
Last name: name: Mid-Term 2, November, 12 2015

Notes, books, and calculators are not authorized. Show all your work in the blank space you are given on the exam sheet.
Answers with no justification will not be graded.

Here are some formulae that you may want to use:

F(f)(ω) def
=

1

2π

∫ +∞

−∞
f(x)eiωxdx, F−1(f)(x) =

∫ +∞

−∞
f(ω)e−iωxdω, F(f ∗ g) = 2πF(f)F(g), (1)

Question 1: (a) Solve the following equation by using an extension technique (give all the details):

∂ttw − 4∂xxw = 0, x ∈ (0,+∞), t > 0

w(x, 0) = x(1 + x2)−1, x ∈ (0,+∞); ∂tw(x, 0) = 0, x ∈ (0,+∞); and w(0, t) = 0, t > 0.

Since we have a homogeneous Dirichlet boundary condition at x = 0, we define f(x) = x(1 + x2)−1 and its odd extension
fo(x) over (−∞,+∞). Let wo be the solution to the wave equation over the entire real line with f0 as initial data:

∂ttwo − 4∂xxwo = 0, x ∈ R, t > 0

wo(x, 0) = fo(x), x > 0, ∂two(x, 0) = 0, x ∈ R.

The solution to this problem is given by the D’Alembert formula

wo(x, t) =
1

2
(fo(x− 2t) + fo(x+ 2t)), for all x ∈ R and t ≥ 0.

Let x be positive. Then w(x, t) = wo(x, t) for all x ∈ (0,+∞), since by construction wo(0, t) = fo(−2t) + fo(2t) = 0 for all
times.

Case 1: If x− 2t > 0, fo(x− 2t) = f(x− 2t); as a result

w(x, t) =
1

2
(f(x− 2t) + f(x+ 2t)), if x− 2t > 0.

Case 2: If x− 2t < 0, fo(x− 2t) = −f(−x+ 2t); as a result

w(x, t) =
1

2
(−f(−x+ 2t) + f(x+ 2t)), if x− 2t < 0.

We can get a more compact form by observing that actually fo(z) = z(1+z2)−1; as a result, the solution can also be re-written
as follows:

w(x, t) =
1

2

(
x− 2t

1 + (x− 2t)2
+

x+ 2t

1 + (x+ 2t)2

)
.

(b) Compute the solution at x = 2 and t = 2.

We have x− 2t = 2− 4 < 0 hence

w(x, t) =
1

2
(−f(−x+ 2t) + f(x+ 2t)) =

1

2
(−f(2) + f(6)) =

1

2

(
− 2

1 + 4
+

6

1 + 36

)
.
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Question 2: (a) Let M be a positive real number and let ω ∈ R. Compute limM→∞ e(−1+iω)M . (Justify all the steps.)

We have
|e(−1+iω)M | = |e−M ||eiω)M | = e−M .

Hence limM→∞ |e(−1+iω)M | = 0, which in turn implies that limM→∞ e(−1+iω)M = 0 since the function C 3 z 7−→ |z| ∈ R is
continuous.

(b)Compute the Fourier transform of f(x) = H(x)e−x where H is the Heavide function.

Using the definitions we have

F(f)(ω) = lim
M→∞

1

2π

∫ M

−M
H(x)e−xeiωxdx = lim

M→∞

1

2π

∫ M

0

e(−1+iω)xdx

=
1

2π

1

1− iω
.

Note that here we used that limM→∞ e(−1+iω)M = 0

Question 3: (a) Draw the graph of the function −1 + 2H(x) where H(x) is the Heaviside function.

(b) Compute the derivative in the distribution sense of f(x) = |x|.
Let ψ ∈ C∞c (R) be a function of class C∞ with compact support (it means that there exists M ≥ 0 such that ψ(x) = 0 if
|x| ≥M) Then

〈∂xf, ψ〉 := −
∫
R
f(x)∂xψ(x)dx =

∫ 0

−∞
x∂xψ(x)dx−

∫ ∞
0

x∂xψ(x)dx

= −
∫ 0

−∞
ψ(x)dx+

∫ ∞
0

ψ(x)dx

=

∫ 0

−∞
(−1 + 2H(x))ψ(x)dx+

∫ ∞
0

(−1 + 2H(x))ψ(x)dx =

∫ +∞

−∞
(−1 + 2H(x))ψ(x)dx.

Hence,

〈∂xf, ψ〉 =
∫ +∞

−∞
(−1 + 2H(x))ψ(x)dx, ∀ψ ∈ C∞c (R).

This means that ∂xf(x) = −1 + 2H(x).

(c) Compute the second derivative in the distribution sense of f(x) = |x|.
Solution 1: We have already established that ∂xf(x) = −1 + 2H(x), hence ∂xxf(x) = 2∂xH(x). But we know from class
that ∂xH(x) is the Dirac measure at 0, hence

∂xxf(x) = 2δ0.

Solution 2: We apply the definition of the second derivative. Let ψ ∈ C∞c (R) be a function of class C∞ with compact support,
then

〈∂xxf, ψ〉 := −〈∂xf, ∂xψ〉 :=
∫
R
f(x)∂xxψ(x)dx = −

∫ 0

−∞
x∂xxψ(x)dx+

∫ ∞
0

x∂xxψ(x)dx

=

∫ 0

−∞
∂xψ(x)dx−

∫ ∞
0

∂xψ(x)dx

= ψ(0) + ψ(0) = 2ψ(0) = 2〈δ0, ψ〉

whence

〈∂xxf, ψ〉 = 2〈δ0, ψ〉, ∀ψ ∈ C∞c (R).

This means ∂xxf = 2δ0.
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Question 4: Solve the integral equation:∫ +∞

−∞

(
f(y)−

√
2e−

y2

2π − 1

1 + y2

)
f(x− y)dy = −

∫ +∞

−∞

√
2

1 + y2
e−

(x−y)2
2π dy, ∀x ∈ (−∞,+∞).

(Hint: there is an easy factorization after applying the Fourier transform and
√
2F(e− x

2

2π ) = e−
πω2

2 and F( 1
1+x2 ) =

1
2e
−|ω|.)

The equation can be re-written

f ∗ (f −
√
2e−

x2

2π − 1

1 + x2
) = − 1

1 + x2
∗
√
2e−

x2

2π .

We take the Fourier transform of the equation and apply the Convolution Theorem

2πF(f)
(
F(f)−

√
2F(e− x

2

2π )−F( 1

1 + x2
)

)
= −2πF( 1

1 + x2
)
√
2F(e− x

2

2π )

Solution 1: Using the hint we obtain

√
2F(e− x

2

2π ) =
√
2

1√
4π 1

2π

e
− ω2

4 1
2π = e−

πω2

2

F( 1

1 + x2
) =

1

2
e−|ω|,

which gives

F(f)
(
F(f)− e−πω

2

2 − 1

2
e−|ω|

)
= −1

2
e−|ω|e−

πω2

2 .

This equation can also be re-written as follows

F(f)2 −F(f)e−πω
2

2 −F(f)1
2
e−|ω| +

1

2
e−|ω|e−

πω2

2 = 0,

and can be factorized as follows:

(F(f)− e−πω
2

2 )(F(f)− 1

2
e−|ω|) = 0.

This means that either F(f) = e−
πω2

2 or F(f) = 1
2e
−|ω|. Taking the inverse Fourier transform, we finally obtain two solutions

f(x) =
√
2e−

x2

2π , or f(x) =
1

1 + x2
.

Solution 2: Another solution consists of remarking that the equation with the Fourier transform can be rewritten as follows:

F(f)2 −F(
√
2e−

x2

2π )F(f)−F( 1

1 + x2
)F(f) + F(

√
2e−

x2

2π )F( 1

1 + x2
) = 0,

which can factorized as follows:

(F(f)−F(
√
2e−

x2

2π ))(F(f)−F( 1

1 + x2
)) = 0.

Then either F(f) = F(
√
2e−

x2

2π ) or F(f) = F( 1
1+x2 ). The conclusion follows easily.
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Question 5: Let h ∈ C∞(R) be a non-negative function.
(a)Let φ ∈ C2(R×R). Compute ∂t(h(φ(x, t)).

We apply the chain rule:
∂t(h(φ(x, t))) = h′(φ(x, t))∂tφ(x, t).

(b) Consider the quasilinear Klein-Gordon equation: ∂ttφ(x, t)−c2∂xxφ(x, t)+m2φ(x, t)+β2h′(φ(x, t)) = 0, x ∈ R, t > 0,
with φ(x, 0) = f(x), ∂tφ(x, 0) = g(x) and φ(±∞, t) = 0, ∂tφ(±∞, t) = 0, ∂xφ(±∞, t) = 0. Find an energy E(t) that is
invariant with respect to time (Hint: test with ∂tφ(x, t) and use (a).)

Testing with ∂tφ(x, t) and integrating over R and using the property ∂tφ(±∞, t) = 0, ∂xφ(±∞, t) = 0, we obtain

0 =

∫ +∞

−∞
∂t(

1

2
(∂tφ)

2)dx− c2
∫ +∞

−∞
∂xxφ∂tφdx+m2

∫ +∞

−∞
∂t(

1

2
φ2)dx+ β2

∫ +∞

−∞
h′(φ)∂tφdx∫ +∞

−∞
∂t(

1

2
(∂tφ)

2)dx− c2
∫ +∞

−∞
∂xxφ∂tφdx+m2

∫ +∞

−∞
∂t(

1

2
φ2)dx+ β2

∫ +∞

−∞
∂t(h(φ))dx

= ∂t

∫ +∞

−∞

1

2
(∂tφ)

2dx+ c2
∫ +∞

−∞
∂xφ∂t∂xφdx+ ∂t

∫ +∞

−∞
(
m2

2
φ2 + β2h(φ))dx

= ∂t

∫ +∞

−∞

1

2
(∂tφ)

2dx+ ∂t

∫ +∞

−∞

c2

2
(∂xφ)

2dx+ ∂t

∫ +∞

−∞
(
m2

2
φ2 + β2h(φ))dx

= ∂t

∫ +∞

−∞

(
1

2
(∂tφ)

2 +
c2

2
(∂xφ)

2 +
m2

2
φ2 + β2h(φ)

)
dx.

Introduce

E(t) =

∫ +∞

−∞

(
1

2
(∂tφ)

2 +
c2

2
(∂xφ)

2 +
m2

2
φ2 + β2h(φ)

)
)dx.

Then
∂tE(t) = 0.

The fundamental Theorem of calculus gives
E(t) = E(0).

In conclusion the quantity E(t) is invariant with respect to time, as requested.
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Question 6: Let L : D(L) −→ C0(0, 1) with Lu = ∂x((1 + x2)u(x))− 2xu(x) and D(L) = {v ∈ C1(0, 1) | v(0) = 0}.
(a) Compute the formal adjoint of L and its domain.

Let u ∈ D(L) and v ∈ D(LT), then∫ 1

0

Lu(x)v(x)dx =

∫ 1

0

(∂x((1 + x2)u(x))− 2xu(x))v(x)dx

=

∫ 1

0

(−(1 + x2)u(x)∂xv(x)− 2xu(x)v(x))dx+ (1 + x2)u(x)v(x)|10

=

∫ 1

0

u(x)(−(1 + x2)∂xv(x)− 2xv(x))dx+ 2u(1)v(1).

Since we do not know u(1) we get rid of the term 2u(1)v(1) by selecting v so that v(1) = 0; whence

D(LT) = {v ∈ C1(0, 1) | v(1) = 0}, LTv = −(1 + x2)∂xv(x)− 2xv(x)

(b) Compute the Green’s function associated with the operator L.

(Hint: limε→0+

∫ x0+ε

x0−ε (1 + x2)∂xG(x, x0)dx = (1 + x20)(G(x
+
0 , x0)−G(x

−
0 , x0)).)

Let G(x, x0), be the Green’s function, x ∈ [0, 1], x0 ∈ (0, 1). We know from class that G(x, x0) ∈ D(LT) and satisfies
LTG(x, x0) = δx0 , i.e., −(1 + x2)∂xG(x, x0)− 2xG(x, x0) = δx0 and G(0, x0) = 0.

Case 1: x < x0, then −(1 + x2)∂xG(x, x0) − 2xG(x, x0) = 0, which implies that ∂x((1 + x2)G(x, x0)) = 0. Then the
fundamental theorem of calculus gives

(1 + x2)G(x, x0) = a, x < x0

Case 2: x0 < x, then −(1 + x2)∂xG(x, x0) − 2xG(x, x0) = 0, which implies that ∂x((1 + x2)G(x, x0)) = 0. Then the
fundamental theorem of calculus gives

(1 + x2)G(x, x0) = b.

Now we can apply the boundary condition G(1, x0) = 0 = 1
2b, hence G(x, x0) = 0 if x0 < x.

The jump condition gives (with obvious abuse of notation)

lim
ε→0+

∫ x0+ε

x0−ε
(−(1 + x2)∂xG(x, x0)− 2xG(x, x0))dx = 1

hence
1 = −(1 + x20)(∂xG(x, x

+
0 )−G(x, x

−
0 )) = (1 + x20)G(x, x

−
0 ) = a.

In conclusion

G(x, x0) =

{
1

1+x2 if x < x0

0 otherwise

(c) Use the Green’s function to solve the equation ∂x((1 + x2)u(x))− 2xu(x) = f(x) with u(0) = a and f ∈ C0(0, 1).

We multiply the PDE by G(x, x0) and integrate by parts.∫ 1

0

(∂x((1 + x2)u(x))− 2xu(x))G(x, x0)dx =

∫ 1

0

u(x)(−(1 + x2)∂xG(x, x0)− 2xG(x, x0))dx+ 2u(1)G(1, x0)− u(0)G(0, x0)

= u(x0)− a

hence

u(x0) = a+

∫ 1

0

f(x)

1 + x2
dx

Of course we could have observed from the start that (1 + x2)∂xu(x) = f(x) and the fundamental theorem of calculus gives
the solution. The purpose of this question was to see whether you understand the Green’s function theory and the notion of
formal adjoint.
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Question 7: Let us denote α = e
π
2 . Consider the operator

L : D(L) := {v ∈ C2(1, α)| v(1) = 0, v(α) = 0} 3 u 7−→ 13u− 5x∂xu+ x2∂xxu ∈ C0(1, α).

(a) Compute the formal adjoint of L, LT, and its domain, D(LT).

Let w be a smooth function, say w ∈ C2(1, α). Then∫ α

1

Lv(x)w(x)dx =

∫ α

1

(13v(x)− 5x∂xv(x) + x2∂xxv(x))w(x)dx

=

∫ α

1

(13v(x)w(x) + v(x)∂x(5xw(x)))dx− 5xv(x)w(x)|α1 −
∫ α

1

∂xv(x)∂x(x
2w(x))dx+ x2∂xv(x)w(x)|α1

=

∫ α

1

v(x)(13w(x) + ∂x(5xw(x)))dx+

∫ α

1

v(x)∂xx(x
2w(x))dx+ x2∂xv(x)w(x)|α1 − v(x)∂x(x2w(x))|α1

=

∫ α

1

v(x)(13w(x) + ∂x(5xw(x))∂xx(x
2w(x)))dx+ x2∂xv(x)w(x)|α1 .

We get rid of the boundary term by enforcing w(1) = 0 and w(α) = 0. Hence the formal adjoint is defined by

LT : D(LT) = {v ∈ C2(1, α)| v(1) = 0, v(α) = 0} 3 w 7−→ 13w(x) + ∂x(5xw(x)) + ∂xx(x
2w(x)) ∈ C0(1, α).

(b) The general solution to L(v) = 0 is v(x) = ax3 cos(2 log(|x|)) + bx3 sin(2 log(|x|)), a, b ∈ R and the general solution to
LT(w) = 0 is cx−4 cos(2 log(x)) + dx−4 sin(2 log(x)). Compute the null spaces of L and LT.

Let v ∈ N(L), i.e., L(v) = 0 and v ∈ D(L), then v(x) = ax3 cos(2 log(|x|)) + bx3 sin(2 log(|x|)). The boundary conditions
gives

v(1) = 0, v(α) = aα3 cos(2π2 ) + bx3 sin(2π2 ) = −aα
3 = 0,

which in turn implies that a = 0, i.e., N(L) = span{x3 sin(2 log(|x|))}.

Let w ∈ N(LT), i.e., LT(w) = 0 and w ∈ D(LT), then w(x) = cx−4 cos(2 log(x)) + dx−4 sin(2 log(x)). The boundary
conditions give

w(1) = 0, w(α) = cα−4 cos(2π2 ) + dx−4 sin(2π2 ) = −cα
−4 = 0,

which implies c = 0, i.e., N(LT) = span{x−4 sin(2 log(x))}.
(c) Under which condition does the following problem have a solution: Lu = f , u(1) = 0, u(α) = 0? Give all the details.

We are in the second case of the Fredholm alternative since N(L) 6= {0}. Hence this problem has a solution only if f is
orthogonal to N(LT), that is to say

∫ α
1
f(x)x−4 sin(2 log(|x|))dx = 0.

(d) Does the problem Lu = 1, u(1) = 0, u(α) = 0, have a solution?Give all the details.

Let I =
∫ α
1
x−4 sin(2 log(|x|))dx. Since α = e

π
2 we have I =

∫ eπ2
1

x−4 sin(2 log(|x|))dx. For x ∈ (1, e
π
2 ) the values of

2 log(|x|) are in (0, π), hence the values of sin(2 log(|x|)) are in (0, 1). Hence I is positive. In conclusion the problem has no
solution.


