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Notes, books, and calculators are not authorized. Show all your work in the blank space you are given on the exam sheet.
Answers with no justification will not be graded.

Question 1: Let ∇× be the curl operator acting on vector fields: i.e., let A = (A1, A2, A3) : R3 −→ R3 be a three-
dimensional vector field over R3, then ∇×A = (∂2A3−∂3A2, ∂3A1−∂1A3, ∂1A2−∂2A1). Accept as a fact that ∇·(A×B) =
B·∇×A− A·∇×B for all smooth vector fields A and B. Let Ω be a subset of R3 with a smooth boundary ∂Ω. Find an
integration by parts formula for

∫
Ω
B·∇×Adx.

Using the divergence Theorem we infer that∫
Ω

(B·∇×A−A·∇×B)dx =

∫
Ω

∇·(A×B) =

∫
∂Ω

(A×B)·nds.

which implies that ∫
Ω

B·∇×Adx =

∫
Ω

A·∇×Bdx+

∫
∂Ω

(A×B)·nds.

Question 2: Let u, f : R −→ R be two functions of class C1. (a) Compute ∂xf(u(x)).

Using the chain rule we obtain
∂xf(u(x)) = f ′(u(x))∂xu.

where f ′ denotes the derive of f .

(b) Let ψ : R −→ R be functions of class C1. Let F : R −→ R be defined by F (v) =
∫ v

0
f ′(t)ψ′(t)dt. Use (a) to compute

∂x(F (u(x))− ∂x(f(u(x)))ψ′(u(x)).

Using the chain rule we obtain

∂x(F (u(x)) = F ′(u(x))∂xu(x) = f ′(u(x))ψ′(u(x))∂xu(x) = ∂x(f(u(x)))ψ′(u(x)).

This means that ∂x(F (u(x)) = ∂x(f(u(x)))ψ′(u(x)).

(c) Using the notation of (a) and (b), assume that u(±∞) = 0 and compute
∫ +∞
−∞ ∂x(f(u(x)))ψ′(u(x))dx.

Using (b) and u(±∞) = 0 we have∫ +∞

−∞
∂x(f(u(x)))ψ′(u(x))dx =

∫ +∞

−∞
∂x(F (u(x)))dx = F (u(x))|+∞−∞ = F (0)− F (0) = 0.
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Question 3: Let u solve ∂tu − ∂x((sin(x) + 2)∂xu) = g(x)e−t, x ∈ (0, L), with ∂xu(0, t) = sin(L) + 2, ∂xu(L, t) = 2,
u(x, 0) = f(x), where f and g are two smooth functions.

(a) Compute d
dt

∫ L
0
u(x, t)dx as a function of t.

Integrate the equation over the domain (0, L) and apply the fundamental Theorem of calculus:

d

dt

∫ L

0

u(x, t)dx =

∫ L

0

∂tu(x, t)dx =

∫ L

0

∂x((sin(x) + 2)∂xu)dx+ e−t
∫ L

0

g(x)dx

= (sin(L) + 2)∂xu(L)− (sin(0) + 2)∂xu(0) + e−t
∫ L

0

g(x)dx

= (sin(L) + 2)2− 2(sin(L) + 2) + e−t
∫ L

0

g(x)dx

= e−t
∫ L

0

g(x)dx.

That is
d

dt

∫ L

0

u(x, t)dx = e−t
∫ L

0

g(x)dx.

(b) Use (a) to compute
∫ L

0
u(x, t)dx as a function of t.

Applying the fundamental Theorem of calculus again gives∫ L

0

u(x, T )dx =

∫ L

0

u(x, 0)dx+

∫ T

0

d

dt

∫ L

0

u(x, t)dxdt

=

∫ L

0

f(x)dx+ (1− e−T )

∫ L

0

g(x)dx.

(c) What is the limit of
∫ L

0
u(x, t)dx as t→ +∞?

The above formula gives

lim
T→+∞

∫ L

0

u(x, T )dx =

∫ L

0

f(x)dx+

∫ L

0

g(x)dx.
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Question 4: Consider the vibrating beam equation ∂ttu(x, t) + ∂xx
(x2+cos(x)

1+x2 ∂xxu(x, t)
)

= 0, u(x, 0) = f(x), ∂tu(x, 0) =
g(x), x ∈ (−∞,+∞), t > 0 with u(±∞, t) = 0, ∂xu(±∞, t) = 0, ∂xxu(±∞, t) = 0. Use the energy method to compute∫ +∞
−∞ ([∂tu(x, t)]2 + x2+cos(x)

1+x2 [∂xxu(x, t)]2)dx in terms of f and g. Give all the details. (Hint: test the equation with
∂tu(x, t)).

Using the hint we have

0 =

∫ +∞

−∞
(∂ttu(x, t)∂tu(x, t) + ∂xx

(
x2 + cos(x)

1 + x2
∂xxu(x, t)

)
)dx

Using the product rule, a∂ta = 1
2∂ta

2 where a = ∂tu(x, t), and integrating by parts two times (i.e., applying the fundamental
theorem of calculus) we obtain

0 =

∫ +∞

−∞
(
1

2
∂t(∂tu(x, t))2 − ∂x

(
x2 + cos(x)

1 + x2
∂xxu(x, t)

)
∂t∂xu(x, t))dx

=

∫ +∞

−∞
(∂t

1

2
(∂tu(x, t))2 +

(
x2 + cos(x)

1 + x2

)
∂xxu(x, t)∂t∂xxu(x, t))dx.

We apply again the product rule a∂ta = 1
2∂ta

2 where a = ∂xxu(x, t),

0 =

∫ +∞

−∞
(∂t

1

2
(∂tu(x, t))2 +

1

2

x2 + cos(x)

1 + x2
∂t(∂xxu(x, t))2)dx.

Switching the derivative with respect to t and the integration with respect to x, this finally gives

0 =
1

2
∂t

∫ +∞

−∞
([∂tu(x, t)]2 +

x2 + cos(x)

1 + x2
[∂xxu(x, t)]2)dx.

In other words, ∫ +∞

−∞
([∂tu(x, t)]2 +

x2 + cos(x)

1 + x2
[∂xxu(x, t)]2)dx =

∫ +∞

−∞
(g(x)2 +

x2 + cos(x)

1 + x2
[∂xf(x)]2)dx.
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Question 5: Let k, f : [−1,+1] −→ R be such that k(x) = 3, f(x) = −6 if x ∈ [−1, 0] and k(x) = 1, f(x) = 2 if x ∈ (0, 1].
Consider the boundary value problem −∂x(k(x)∂xT (x)) = f(x) with T (−1) = 1 and ∂xT (1) = 1.
(a) What should be the interface conditions at x = 0 for this problem to make sense?

The function T and the flux k(x)∂xT (x) must be continuous at x = 0. Let T− denote the solution on [−1, 0] and T+ the
solution on [0,+1]. One should have T−(0) = T+(0) and k−(0)∂xT

−(0) = k+(0)∂xT
+(0), where k−(0) = 3 and k+(0) = 1.

(b) Solve the problem, i.e., find T (x), x ∈ [−1,+1]. Give all the details.

On [−1, 0] we have k−(x) = 3 and f−(x) = −6 which implies −3∂xxT
−(x) = −6. This in turn implies T−(x) = x2 + ax+ b.

The Dirichlet condition at x = −1 implies that T−(−1) = 1 = 1− a+ b. This gives a = b and T−(x) = x2 + bx+ b.

We proceed similarly on [0,+1] and we obtain −∂xxT−(x) = 2, which implies that T+(x) = −x2 + cx + d. The Neumann
condition at x = 1 implies T+(1) = 1 = −2 + c. This gives c = 3 and T−(x) = −x2 + 3x+ d.

The interface conditions T−(0) = T+(0) and k−(0)∂xT
−(0) = k+(0)∂xT

+(0) give b = d and 3b = 3, respectively. In
conclusion b = 1, d = 1 and

T (x) =

{
x2 + x+ 1 if x ∈ [−1, 0],

−x2 + 3x+ 1 if x ∈ [0, 1].
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Question 6: (a) Compute the coefficients of the sine series of f(x) = x for x ∈ [0,+π]. (Recall that by definition
SS(f)(x) =

∑+∞
m=1 bm sin(mx) with bm = 2

π

∫ π
0
f(x) sin(mx)dx.)

The definition of SS(f)(x) implies that

bm =
2

π

∫ π

0

x sin(mx)dx = − 2

π

∫ π

0

− 1

m
cos(mx)dx+

2

π
[−x 1

m
cos(mx)]π0

=
2

m
(−1)m+1.

As a result SS(f)(x) =
∑+∞
m=1

2
m (−1)m+1 sin(mx).

(b) For which values of x in [0,+π] does the sine series coincide with f(x)? (Explain).

The sine series coincides with the function f(x) over the entire interval [0,+π) since f(0) = 0 and f is smooth over [0,+π).
The series does not coincide with f(+π) since f(+π) 6= 0.

(c) The sine series of x2 over [0,+π] is SS(x2)(x) =
∑+∞
m=1( 4

m3π ((−1)m − 1) + 2π
m (−1)m+1) sin(mx). Compute the sine

series of h(x) = x(π − x). (Hint: use (a))

Let h(x) = x(π − x). Note that by linearity of the sine series we have

SS(h)(x) = SS(πx)(x)− SS(x2)(x),

as a result bm(h) = πbm(x)− bm(x2), i.e.,

bm(h) = π
2

m
(−1)m+1 − (

4

m3π
((−1)m − 1) +

2π

m
(−1)m+1) =

4

m3π
(1 + (−1)m+1).

In conclusion

SS(h)(x) =

∞∑
m=1

4

m3π
(1 + (−1)m+1) sin(mx).

(d) Compute the cosine series of the function g(x) := π − 2x defined over [0,+π]. (Hint: ∂x(x(π − x)) = π − 2x.)

Observe that h(0) = h(π) = 0; as a result the sine series of h is continuous at 0 and +π. This in turn implies that it is the
legitimate to differentiate the sine series of h term by term to obtain the cosine series of h′(x) = g(x). In other words,

CS(g)(x) = ∂xSS(h)(x) =

∞∑
m=1

4

m2π
(1 + (−1)m+1) cos(mx).

(e) Compute the sine series of h(x) = sin(x) for x ∈ [0,+π].

Obviously
SS(h)(x) = sin(x), ∀x ∈ R.
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Question 7: Using cylindrical coordinates and the method of separation of variables, solve the equation, 1
r∂r(r∂ru) +

1
r2 ∂θθu = 0, inside the domain D = {θ ∈ [0, 3

2π], r ∈ [0, 3]}, subject to the boundary conditions ∂θu(r, 0) = 0, u(r, 3
2π) = 0,

u(3, θ) = 9 cos(θ). (Give all the details of all the steps.)

(1) We set u(r, θ) = φ(θ)g(r). This means φ′′ = −λφ, with φ′(0) = 0 and φ( 3
2π) = 0, and r d

dr (r d
drg(r)) = λg(r).

(2) The usual energy argument applied to the two-point boundary value problem

φ′′ = −λφ, φ′(0) = 0, φ(
3

2
π) = 0,

implies that λ is non-negative. If λ = 0, then φ(θ) = c1 + c2θ and the boundary conditions imply c1 = c2 = 0, i.e., φ = 0,
which in turns gives u = 0 and this solution is incompatible with the boundary condition u(3, θ) = 9 sin(2θ). Hence λ > 0 and

φ(θ) = c1 cos(
√
λθ) + c2 sin(

√
λθ).

(3) The boundary condition φ′(0) = 0 implies c2 = 0. The boundary condition φ( 3
2π) = 0 implies that cos(

√
λ 3

2π) = 0, i.e.,√
λ 3

2π = (2n+ 1)π2 with n ∈ N. This means
√
λ = 1

3 (2n+ 1), n = 0, 1, 2, . . ..

(4) From class we know that g(r) is of the form rα, α ≥ 0. The equality r d
dr (r d

dr r
α) = λrα gives α2 = λ. The condition

α ≥ 0 implies 1
3 (2n + 1) = α =

√
λ. The boundary condition at r = 3 gives 9 cos(θ) = c13

1
3 (2n+1) cos( 1

3 (2n + 1)θ) for all
θ ∈ [0, 3

2π]. This implies n = 1 and c1 = 3.

(5) Finally, the solution to the problem is
u(r, θ) = 3r cos(θ).
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Question 8: Let p, q : [−1,+1] −→ R be smooth functions. Assume that p(x) ≥ 0 and q(x) ≥ q0 for all x ∈ [−1,+1],
where q0 ∈ R. Consider the eigenvalue problem −∂x(p(x)∂xφ(x)) + q(x)φ(x) = λφ(x), supplemented with the boundary
conditions ∂xφ(−1) = 0 and −∂xφ(1) = 2φ(1).

(a) Prove that it is necessary that λ ≥ q0 for a non-zero (smooth) solution, φ, to exist. (Hint: q0

∫ +1

−1
φ2(x)dx ≤∫ +1

−1
q(x)φ2(x)dx.)

As usual we use the energy method. Let (φ, λ) be an eigenpair, then∫ +1

−1

(−∂x(p(x)∂xφ(x))φ(x) + q(x)φ2(x))dx = λ

∫ +1

−1

φ2(x)dx.

After integration by parts and using the boundary conditions, we obtain

λ

∫ +1

−1

φ2(x)dx =

∫ +1

−1

(p(x)∂xφ(x)∂xφ(x) + q(x)φ2(x))dx− 2p(x)∂xφ(x)φ(x)|+1
−1

=

∫ +1

−1

(p(x)∂xφ(x)∂xφ(x) + q(x)φ2(x))dx+ 2p(1)φ(1)2

which, using the hint, can also be re-written∫ +1

−1

(p(x)∂xφ(x)∂xφ(x) + q0φ
2(x))dx+ 2p(1)φ(1)2 ≤ λ

∫ +1

−1

φ2(x)dx.

Then

2p(1)φ(1)2 +

∫ +1

−1

p(x)(∂xφ(x))2dx ≤ (λ− q0)

∫ +1

−1

φ2(x)dx.

Assume that φ is non-zero, then

λ− q0 ≥
∫ +1

−1
p(x)(∂xφ(x))2dx+ 2p(1)φ(1)2∫ +1

−1
φ2(x)dx

≥ 0,

which proves that it is necessary that λ ≥ q0 for a non-zero (smooth) solution to exist.

(b) Assume that p(x) ≥ p0 > 0 for all x ∈ [−1,+1] where p0 ∈ R+. Show that λ = q0 cannot be an eigenvalue, i.e., prove

that φ = 0 if λ = q0. (Hint: p0

∫ +1

−1
ψ2(x)dx ≤

∫ +1

−1
p(x)ψ2(x)dx.)

Assume that λ = q0 is an eigenvalue. Then the above computation shows that

p0

∫ +1

−1

(∂xφ(x))2dx ≤
∫ +1

−1

p(x)(∂xφ(x))2dx = 0,

which means that
∫ +1

−1
(∂xφ(x))2dx = 0 since p0 > 0. As a result ∂xφ = 0, i.e., φ(x) = c where c is a constant. The boundary

condition −∂φ(1) = 2φ(1) implies that c = 0. In conclusion φ = 0 if λ = q0, thereby proving that (φ, q0) is not an eigenpair.
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Question 9: Use the Fourier transform technique to solve ∂tu(x, t) − ∂xxu(x, t) + cos(t)∂xu(x, t) + (1 + 2t)u(x, t) = 0,

x ∈ R, t > 0, with u(x, 0) = u0(x). (Hint: use the definition F(f)(ω) := 1
2π

∫ +∞
−∞ f(x)eiωxdx), the result F(e−αx

2

)(ω) =

1√
4πα

e−
ω2

4α , the convolution theorem and the shift lemma: F(f(x − β))(ω) = F(f)(ω)eiωβ . Go slowly and give all the

details.)

Applying the Fourier transform to the equation gives

∂tF(u)(ω, t) + ω2F(u)(ω, t) + cos(t)(−iω)F(u)(ω, t) + (1 + 2t)F(u)(ω, t) = 0

This can also be re-written as follows:

∂tF(u)(ω, t)

F(u)(ω, t)
= −ω2 + iω cos(t)− (1 + 2t).

Then applying the fundamental theorem of calculus between 0 and t, we obtain

log(F(u)(ω, t))− log(F(u)(ω, 0)) = −ω2t+ iω sin(t)− (t+ t2).

This implies

F(u)(ω, t) = F(u0)(ω)e−ω
2teiω sin(t)e−(t+t2).

Using the result F(e−αx
2

)(ω) = 1√
4πα

e−
ω2

4α where α = 1
4t , this implies that

F(u)(ω, t) =

√
π

t
F(u0)(ω)F(e−

x2

4t )(ω)eiω sin(t)e−(t+t2)

=

√
π

t
F(u0 ∗ e−

x2

4t )(ω)eiω sin(t)e−(t+t2).

Then setting g = u0 ∗ e−
x2

4t the convolution theorem followed by the shift lemma gives

F(u)(ω, t) =
1

2π

√
π

t
F(g(x− sin(t)))(ω)e−(t+t2).

This finally gives

u(x, t) =

√
1

4πt
g(x− sin(t))e−(t+t2) = e−(t+t2)

√
1

4πt

∫ +∞

−∞
u0(y)e−

(x−sin(t)−y)2
4t dy.


