smooth.
Question 7: Let L be a positive real number. Let $P_{1}=\operatorname{span}\{1, \cos (\pi t / L), \sin (\pi t / L)\}$ and consider the norm $\|f\|_{L^{2}}=\left(\int_{-L}^{L} f(t)^{2} \mathrm{~d} t\right)^{\frac{1}{2}}$. (a) Compute the best approximation of $1+t$ in V with respect to the above norm. (Hint: $\int_{-L}^{L} t \sin (\pi t / L) \mathrm{d} t=2 L^{2} / \pi$.)
We know from class that the truncated Fourier series

$$
F S_{1}(t)=a_{0}+a_{1} \cos (\pi t / L)+b_{1} \sin (\pi t / L)
$$

is the best approximation. Now we compute a_{0}, a_{1}, a_{2}

$$
\begin{aligned}
& a_{0}=\frac{1}{2 L} \int_{-L}^{L}(1+t) \mathrm{d} t=1, \\
& a_{1}=\frac{1}{L} \int_{-L}^{L}(1+t) \cos (\pi t / L) \mathrm{d} t=0 \\
& b_{1}=\frac{1}{L} \int_{-L}^{L}(1+t) \sin (\pi t / L) \mathrm{d} t=\frac{1}{L} \int_{-L}^{L} t \sin (\pi t / L) \mathrm{d} t=-2 \cos (\pi) \frac{L}{\pi}=\frac{2 L}{\pi} .
\end{aligned}
$$

As a result

$$
F S_{1}(t)=1+\frac{2 L}{\pi} \sin (\pi t / L)
$$

(b) Compute the best approximation of $h(t)=2 \cos (2 \pi t / L)-5 \sin (3 \pi t / L)$ in P_{1}.

The function $h(t) 2 \cos (2 \pi t / L)-5 \sin (3 \pi t / L)$ is orthogonal to all the members of P_{1} since the functions $\cos (m \pi t / L)$ and $\sin (m \pi t / L)$ are orthogonal to both $\cos (n \pi t / L)$ and $\sin (n \pi t / L)$ for all $m \neq m$; as a result, the best approximation of h in P_{1} is zero

$$
F S_{1}(h)=0
$$

