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Notes, books, and calculators are not authorized. Show all your work in the blank space you are given on the exam
sheet. Answers with no justification will not be graded.

Question 1: Consider the equation ∂x

(
1

1+3x2 ∂xu(x)
)

= f(x), x ∈ (0, 1), ∂xu(0) = a, u(1) = b. Let G(x, x0) be

the associated Green’s function.
(i) Give the equation and boundary conditions satisfied by G.

The operator is clearly self-adjoint. Then for all x 6= x0 we have

∂x

(
1

1 + 3x2
∂xG(x, x0)

)
= δx−x0 , ∂xG(0, x0) = 0, G(1, x0) = 0.

(ii) Give the integral representation of u(x0) for all x0 ∈ (0, 1) in terms of G, f , and the boundary data. (Do not
compute G in this question).

Multiply the equation defining G by u and integrate over (0, 1),

〈δx−x0 , u〉 = u(x0) =

∫ 1

0

∂x

(
1

1 + 3x2
∂xG(x, x0)

)
u(x)dx.

We integrate by parts and we obtain

u(x0) = −
∫ 1

0

1

1 + 3x2
∂xG(x, x0)∂xu(x)dx+

[
1

1 + 3x2
∂xG(x, x0)u(x)

]1

0

=

∫ 1

0

G(x, x0)∂x

(
1

1 + 3x2
∂xu(x)

)
dx+

1

4
∂xG(1, x0)u(1)−

[
G(x, x0)

1

1 + 3x2
∂xu(x)

]1

0

=

∫ 1

0

G(x, x0)∂x

(
1

1 + 3x2
∂xu(x)

)
dx+

1

4
∂xG(1, x0)u(1) +G(0, x0)∂xu(0).

Now, using the boundary conditions and the fact that ∂x((1 + 3x2)−1∂xu(x)) = f(x), we finally have

u(x0) =

∫ 1

0

G(x, x0)f(x)dx+
1

4
∂xG(1, x0)b+G(0, x0)a.
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(iii) Compute G(x, x0) for all x, x0 ∈ (0, 1).

For all x 6= x0 we have

∂x

(
1

1 + 3x2
∂xG(x, x0)

)
= δx−x0

, ∂xG(0, x0) = 0, G(1, x0) = 0.

The generic solution is

G(x, x0) =

{
a(x+ x3) + b if 0 ≤ x < x0

c(x+ x3) + d if x0 < x ≤ 1.

The boundary conditions give
∂xG(0, x0) = 0 = a, G(1, x0) = 0 = 2c+ d.

As a result

G(x, x0) =

{
b if 0 ≤ x < x0

c(x+ x3)− 2c if x0 < x ≤ 1.

G must be continuous at x0,
b = c(x0 + x3

0)− 2c

and must satisfy the gap condition∫ x0+ε

x0−ε
∂x

(
1

1 + 3x2
∂xG(x, x0)

)
dx = 1, ∀ε > 0.

This gives
1

1 + 3x2
0

(∂xG(x+
0 , x0)− ∂xG(x−0 , x0)) = 1,

i.e. ∂xG(x+
0 , x0) = 1 + 3x2

0 = c(1 + 3x3
0). In conclusion c = 1 and b = x0 + x3

0 − 2. In other words,

G(x, x0) =

{
x0 + x3

0 − 2 if 0 ≤ x < x0

x+ x3 − 2 if x0 < x ≤ 1.
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Question 2: Consider the operator L : φ 7−→ −∂x(x
1
2 ∂xφ(x))− π2

4 x
− 1

2φ(x), with domain D = {v ∈ C2(1, 4); v(1) =
0, v(4) = 0}.
(i) What is the Null space of L? (Hint: The general solution to −∂x(x

1
2 ∂xφ(x)) − λx−

1
2φ(x) = 0 is φ(x) =

c1 cos(2
√
x
√
λ) + c2 sin(2

√
x
√
λ) for all λ ≥ 0.)

Let φ be a member of the null space of L, say N(L). Then

−∂x(x
1
2 ∂xφ(x))− π2

4
x−

1
2φ(x) = 0.

In other words, using the hint, φ(x) = c1 cos(2
√
x
√
λ) + c2 sin(2

√
x
√
λ) with λ = π2

4 . The boundary conditions imply
that

φ(1) = 0 = −c1, and φ(4) = 0 = c2 sin(2π).

In conclusion N(L) = span{sin(π
√
x)}, i.e., N(L) is a one-dimensional vector space.

(ii) Consider the problem −∂x(x
1
2 ∂xφ(x)) − π2

4 x
− 1

2φ(x) = 1
2x

− 1
2 , x ∈ (1, 4), with φ(1) = 0, φ(4) = 0. Does this

problem have a solution? (Hint: d(x
1
2 ) = 1

2x
− 1

2 dx.)

We are in the second case of the Fredholm alternative, since the null space of the operator L is not reduced to {0}. We

must verify that 1
2x

− 1
2 is orthogonal to sin(π

√
x). Using the hint and the change of variable x

1
2 = z, we have∫ 4

1

sin(π
√
x)

1

2
x−

1
2 dx =

∫ 4

1

sin(πx
1
2 )d(x

1
2 ) =

∫ 2

1

sin(πz)dz = − 1

π
[cos(πz)]

2
1 = − 2

π
.

Hence
∫ 4

1
sin(π

√
x) 1

2x
− 1

2 dx 6= 0, which means that the above problem does not have a solution.
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Question 3: Consider the wave equation ∂ttw − ∂xxw = 0, x ∈ (0, 4), t > 0, with

w(x, 0) = f(x), x ∈ (0, 4), ∂tw(x, 0) = 0, x ∈ (0, 4), and w(0, t) = 0, w(4, t) = 0, t > 0.

where f(x) = x− 1, if x ∈ [1, 2], f(x) = 3−x, if x ∈ [2, 3], and f(x) = 0 otherwise. Give a simple expression of the
solution in terms of an extension of f . Give a graphical solution to the problem at t = 0, t = 1, t = 2, and t = 3
(draw four different graphs and explain).

We know from class that with Dirichlet boundary conditions, the solution to this problem is given by the D’Alembert
formula where f must be replaced by the periodic extension (of period 8) of its odd extension, say fo,p, where

fo,p(x+ 8) = fo,p(x), ∀x ∈ R

fo,p(x) =

{
f(x) if x ∈ [0, 4]

−f(−x) if x ∈ [−4, 0)

The solution is

u(x, t) =
1

2
(fo,p(x− t) + fo,p(x+ t)).

I draw on the left of the figure the graph of fo,p. Half the graph moves to the right with speed 1, the other half moves
to the left with speed 1.
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Initial data + periodic extension of the odd extension at
t = 0, 1, 2, 3.

Solution in domain [0, 4]
at t = 0, 1, 2, 3
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Question 4: Use the Fourier transform technique to solve the following PDE:

∂tu(x, t) + 2ct∂xu(x, t) + γ cos(t)u(x, t) = 0,

for all x ∈ (−∞,+∞), t > 0, with u(x, 0) = u0(x) for all x ∈ (−∞,+∞).

By taking the Fourier transform of the PDE, one obtains

∂tF(u)− iω2ctF(y) + γ cos(t)F(y) = 0.

The solution is
F(u)(ω, t) = a(ω)eiωct

2−γ sin(t).

The initial condition implies that a(ω) = F(u0)(ω):

F(u)(ω, t) = F(u0)(ω)eiωct
2

e−γ sin(t).

The shift lemma in turn implies that

F(u)(ω, t) = F(u0(x− ct2))(ω)e−γ sin(t) = F(u0(x− ct)e−γ sin(t))(ω).

Applying the inverse Fourier transform gives:

u(x, t) = u0(x− ct2)e−γ sin(t).
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Question 5: Solve the following PDE by the method of the characteristics:

∂tw +
1

2x
∂xw = 0, x > 1, t > 0

w(x, 0) = f(x), x > 1, and w(0, t) = h(t), t > 0.

First we parameterize the boundary of Ω by setting Γ = {x = xΓ(s), t = tΓ(s); s ∈ R} with

xΓ(s) =

{
1 if s < 0,

1 + s, if s ≥ 0.
and tΓ(s) =

{
−s if s < 0,

0, if s ≥ 0.

We define the family of characteristics X(s, t) by

∂tX(s, t) =
1

2X(s, t)
, with X(s, tΓ(s)) = xΓ(s).

Then ∂tX(s, t)2 = 1. The general solution is X(s, t)2 = xΓ(s)2 + t − tΓ(s). Now we make the change of variable
φ(s, t) = w(X(s, t), t) and we compute ∂tφ(s, t),

∂tφ(s, t) = ∂tw(X(s, t), t) + ∂xw(X(s, t), t)∂tX(s, t) = ∂tw(X(s, t), t) +
1

2X(s, t)
∂xw(X(s, t), t) = 0.

This means that φ(s, t) = φ(s, tΓ(s)). In other words

w(X(s, t), t) = w(X(s, tΓ(s)), tΓ(s)) = w(xΓ(s), tΓ(s)).

Case 1: If s < 0, then X(s, t)2 = 1 + t + s. This implies s = X2 − 1 − t. The condition s < 0 implies X2 < 1 + t.
Moreover we have

w(X, t) = w(0, tΓ(s)) = h(tΓ(s)) = h(−s).

In conclusion
w(X, t) = h(1 + t−X2), if X2 < 1 + t.

Case 2: If s ≥ 0, then X(s, t)2 = (1 + s)2 + t. This implies s =
√
X2 − t − 1. The condition s ≥ 0 implies that

X2 ≥ 1 + t. Moreover we have
w(X, t) = w(xΓ(s), 0) = f(xΓ(s)) = f(1 + s).

In conclusion
w(X, t) = f(

√
X2 − t), if X2 ≥ 1 + t.


