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M602: Methods and Applications of Partial Differential Equations
Mid-Term TEST, March 26, 2012

Notes, books, and calculators are not authorized.

Show all your work in the blank space you are given on the exam sheet. Always justify your
answer. Answers with no justification will not be graded.

Here are some formulae that you may want to use:

F(f)(ω)
def
=

1

2π

∫ +∞

−∞
f(x)eiωxdx, F−1(f)(x) =

∫ +∞

−∞
f(ω)e−iωxdω, (1)

F(f ∗ g) = 2πF(f)F(g), (2)

F(e−α|x|) =
1

π

α

ω2 + α2
, F(

2α

x2 + α2
)(ω) = e−α|ω|, (3)

F(e−αx
2

) =
1√
4πα

e−
ω2

4α (4)

F(f(x− β)) = eiωβF(f) (5)

Question 1: Consider the wave equation ∂ttw−4∂xxw = 0, x ∈ (−∞,+∞), t > 0, with initial
data w(x, 0) = 1

1+x2 , ∂tw(x, 0) = − 4x
(1+x2)2 . Compute the solution w(x, t).

The wave speed is 2. The solution is given by the D’Alembert formula,

w(x, t) =
1

2

(
1

1 + (x− 2t)2
+

1

1 + (x+ 2t)2

)
+

1

4

∫ x+2t

x−2t
− 4τ

(1 + τ2)2
dτ

After integration, we obtain

=
1

2

(
1

1 + (x− 2t)2
+

1

1 + (x+ 2t)2

)
+

1

4

[
2

(1 + τ2)

]x+2t

x−2t
,

which finally gives

w(x, t) =
1

1 + (x+ 2t)2
.
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Question 2: Use the Fourier transform method to solve the equation ∂tu + 2t
1+t2 ∂xu = 0,

u(x, 0) = u0(x), in the domain x ∈ (−∞,+∞) and t > 0.

We take the Fourier transform of the equation with respect to x

0 = ∂tF(u) + F(
2t

1 + t2
∂xu)

= ∂tF(u) +
2t

1 + t2
F(∂xu)

= ∂tF(u)− iω 2t

1 + t2
F(u).

This is a first-order linear ODE:

∂tF(u)

F(u)
= iω

2t

1 + t2
= iω

d

dt
(log(1 + t2))

The solution is
F(u)(ω, t) = K(ω)eiω log(1+t2).

Using the initial condition, we obtain

F(u0)(ω) = F(u)(ω, 0) = K(ω).

The shift lemma (see formula (??)) implies

F(u)(ω, t) = F(u0)(ω)eiω log(1+t2) = F(u0(x− log(1 + t2))),

Applying the inverse Fourier transform finally gives

u(x, t) = u0(x− log(1 + t2)).
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Question 3: Consider the wave equation ∂ttw − ∂xxw = 0, x ∈ (0, 4), t > 0, with

w(x, 0) = f(x), x ∈ (0, 4), ∂tw(x, 0) = 0, x ∈ (0, 4), and ∂xw(0, t) = 0, ∂xw(4, t) = 0, t > 0.

where f(x) = x − 1, if x ∈ [1, 2], f(x) = 3 − x, if x ∈ [2, 3], and f(x) = 0 otherwise. Give a
simple expression of the solution in terms of an extension of f . Give a graphical solution to the
problem at t = 0, t = 1, t = 2, and t = 3 (draw four different graphs and explain).

We know from class that with homogeneous Neumann boundary conditions, the solution to this
problem is given by the D’Alembert formula where f must be replaced by the periodic extension (of
period 8) of its even extension, say fe,p, where

fe,p(x+ 8) = fe,p(x), ∀x ∈ R

fe,p(x) =

{
f(x) if x ∈ [0, 4]

f(−x) if x ∈ [−4, 0)

The solution is

u(x, t) =
1

2
(fe,p(x− t) + fe,p(x+ t)).

I draw on the left of the figure the graph of fo,p. Half the graph moves to the right with speed 1,
the other half moves to the left with speed 1.
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0 1 2 3 4
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1/2

1/2

(a) Initial data + periodic extension of the even extension at t =
0, 1, 2, 3. Solid line waves move to the right, dotted line waves
move to the left

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

1

1/2

1/2

1/2

(b) Solution in domain (0, 4) at t = 0, 1, 2, 3
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Question 4: Solve the integral equation:∫ +∞

−∞

(
f(y)−

√
2e−

y2

2π − 1

1 + y2

)
f(x−y)dy = −

∫ +∞

−∞

√
2

1 + y2
e−

(x−y)2
2π dy, ∀x ∈ (−∞,+∞).

(Hint: there is an easy factorization after applying the Fourier transform.)

The equation can be re-written

f ∗ (f −
√

2e−
x2

2π − 1

1 + x2
) = − 1

1 + x2
∗
√

2e−
x2

2π .

We take the Fourier transform of the equation and apply the Convolution Theorem (see (??))

2πF(f)

(
F(f)−

√
2F(e−

x2

2π )−F(
1

1 + x2
)

)
= −2πF(

1

1 + x2
)
√

2F(e−
x2

2π )

Solution 1: Using (??), (??) we obtain

√
2F(e−

x2

2π ) =
√

2
1√

4π 1
2π

e
− ω2

4 1
2π = e−

πω2

2

F(
1

1 + x2
) =

1

2
e−|ω|,

which gives

F(f)

(
F(f)− e−πω

2

2 − 1

2
e−|ω|

)
= −1

2
e−|ω|e−

πω2

2 .

This equation can also be re-written as follows

F(f)2 −F(f)e−
πω2

2 −F(f)
1

2
e−|ω| +

1

2
e−|ω|e−

πω2

2 = 0,

and can be factorized as follows:

(F(f)− e−πω
2

2 )(F(f)− 1

2
e−|ω|) = 0.

This means that either F(f) = e−
πω2

2 or F(f) = 1
2e
−|ω|. Taking the inverse Fourier transform, we

finally obtain two solutions

f(x) =
√

2e−
x2

2π , or f(x) =
1

1 + x2
.

Solution 2: Another solution consists of remarking that the equation with the Fourier transform can
be rewritten as follows:

F(f)2 −F(
√

2e−
x2

2π )F(f)−F(
1

1 + x2
)F(f) + F(

√
2e−

x2

2π )F(
1

1 + x2
) = 0,

which can factorized as follows:

(F(f)−F(
√

2e−
x2

2π ))(F(f)−F(
1

1 + x2
)) = 0.

The either F(f) = F(
√

2e−
x2

2π )) or (F(f) = F( 1
1+x2 ). The conclusion follows easily.
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Question 5: Consider the equation ∂xxu(x) = f(x), x ∈ (0, L), with u(0) = a and ∂xu(L) = b.
(a) Compute the Green’s function of the problem.

Let x0 be a point in (0, L). The Green’s function of the problem is such that

∂xxG(x, x0) = δx0
, G(0, x0) = 0, ∂xG(L, x0) = 0.

The following holds for all x ∈ (0, x0):

∂xxG(x, x0) = 0.

This implies that G(x, x0) = ax + b in (0, x0). The boundary condition G(0, x0) = 0 gives b = 0.
Likewise, the following holds for all x ∈ (x0, L):

∂xxG(x, x0) = 0.

This implies that G(x, x0) = cx + d in (x0, L). The boundary condition ∂xG(L, x0) = 0 gives
c = 0. The continuity of G(x, x0) at x0 implies that ax0 = d. The condition∫ ε

−ε
∂xxG(x, x0)dx = 1, ∀ε > 0,

gives the so-called jump condition: ∂xG(x+0 , x0) − ∂xG(x−0 , x0) = 1. This means that 0 − a = 1,
i.e., a = −1 and d = −x0. In conclusion

G(x, x0) =

{
−x if ≤ x ≤ x0,
−x0 otherwise.

(b) Give the integral representation of u using the Green’s function.

Let x0 be a point in (0, L). The definition of the Dirac measure at x0 is such that

u(x0) = 〈δx0 , u〉 = 〈∂xxG(·, x0), u〉

= −
∫ L

0

∂xG(x, x0)∂xu(x)dx+ [∂xG(x, x0)u(x)]
L
0

=

∫ L

0

G(x, x0)∂xxu(x)dx− [G(x, x0)∂xu(x)]
L
0 + [∂xG(x, x0)u(x)]

L
0

=

∫ L

0

G(x, x0)f(x)dx−G(L, x0)∂xu(L) +G(0, x0)∂xu(0) + ∂xG(L, x0)u(L)− ∂xG(0, x0)u(0).

This finally gives the following representation of the solution:

u(x0) =

∫ L

0

G(x, x0)f(x)dx−G(L, x0)b− ∂xG(0, x0)a
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Question 6: Consider the wave equation with variable coefficients

m(x)∂ttu(x, t)− ∂x(µ(x)∂xu(x, t)) = 0, x ∈ (0, L), t > 0,

with boundary condition u(0, t) = 0, ∂xu(L, t) = 0, where m (density of the material) and µ,
(elasticity of the material) and smooth positive functions. Assuming that the solution u(x, t) is

smooth, prove that the quantity
∫ L
0

(
1
2m(x)|∂tu(x, t)|2 + 1

2µ(x)|∂xu(x, t)|2
)

dx is independent

of t. (Hint: energy argument with ∂tu(x, t) and use a(t)∂ta(t) = ∂t(
1
2a(t)2).)

Multiply the equation by ∂t(ux, t) and integrate over (0, L).

0 =

∫ L

0

(m(x)∂ttu(x, t)∂tu(x, t)− ∂xµ(x)∂xu(x, t)∂tu(x, t)) dx

Integrate by parts, use the boundary conditions, and use twice the formula a(t)∂ta(t) = ∂t(
1
2a(t)2),

0 =

∫ L

0

(
m(x)∂t

1

2
|∂tu(x, t)|2 + µ(x)∂xu(x, t)∂x∂tu(x, t)

)
dx

=

∫ L

0

(
m(x)∂t

1

2
|∂tu(x, t)|2 + µ(x)∂xu(x, t)∂t∂xu(x, t)

)
dx

=

∫ L

0

(
m(x)∂t

1

2
|∂tu(x, t)|2 + µ(x)∂t

1

2
|∂xu(x, t)|2

)
dx.

Using the fact that m and µ are time-independent, we also have

0 =

∫ L

0

(
∂t(

1

2
m(x)|∂tu(x, t)|2) + ∂t(

1

2
µ(x)|∂xu(x, t)|2)

)
dx,

=
d

dt

∫ L

0

(
1

2
m(x)|∂tu(x, t)|2 +

1

2
µ(x)|∂xu(x, t)|2

)
dx,

which proves the statement.


