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Notes, books, and calculators are not authorized. Show all your work in the blank space you
are given on the exam sheet. Answers with no justification will not be graded.

Question 1: Let u solve ∂tu−∂x(µ(x, t)∂xu) = g(x)e−t, x ∈ (0, L), t > 0, with µ(0, t)∂xu(0, t) =
1, µ(L, t)∂xu(L, t) = 1+2e−t, u(x, 0) = f(x), where µ > 0, f and g are three smooth functions.

(a) Compute d
dt

∫ L
0
u(x, t)dx as a function of t.

Integrate the equation over the domain (0, L) and apply the fundamental Theorem of calculus:

d

dt

∫ L

0

u(x, t)dx =

∫ L

0

∂tu(x, t)dx =

∫ L

0

∂x(µ(x, t)∂xu)dx+ e−t
∫ L

0

g(x)dx

= µ(L, t)∂xu(L)− µ(0, t)∂xu(0) + e−t
∫ L

0

g(x)dx

= 1 + 2e−t − 1 + e−t
∫ L

0

g(x)dx.

That is
d

dt

∫ L

0

u(x, t)dx = e−t(

∫ L

0

g(x)dx+ 2).

(b) Use (a) to compute
∫ L
0
u(x, t)dx as a function of t.

Applying the fundamental Theorem of calculus again gives∫ L

0

u(x, T )dx =

∫ L

0

u(x, 0)dx+

∫ T

0

e−tdt(

∫ L

0

g(x)dx+ 2).

=

∫ L

0

f(x)dx+ (1− e−T )(

∫ L

0

g(x)dx+ 2).

(c) What is the limit of
∫ L
0
u(x, t)dx as t→ +∞?

The above formula gives

lim
T→+∞

∫ L

0

u(x, T )dx =

∫ L

0

f(x)dx+

∫ L

0

g(x)dx+ 2.
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Question 2: Consider the eigenvalue problem − d
dt (t

1
2
d
dtφ(t)) = λt−

1
2φ(t), t ∈ (0, 1), supple-

mented with the boundary condition φ(0) = 0, φ(1) = 0.
(a) Prove that it is necessary that λ be positive for a non-zero smooth solution to exist.

(i) Let φ be a non-zero smooth solution to the problem. Multiply the equation by φ and integrate
over the domain. Use the fundamental Theorem of calculus (i.e., integration by parts) to obtain∫ 1

0

t
1
2 (φ′(t))2dt− [t

1
2φ′(t)φ(t)]10 = λ

∫ 1

0

t−
1
2φ2(t)dt.

Using the boundary conditions, we infer∫ 1

0

t
1
2 (φ′(t))2dt = λ

∫ 1

0

t−
1
2φ2(t)dt,

which means that λ is non-negative since φ is non-zero.

(ii) If λ = 0, then
∫ 1

0
t
1
2 (φ′(t))2dt = 0, which implies that φ′(t) = 0 for all t ∈ (0, 1]. The

fundamental theorem of calculus applied between t and 1 implies φ(t) = φ(1) +
∫ t
1
φ′(τ)dτ = 0

since φ(1) = 0 and φ′(τ) = 0 for all τ ∈ (t, 1]. Hence, φ is zero if λ = 0. Since we want a nonzero
solution, this implies that λ cannot be zero.

(iii) In conclusion, it is necessary that λ be positive for a nonzero smooth solution to exist.

(b) The general solution to − d
dt (t

1
2
d
dtφ(t)) = λt−

1
2φ(t) is φ(t) = c1 cos(2

√
t
√
λ) + c2 sin(2

√
t
√
λ)

for λ ≥ 0. Find all the eigenvalues λ ≥ 0 and the associated nonzero eigenfunctions.

Since λ ≥ 0 by hypothesis, φ is of the following form

φ(t) = φ(t) = c1 cos(2
√
t
√
λ) + c2 sin(2

√
t
√
λ).

The boundary condition φ(0) = 0 implies c1 = 0. The other boundary condition implies φ(1) =
0 = c2 sin(2

√
λ). The constant c2 cannot be zero since we want φ to be nonzero; as a result,

2
√
λ = nπ, n = 1, 2, . . .. In conclusion

λ = (nπ)2/4, n = 1, 2, . . . , φ(t) = c sin(nπ
√
t).
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Question 3: Using cylindrical coordinates and the method of separation of variables, solve the
equation, 1

r∂r(r∂ru) + 1
r2 ∂θθu = 0, inside the domain D = {θ ∈ [0, 3π2 ], r ∈ [0, 1]}, subject to

the boundary conditions u(r, 0) = 0, u(r, 3π2 ) = 0, u(1, θ) = sin( 4
3θ). (Give all the details.)

(1) We set u(r, θ) = φ(θ)g(r). This means φ′′ = −λφ, with φ(0) = 0 and φ( 3π
2 ) = 0, and

r d
dr (r d

drg(r)) = λg(r).

(2) The usual energy argument applied to the two-point boundary value problem

φ′′ = −λφ, φ(0) = 0, φ(
3π

2
) = 0,

implies that λ is non-negative. If λ = 0, then φ(θ) = c1 + c2θ and the boundary conditions imply
c1 = c2 = 0, i.e., φ = 0, which in turns gives u = 0 and this solution is incompatible with the
boundary condition u(1, θ) = sin(4

3θ). Hence λ > 0 and

φ(θ) = c1 cos(
√
λθ) + c2 sin(

√
λθ).

(3) The boundary condition φ(0) = 0 implies c1 = 0. The boundary condition φ( 3π
2 ) = 0 implies√

λ 3π
2 = nπ with n ∈ N. This means

√
λ = 2

3n.

(4) From class we know that g(r) is of the form rα, α ≥ 0. The equality r d
dr (r d

dr r
α) = λrα

gives α2 = λ. The condition α ≥ 0 implies 2
3n = α. The boundary condition at r = 1 gives

sin( 4
3θ) = 1

2
3n sin( 2

3nθ) for all θ ∈ [0, 3π2 ]. This implies n = 2.

(5) Finally, the solution to the problem is

u(r, θ) = r
4
3 sin(

4

3
θ).
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Question 4: Let k : [−1,+1] −→ R be such that k(x) = 2, if x ∈ [−1, 0] and k(x) = 3 if
x ∈ (0, 1]. Solve the boundary value problem −∂x(k(x)∂xT (x)) = 0 with ∂xT (−1) = T (−1) + 3
and −∂xT (1) = T (1)− 7.
(i) What should be the interface conditions at x = 0 for this problem to make sense?

The function T and the flux k(x)∂xT (x) must be continuous at x = 0. Let T− denote the solution
on [−1, 0] and T+ the solution on [0,+1]. One should have T−(0) = T+(0) and k−(0)∂xT

−(0) =
k+(0)∂xT

+(0), where k−(0) = 2 and k+(0) = 3.

(ii) Solve the problem, i.e., find T (x), x ∈ [−1,+1].

On [−1, 0] we have k−(x) = 1, which implies ∂xxT
−(x) = 0. This in turn implies T−(x) = a+ bx.

The Robin boundary condition at x = −1 implies ∂xT
−(−1)− T−(−1) = 3 = 2b− a. This gives

a = 2b− 3 and T−(x) = 2b− 3 + bx.

We proceed similarly on [0,+1] and we obtain T+(x) = c+ dx. The Robin boundary condition at
x = +1 gives −∂xT+(+1) − T+(1) = −7 = −2d − c. This implies c = −2d + 7 and T+(x) =
−2d+ 7 + dx.

The interface conditions T−(0) = T+(0) and k−(0)∂xT
−(0) = k+(0)∂xT

+(0) give

2b− 3 = −2d+ 7, and 2b = 3d.

This implies d = 2 and b = 3. In conclusion

T (x) =

{
3x+ 3 if x ∈ [−1, 0],

2x+ 3 if x ∈ [0,+1].
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Question 5: Consider the square D = (−1,+1)×(−1,+1). Let f(x, y) = x2 − y2 − 3. Let
u ∈ C2(D) ∩ C0(D) solve −∇2u = 0 in D and u|∂D = f . Compute min(x,y)∈D u(x, y) and

max(x,y)∈D u(x, y).

We use the maximum principle (u is harmonic and has the required regularity). Then

min
(x,y)∈D

u(x, y) = min
(x,y)∈∂D

f(x, y), and max
(x,y)∈D

u(x, y) = max
(x,y)∈∂D

f(x, y).

A point (x, y) is at the boundary of D if and only if x2 = 1 and y ∈ (−1, 1) or y2 = 1 and
x ∈ (−1, 1). In the first case, x2 = 1 and y ∈ (−1, 1), we have

f(x, y) = 1− y2 − 3, y ∈ (−1, 1).

The maximum is −2 and the minimum is −3. In the second case, y2 = 1 and x ∈ (−1, 1), we have

f(x, y) = x2 − 1− 3, x ∈ (−1, 1).

The maximum is −3 and the minimum is −4. We finally can conclude

min
(x,y)∈∂D

f(x, y) = min
−1≤x≤1

x2 − 4,= −4, max
(x,y)∈∂D

f(x, y) = max
−1≤y≤1

−2− y2 = −2.

In conclusion
min

(x,y)∈D
u(x, y) = −4, max

(x,y)∈D
u(x, y) = −2
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Question 6: Consider f : [−L,L] −→ R, f(x) = x4. (a) Sketch the graph of the Fourier series
of f .

FS(f) is equal to the periodic extension of f(x) over R.

(b) For what values of x ∈ R is FS(f) equal to x4? (Explain)

The periodic extension of f(x) = x4 over R is piecewise smooth and globally continuous since
f(L) = f(−L). This means that the Fourier series is equal to x4 over the entire interval [−L,+L].

(c) Is it possible to obtain FS(x3) by differentiating 1
4FS(x4) term by term? (Explain)

Yes it is possible since the periodic extension of f(x) = x4 over R is continuous and piecewise
smooth.

Question 7: Let L be a positive real number. Let P1 = span{1, cos(πt/L), sin(πt/L)} and

consider the norm ‖f‖L2 =
(∫ L
−L f(t)2dt

) 1
2

. (a) Compute the best approximation of 1 + t in V

with respect to the above norm. (Hint:
∫ L
−L t sin(πt/L)dt = 2L2/π.)

We know from class that the truncated Fourier series

FS1(t) = a0 + a1 cos(πt/L) + b1 sin(πt/L)

is the best approximation. Now we compute a0, a1, a2

a0 =
1

2L

∫ L

−L
(1 + t)dt = 1,

a1 =
1

L

∫ L

−L
(1 + t) cos(πt/L)dt = 0

b1 =
1

L

∫ L

−L
(1 + t) sin(πt/L)dt =

1

L

∫ L

−L
t sin(πt/L)dt = −2 cos(π)

L

π
=

2L

π
.

As a result

FS1(t) = 1 +
2L

π
sin(πt/L)

(b) Compute the best approximation of h(t) = 2 cos(2πt/L)− 5 sin(3πt/L) in P1.

The function h(t)2 cos(2πt/L) − 5 sin(3πt/L) is orthogonal to all the members of P1 since the
functions cos(mπt/L) and sin(mπt/L) are orthogonal to both cos(nπt/L) and sin(nπt/L) for all
m 6= m; as a result, the best approximation of h in P1 is zero

FS1(h) = 0.


