Notes, books, and calculators are not authorized. Show all your work in the blank space you are given on the exam sheet. Answers with no justification will not be graded.
Question 1: Consider the equation $\partial_{x}\left(\frac{1}{1+3 x^{2}} \partial_{x} u(x)\right)=f(x), x \in(0,1), \partial_{x} u(0)=a, u(1)=b$. Let $G\left(x, x_{0}\right)$ be the associated Green's function.
(i) Give the equation and boundary conditions satisfied by G.

The operator is clearly self-adjoint. Then for all $x \neq x_{0}$ we have

$$
\partial_{x}\left(\frac{1}{1+3 x^{2}} \partial_{x} G\left(x, x_{0}\right)\right)=\delta_{x-x_{0}}, \quad \partial_{x} G\left(0, x_{0}\right)=0, \quad G\left(1, x_{0}\right)=0
$$

(ii) Give the integral representation of $u\left(x_{0}\right)$ for all $x_{0} \in(0,1)$ in terms of G, f, and the boundary data. (Do not compute G in this question).
Multiply the equation defining G by u and integrate over $(0,1)$,

$$
\left\langle\delta_{x-x_{0}}, u\right\rangle=u\left(x_{0}\right)=\int_{0}^{1} \partial_{x}\left(\frac{1}{1+3 x^{2}} \partial_{x} G\left(x, x_{0}\right)\right) u(x) \mathrm{d} x
$$

We integrate by parts and we obtain

$$
\begin{aligned}
u\left(x_{0}\right) & =-\int_{0}^{1} \frac{1}{1+3 x^{2}} \partial_{x} G\left(x, x_{0}\right) \partial_{x} u(x) \mathrm{d} x+\left[\frac{1}{1+3 x^{2}} \partial_{x} G\left(x, x_{0}\right) u(x)\right]_{0}^{1} \\
& =\int_{0}^{1} G\left(x, x_{0}\right) \partial_{x}\left(\frac{1}{1+3 x^{2}} \partial_{x} u(x)\right) \mathrm{d} x+\frac{1}{4} \partial_{x} G\left(1, x_{0}\right) u(1)-\left[G\left(x, x_{0}\right) \frac{1}{1+3 x^{2}} \partial_{x} u(x)\right]_{0}^{1} \\
& =\int_{0}^{1} G\left(x, x_{0}\right) \partial_{x}\left(\frac{1}{1+3 x^{2}} \partial_{x} u(x)\right) \mathrm{d} x+\frac{1}{4} \partial_{x} G\left(1, x_{0}\right) u(1)+G\left(0, x_{0}\right) \partial_{x} u(0)
\end{aligned}
$$

Now, using the boundary conditions and the fact that $\partial_{x}\left(\left(1+3 x^{2}\right)^{-1} \partial_{x} u(x)\right)=f(x)$, we finally have

$$
u\left(x_{0}\right)=\int_{0}^{1} G\left(x, x_{0}\right) f(x) \mathrm{d} x+\frac{1}{4} \partial_{x} G\left(1, x_{0}\right) b+G\left(0, x_{0}\right) a
$$

(iii) Compute $G\left(x, x_{0}\right)$ for all $x, x_{0} \in(0,1)$.

For all $x \neq x_{0}$ we have

$$
\partial_{x}\left(\frac{1}{1+3 x^{2}} \partial_{x} G\left(x, x_{0}\right)\right)=\delta_{x-x_{0}}, \quad \partial_{x} G\left(0, x_{0}\right)=0, \quad G\left(1, x_{0}\right)=0
$$

The generic solution is

$$
G\left(x, x_{0}\right)= \begin{cases}a\left(x+x^{3}\right)+b & \text { if } 0 \leq x<x_{0} \\ c\left(x+x^{3}\right)+d & \text { if } x_{0}<x \leq 1\end{cases}
$$

The boundary conditions give

$$
\partial_{x} G\left(0, x_{0}\right)=0=a, \quad G\left(1, x_{0}\right)=0=2 c+d
$$

As a result

$$
G\left(x, x_{0}\right)= \begin{cases}b & \text { if } 0 \leq x<x_{0} \\ c\left(x+x^{3}\right)-2 c & \text { if } x_{0}<x \leq 1\end{cases}
$$

G must be continuous at x_{0},

$$
b=c\left(x_{0}+x_{0}^{3}\right)-2 c
$$

and must satisfy the gap condition

$$
\int_{x_{0}-\epsilon}^{x_{0}+\epsilon} \partial_{x}\left(\frac{1}{1+3 x^{2}} \partial_{x} G\left(x, x_{0}\right)\right) \mathrm{d} x=1, \quad \forall \epsilon>0
$$

This gives

$$
\frac{1}{1+3 x_{0}^{2}}\left(\partial_{x} G\left(x_{0}^{+}, x_{0}\right)-\partial_{x} G\left(x_{0}^{-}, x_{0}\right)\right)=1
$$

i.e. $\partial_{x} G\left(x_{0}^{+}, x_{0}\right)=1+3 x_{0}^{2}=c\left(1+3 x_{0}^{3}\right)$. In conclusion $c=1$ and $b=x_{0}+x_{0}^{3}-2$. In other words,

$$
G\left(x, x_{0}\right)= \begin{cases}x_{0}+x_{0}^{3}-2 & \text { if } 0 \leq x<x_{0} \\ x+x^{3}-2 & \text { if } x_{0}<x \leq 1\end{cases}
$$

Question 2: Consider the operator $L: \phi \longmapsto-\partial_{x}\left(x^{\frac{1}{2}} \partial_{x} \phi(x)\right)-\frac{\pi^{2}}{4} x^{-\frac{1}{2}} \phi(x)$, with domain $D=\left\{v \in \mathcal{C}^{2}(1,4) ; v(1)=\right.$ $0, v(4)=0\}$.
(i) What is the Null space of L ? (Hint: The general solution to $-\partial_{x}\left(x^{\frac{1}{2}} \partial_{x} \phi(x)\right)-\lambda x^{-\frac{1}{2}} \phi(x)=0$ is $\phi(x)=$ $c_{1} \cos (2 \sqrt{x} \sqrt{\lambda})+c_{2} \sin (2 \sqrt{x} \sqrt{\lambda})$ for all $\lambda \geq 0$.)
Let ϕ be a member of the null space of L, say $\mathrm{N}(L)$. Then

$$
-\partial_{x}\left(x^{\frac{1}{2}} \partial_{x} \phi(x)\right)-\frac{\pi^{2}}{4} x^{-\frac{1}{2}} \phi(x)=0
$$

In other words, using the hint, $\phi(x)=c_{1} \cos (2 \sqrt{x} \sqrt{\lambda})+c_{2} \sin (2 \sqrt{x} \sqrt{\lambda})$ with $\lambda=\frac{\pi^{2}}{4}$. The boundary conditions imply that

$$
\phi(1)=0=-c_{1}, \quad \text { and } \quad \phi(4)=0=c_{2} \sin (2 \pi) .
$$

In conclusion $\mathrm{N}(L)=\operatorname{span}\{\sin (\pi \sqrt{x})\}$, i.e., $\mathrm{N}(L)$ is a one-dimensional vector space.
(ii) Consider the problem $-\partial_{x}\left(x^{\frac{1}{2}} \partial_{x} \phi(x)\right)-\frac{\pi^{2}}{4} x^{-\frac{1}{2}} \phi(x)=\frac{1}{2} x^{-\frac{1}{2}}, x \in(1,4)$, with $\phi(1)=0, \phi(4)=0$. Does this problem have a solution? (Hint: $\mathrm{d}\left(x^{\frac{1}{2}}\right)=\frac{1}{2} x^{-\frac{1}{2}} \mathrm{~d} x$.)
We are in the second case of the Fredholm alternative, since the null space of the operator L is not reduced to $\{0\}$. We must verify that $\frac{1}{2} x^{-\frac{1}{2}}$ is orthogonal to $\sin (\pi \sqrt{x})$. Using the hint and the change of variable $x^{\frac{1}{2}}=z$, we have

$$
\int_{1}^{4} \sin (\pi \sqrt{x}) \frac{1}{2} x^{-\frac{1}{2}} \mathrm{~d} x=\int_{1}^{4} \sin \left(\pi x^{\frac{1}{2}}\right) \mathrm{d}\left(x^{\frac{1}{2}}\right)=\int_{1}^{2} \sin (\pi z) \mathrm{d} z=-\frac{1}{\pi}[\cos (\pi z)]_{1}^{2}=-\frac{2}{\pi}
$$

Hence $\int_{1}^{4} \sin (\pi \sqrt{x}) \frac{1}{2} x^{-\frac{1}{2}} \mathrm{~d} x \neq 0$, which means that the above problem does not have a solution.

Question 3: Consider the wave equation $\partial_{t t} w-\partial_{x x} w=0, x \in(0,4), t>0$, with

$$
w(x, 0)=f(x), \quad x \in(0,4), \quad \partial_{t} w(x, 0)=0, \quad x \in(0,4), \quad \text { and } \quad w(0, t)=0, \quad w(4, t)=0, \quad t>0 .
$$

where $f(x)=x-1$, if $x \in[1,2], f(x)=3-x$, if $x \in[2,3]$, and $f(x)=0$ otherwise. Give a simple expression of the solution in terms of an extension of f. Give a graphical solution to the problem at $t=0, t=1, t=2$, and $t=3$ (draw four different graphs and explain).
We know from class that with Dirichlet boundary conditions, the solution to this problem is given by the D'Alembert formula where f must be replaced by the periodic extension (of period 8) of its odd extension, say $f_{\mathrm{o}, \mathrm{p}}$, where

$$
\begin{gathered}
f_{\mathrm{o}, \mathrm{p}}(x+8)=f_{\mathrm{o}, \mathrm{p}}(x), \quad \forall x \in \mathbb{R} \\
f_{\mathrm{o}, \mathrm{p}}(x)= \begin{cases}f(x) & \text { if } x \in[0,4] \\
-f(-x) & \text { if } x \in[-4,0)\end{cases}
\end{gathered}
$$

The solution is

$$
u(x, t)=\frac{1}{2}\left(f_{\mathrm{o}, \mathrm{p}}(x-t)+f_{\mathrm{o}, \mathrm{p}}(x+t)\right)
$$

I draw on the left of the figure the graph of $f_{\mathrm{o}, \mathrm{p}}$. Half the graph moves to the right with speed 1 , the other half moves to the left with speed 1.

Question 4: Use the Fourier transform technique to solve the following PDE:

$$
\partial_{t} u(x, t)+2 c t \partial_{x} u(x, t)+\gamma \cos (t) u(x, t)=0
$$

for all $x \in(-\infty,+\infty), t>0$, with $u(x, 0)=u_{0}(x)$ for all $x \in(-\infty,+\infty)$.
By taking the Fourier transform of the PDE, one obtains

$$
\partial_{t} \mathcal{F}(u)-i \omega 2 c t \mathcal{F}(y)+\gamma \cos (t) \mathcal{F}(y)=0
$$

The solution is

$$
\mathcal{F}(u)(\omega, t)=a(\omega) e^{i \omega c t^{2}-\gamma \sin (t)}
$$

The initial condition implies that $a(\omega)=\mathcal{F}\left(u_{0}\right)(\omega)$:

$$
\mathcal{F}(u)(\omega, t)=\mathcal{F}\left(u_{0}\right)(\omega) e^{i \omega c t^{2}} e^{-\gamma \sin (t)}
$$

The shift lemma in turn implies that

$$
\mathcal{F}(u)(\omega, t)=\mathcal{F}\left(u_{0}\left(x-c t^{2}\right)\right)(\omega) e^{-\gamma \sin (t)}=\mathcal{F}\left(u_{0}(x-c t) e^{-\gamma \sin (t)}\right)(\omega)
$$

Applying the inverse Fourier transform gives:

$$
u(x, t)=u_{0}\left(x-c t^{2}\right) e^{-\gamma \sin (t)}
$$

Question 5: Solve the following PDE by the method of the characteristics:

$$
\begin{aligned}
& \partial_{t} w+\frac{1}{2 x} \partial_{x} w=0, \quad x>1, t>0 \\
& w(x, 0)=f(x), \quad x>1, \quad \text { and } \quad w(0, t)=h(t), \quad t>0 .
\end{aligned}
$$

First we parameterize the boundary of Ω by setting $\Gamma=\left\{x=x_{\Gamma}(s), t=t_{\Gamma}(s) ; s \in \mathbb{R}\right\}$ with

$$
x_{\Gamma}(s)=\left\{\begin{array}{ll}
1 & \text { if } s<0, \\
1+s, & \text { if } s \geq 0
\end{array} \quad \text { and } \quad t_{\Gamma}(s)= \begin{cases}-s & \text { if } s<0 \\
0, & \text { if } s \geq 0\end{cases}\right.
$$

We define the family of characteristics $X(s, t)$ by

$$
\partial_{t} X(s, t)=\frac{1}{2 X(s, t)}, \quad \text { with } \quad X\left(s, t_{\Gamma}(s)\right)=x_{\Gamma}(s)
$$

Then $\partial_{t} X(s, t)^{2}=1$. The general solution is $X(s, t)^{2}=x_{\Gamma}(s)^{2}+t-t_{\Gamma}(s)$. Now we make the change of variable $\phi(s, t)=w(X(s, t), t)$ and we compute $\partial_{t} \phi(s, t)$,

$$
\partial_{t} \phi(s, t)=\partial_{t} w(X(s, t), t)+\partial_{x} w(X(s, t), t) \partial_{t} X(s, t)=\partial_{t} w(X(s, t), t)+\frac{1}{2 X(s, t)} \partial_{x} w(X(s, t), t)=0
$$

This means that $\phi(s, t)=\phi\left(s, t_{\Gamma}(s)\right)$. In other words

$$
w(X(s, t), t)=w\left(X\left(s, t_{\Gamma}(s)\right), t_{\Gamma}(s)\right)=w\left(x_{\Gamma}(s), t_{\Gamma}(s)\right)
$$

Case 1: If $s<0$, then $X(s, t)^{2}=1+t+s$. This implies $s=X^{2}-1-t$. The condition $s<0$ implies $X^{2}<1+t$. Moreover we have

$$
w(X, t)=w\left(0, t_{\Gamma}(s)\right)=h\left(t_{\Gamma}(s)\right)=h(-s)
$$

In conclusion

$$
w(X, t)=h\left(1+t-X^{2}\right), \quad \text { if } \quad X^{2}<1+t
$$

Case 2: If $s \geq 0$, then $X(s, t)^{2}=(1+s)^{2}+t$. This implies $s=\sqrt{X^{2}-t}-1$. The condition $s \geq 0$ implies that $X^{2} \geq 1+t$. Moreover we have

$$
w(X, t)=w\left(x_{\Gamma}(s), 0\right)=f\left(x_{\Gamma}(s)\right)=f(1+s)
$$

In conclusion

$$
w(X, t)=f\left(\sqrt{X^{2}-t}\right), \quad \text { if } \quad X^{2} \geq 1+t
$$

