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Notes, books, and calculators are not authorized. Show all your work in the blank space you are given on the exam sheet.
Answers with no justification will not be graded.

Here are some formulae that you may want to use:

F(f)(ω)
def
=

1

2π

∫ +∞

−∞
f(x)eiωxdx, F−1(f)(x) =

∫ +∞

−∞
f(ω)e−iωxdω, F(f ∗ g) = 2πF(f)F(g), (1)

Question 1: (a) Prove that ∂ωF(f)(ω) = iF(xf(x))(ω) for all f ∈ L1(R).

Let f ∈ L1(R), then

∂ωF(f)(ω) = ∂ω

(
1

2π

∫ ∞
−∞

f(x)eiωxdx

)
=

1

2π

∫ ∞
−∞

f(x)∂ωe
iωxdx

= i
1

2π

∫ ∞
−∞

xf(x)eiωxdx,

which prove that ∂ωF(f)(ω) = iF(xf(x))(ω).

(b) Let α ∈ R with α > 0. Prove that F(∂xe
−αx2

)(ω) = 2αi∂ωF(e−αx
2

)(ω). (Hint: use (a).)

We use (a) to deduce that

F(∂xe
−αx2

)(ω) = F(−2αxe−αx
2

)(ω) = −2αF(xe−αx
2

)(ω)

= 2αi∂ωF(e−αx
2

)(ω).

(c) Show that ∂ωF(e−αx
2

)(ω) = − ω
2αF(e−αx

2

)(ω).

We use the property F(∂xf(x))(ω) = −iωF(f(x))(ω) and (b)

−iωF(e−αx
2

)(ω)) = F(∂xe
−αx2

)(ω) = 2αi∂ωF(e−αx
2

)(ω),

which implies the desired result.

(d) Given that
∫∞
−∞ e−x

2

dx =
√
π, compute F(e−αx

2

)(ω). (Hint: Observe that (c) is an ODE and solve it.)

The solution to the ODE ∂ωg(ω) = − ω
2αg(ω) is g(ω) = g(0)e−

ω2

4α . We apply this formula to g(ω) = F(e−αx
2

)(ω),

F(e−αx
2

)(ω) = F(e−αx
2

)(0)e−
ω2

4α .

We now need to compute F(e−αx
2

)(0),

F(e−αx
2

)(0) =
1

2π

∫ ∞
−∞

e−αx
2

dx =
1

2π

1√
α

∫ ∞
−∞

e−αx
2√
αdx =

1

2π

1√
α

∫ ∞
−∞

ex
2

dx =
1

2π

√
π√
α

=
1

4πα
.

Finally

F(e−αx
2

)(ω) =
1√
4πα

e−
ω2

4α .
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Question 2: Solve the wave equation ∂ttw − 4∂xxw = 0, x ∈ (0,+∞), t > 0 with initial data w(x, 0) = (1 + x3)−1,
∂tw(x, 0) = 0, x ∈ (0,+∞) and boundary condition ∂xw(0, t) = 0, t > 0. Give the full expression of the solution in all
the cases. (Hint: Consider a particular extension of w over R)

We define f(x) = (1 + x3)−1 and its even extension fe(x) on (−∞,+∞). Let we be the solution to the wave equation over
the entire real line with fe as initial data:

∂ttwe − 4∂xxwe = 0, x ∈ R, t > 0

we(x, 0) = fe(x), x > 0, ∂twe(x, 0) = 0, x ∈ R.

The solution to this problem is given by the D’Alembert formula

we(x, t) =
1

2
(fe(x− 2t) + fe(x+ 2t)), for all x ∈ R and t ≥ 0.

Let x be positive. Then w(x, t) = we(x, t) for all x ∈ (0,+∞), since by construction ∂xwe(0, t) = 0 for all times.

Case 1: If x− 2t > 0, fe(x− 2t) = f(x− 2t); as a result w(x, t) = 1
2 (f(x− 2t) + f(x+ 2t)), if x− 2t > 0. Hence,

w(x, t) =
1

2

(
1

1 + (x− 2t)3
+

1

1 + (x+ 2t)3

)
, If x− 2t > 0.

Case 2: If x− 2t < 0, fe(x− 2t) = f(−x+ 2t); as a result w(x, t) = 1
2 (f(−x+ 2t) + f(x+ 2t)), if x− 2t < 0. Hence,

w(x, t) =
1

2

(
1

1 + (−x+ 2t)3
+

1

1 + (x+ 2t)3

)
, If x− 2t < 0.
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Let H : R −→ R be the Heaviside function. (a) Show that the derivative of xH(x) in the distribution sense is equal to
H(x). (Hint: Compute −

∫∞
−∞ xH(x)∂xψ(x)dx for any ψ ∈ C1

c (R), integrate by parts ...).

Recall that by definition ∂x(xH) is the distribution that is such that

〈∂x(xH), ψ〉 =

∫
∂x(xH)ψ := −

∫ ∞
−∞

xH(x)∂xψ(x)dx

for all ψ ∈ C1
c (R). We then follow the hint and integrate by parts:

〈∂x(xH), ψ〉 = −
∫ ∞
−∞

xH(x)∂xψ(x)dx

= −
∫ ∞

0

x∂xψ(x)dx =

∫ ∞
0

ψ(x)dx

=

∫ ∞
−∞

H(x)ψ(x)dx.

This means that ∂x(xH(x)) = H(x).

(b) Show that the derivative of H(x)ex in the distribution sense is equal to H(x)ex + δ0 where δ0 is the Dirac measure
at 0. (Hint: Compute −

∫∞
−∞H(x)ex∂xψ(x)dx for any ψ ∈ C1

c (R), integrate by parts ...).

Recall that by definition ∂x(exH) is the distribution that is such that

〈∂x(exH), ψ〉 =

∫
∂x(exH)ψ := −

∫ ∞
−∞

exH(x)∂xψ(x)dx

for all ψ ∈ C1
c (R). We then follow the hint and integrate by parts:

〈∂x(exH), ψ〉 = −
∫ ∞
−∞

exH(x)∂xψ(x)dx

= −
∫ ∞

0

ex∂xψ(x)dx =

∫ ∞
0

exψ(x)dx+ ψ(0)

= 〈δ0, ψ〉+

∫ ∞
−∞

exH(x)ψ(x)dx

= 〈δ0 + exH,ψ〉.

This means that ∂x(H(x) cos(x)) = δ0 + exH(x).
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Question 3: (a) Let s > 0 and let Lv = sv − ∂xxv for all v ∈ D(L) = {v ∈ C2(R); v(±∞) = 0}. Define LT and D(LT).

Let v ∈ D(L) and w be some smooth function, say w ∈ C2(R), then∫ +∞

−∞
Lvwdx =

∫ +∞

−∞
(sv − ∂xxv)wdx =

∫ +∞

−∞
(svw + ∂xv∂xw)dx− ∂xvw|+∞−∞

We get rid of the boundary term by imposing w(±∞) = 0. Then∫ +∞

−∞
Lvwdx =

∫ +∞

−∞
v(sw − ∂xxw)dx+ ∂xwv|+∞−∞ =

∫ +∞

−∞
v(sw − ∂xxw)dx.

This shows that LTw = sw − ∂xxw and D(LT) = {w ∈ C2(R); w(±∞) = 0}.
(b) Let s > 0 and consider the equation Lv = u0(x), v ∈ D(L). Compute Green’s function, G(x, x0), x, x0 ∈ R.

Let G(x, x0) be Green’s function. Since the operator is self-adjoint (shown in class many times), G satisfies

sG(x, x0)− ∂xxG(x, x0) = δx0
, G(±∞, x0) = 0.

Case 1: Assume x < x0, then G(x, x0) = ae
√
sx + be−

√
sx. The condition G(−∞, x0) = 0 implies that b = 0. Hence

G(x, x0) = ae
√
sx when x < x0.

Case 2: Assume x > x0, then G(x, x0) = ce
√
sx + de−

√
sx. The condition G(+∞, x0) = 0 implies that c = 0. Hence

G(x, x0) = de−
√
sx when x < x0.

Now we impose the continuity at x0: ae
√
sx0 = de−

√
sx0 . We conclude with the jump condition,∫ x0+ε

x0−ε
(sG(x, x0)− ∂xxG(x, x0))dx = 1,

implying that −∂xG(x+
0 , x0) + ∂xG(x−0 , x0) = 1 when passing to the limit ε→ 0. Hence d

√
se−
√
sx0 + a

√
se
√
sx0 = 1. Then

using ae
√
sx0 = de−

√
sx0 , we infer that d

√
se−
√
sx0 + d

√
se−
√
sx0 = 1, i.e., d = 1

2
√
s
e
√
sx0 and a = 1

2
√
s
e−
√
sx0 . In conclusion

G(x, x0) =

{
1

2
√
s
e
√
s(x−x0) if x < x0,

1
2
√
s
e
√
s(x0−x) otherwise,

which can also be re-written G(x, x0) = 1
2
√
s
e−
√
s|x−x0|.
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Question 4: Let Ω = {(x, t) ∈ R2 | x > 0, x + 3t > 0}. Use the method of characteristics to solve the equation
∂tu+ 4∂xu+ 2u = 0 for (x, t) ∈ Ω and u(x, 0) = x+ 4, for x > 0, u(−3t, t) = t+ 4, for t > 0.

(i) We first parameterize the boundary of Ω by setting Γ = {x = xΓ(s), t = tΓ(s); s ∈ R} with

xΓ(s) =

{
3s s < 0

s s > 0,
tΓ(s) =

{
−s s < 0

0 s > 0.

(ii) We compute the characteristics
∂tX(t, s) = 4, X(tΓ(s), s) = xΓ(s).

The solution is X(t, s) = xΓ(s) + 4(t− tΓ(s)).
(iii) Set Φ(t, s) = u(X(t, s), t). Then

∂tΦ(t, s) = ∂xu(X(t, s), t)∂tX(t, s) + ∂tu(X(t, s), t)∂tt

= 4∂xu(X(t, s), t) + ∂tu(X(t, s), t) = −2u(X(t, s), t) = −2Φ(s, t)

The solution is Φ(t, s) = Φ(tΓ(s), s)e−2(t−tΓ(s)), i.e., u(X(t, s)) = u(X(tΓ(s), s), tΓ(s))e−2(t−tΓ(s)) = u(xΓ(s), tΓ(s))e−2(t−tΓ(s)).
(iv) The implicit representation of the solution is

X(t, s) = xΓ(s) + 4(t− tΓ(s)), u(X(t, s)) = u(xΓ(s), tΓ(s))e−2(t−tΓ(s)).

(v) The explicit representation is obtained by replacing the parameterization (t, s) by (X, t). Using the definitions of xΓ(s) and
tΓ(s), we have two cases:
Case 1: s < 0. The definition of X(t, s) gives X(s, t) = 3s+ 4(t+ s), i.e., s = (X − 4t)/7. Then

u(X, t) = (tΓ(s) + 4)e−2(t−tΓ(s)) = (−s+ 4)e−2(t+s) = (4− (X − 4t)/7)e−2(t+(X−4t)/7)

= (4 +
4t−X

7
)e−

2
7 (3t+X)

i.e., u(X, t) = (4 + 4t−X
7 )e−

2
7 (3t+X) if X < 4t .

Case 2: s > 0. The definition of X(t, s) gives X(s, t) = s+ 4t, i.e., s = X − 4t. Then

u(X, t) = (xΓ(s) + 4)e−2(t−tΓ(s)) = (s+ 4)e−2t = (4 +X − 4t)e−2t.

i.e., u(X, t) = (4 +X − 4t)e−2t if X > 4t .
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Question 5: Let α := e
π
2 . Consider the operator L : φ 7−→ ∂xxφ(x)) + 1

x∂xφ(x) + 1
x2φ(x), with domain D = {v ∈

C2(1, 2); v(1) = 0, v(α) = 0}.
(i) What is the Null space of L? (Hint: The general solution to Lφ = 0 is φ(x) = c1 cos(log(x)) + c2 sin(log(x)).)

Let φ be a member of the null space of L, say N(L). Then

∂xxφ(x) +
1

x
∂xφ(x) +

1

x2
φ(x) = 0

In other words, using the hint, φ(x) = c1 cos(log(x)) + c2 sin(log(x)). The boundary conditions imply that

φ(1) = 0 = c1,

In conclusion N(L) = span{sin(log(x))}.
(iii) Give the formal adjoint of L and its domain.

Let u ∈ D and v ∈ D∗, then∫ 2

1

(Lu(x))v(x)dx =

∫ α

1

(∂xxu(x) +
1

x
∂xu(x) +

1

x2
u(x))v(x)dx

=

∫ α

1

(u(x)∂xxv(x)− u(x)∂x(
1

x
v(x)) +

1

x2
u(x)v(x))dx+

1

x
u(x)v(x)|α1 + ∂xu(x)v(x)|α1 − ∂xv(x)u(x)|α1

We enforce v(1) = v(α) = 0 to get rid of the boundary terms. Then∫ 2

1

(Lu(x))v(x)dx =

∫ α

1

u(x)(∂xxv(x)− ∂x(
1

x
v(x)) +

1

x2
v(x))dx

This means that D∗ = {v ∈ C2(1, 2); v(1) = 0, v(α) = 0} = D and L∗v = ∂xxv(x)− ∂x( 1
xv(x)) + 1

x2 v(x).

(iii) The general solution of ∂xxv(x)− ∂x( 1
xv(x)) + 1

x2 v(x) = 0, is φ(x) = c1x cos(log(x)) + c2x sin(log(x)). Under which
condition does the problem Lu = f(x), x ∈ (1, α), with u(1) = 0, u(α) = 0 has a solution?

We are in the second case of the Fredholm alternative. We must compute Null(LT). Let v ∈ Null(LT), i.e., LTv = 0 and
v ∈ D(LT), then v(x) = c1x cos(log(x)) + c2x sin(log(x)). The boundary conditions imply that

c1 = 0,

meaning that v(x) = c2x sin(log(x)). In conclusion, Null(LT) = span{x sin(log(x))}. There is a unique solution to the above
problem if and only if ∫ α

1

f(x)x sin(log(x))dx = 0.


