HW 1

Show all your work in the blank space you are given on the exam sheet. Always justify your answer. Answers with no justification will not be graded.

Question 1: (a) Let $\Phi \in C^{1}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ be defined by $\Phi\left(x_{1}, x_{2}, x_{3}\right):=x_{2} x_{3}^{2}+\sin \left(x_{1}+x_{3}\right)$. Compute $\nabla \Phi$.
Applying the chain rule we obtain

$$
\nabla \Phi\left(x_{1}, x_{2}, x_{3}\right)=\left(\cos \left(x_{1}+x_{3}\right), x_{3}^{2}, 2 x_{2} x_{3}+\cos \left(x_{2}+x_{3}\right)\right)
$$

(b) Let $\Psi \in C^{1}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ be defined by $\Psi\left(x_{1}, x_{2}, x_{3}\right):=\frac{x_{2}^{3}}{2+\sin \left(x_{1}+2 x_{3}\right)}$. Compute $\nabla \Psi$.

Applying the chain rule we obtain

$$
\nabla \Psi\left(x_{1}, x_{2}, x_{3}\right)=\left(-\frac{x_{2}^{3} \cos \left(x_{1}+2 x_{3}\right)}{\left(2+\sin \left(x_{1}+2 x_{3}\right)\right)^{2}}, \frac{3 x_{2}^{2}}{2+\sin \left(x_{1}+2 x_{3}\right)},-\frac{2 x_{2}^{3} \cos \left(x_{1}+2 x_{3}\right)}{\left(2+\sin \left(x_{1}+2 x_{3}\right)\right)^{2}}\right)
$$

Question 2: Let $\nabla \times$ denote the curl operator acting on vector fields: i.e., let $\mathbf{A}=\left(A_{1}, A_{2}, A_{3}\right) \in C^{1}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ be a three-dimensional vector field over \mathbb{R}^{3}, then $\nabla \times \mathbf{A}:=\left(\partial_{2} A_{3}-\partial_{3} A_{2}, \partial_{3} A_{1}-\partial_{1} A_{3}, \partial_{1} A_{2}-\partial_{2} A_{1}\right)$.
(a) Let $\varphi \in C^{2}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$. Compute $\nabla \times(\nabla \varphi)$. (Hint: Recall that $\partial_{i j} \varphi=\partial_{j i} \varphi$, for all $i, j \in\{1,2,3\}$.)

The definitions imply that $\nabla \varphi=\left(\partial_{1} \varphi, \partial_{2} \varphi, \partial_{3} \varphi\right)$. Hence,

$$
\left.\nabla \times(\nabla \varphi)=\left(\partial_{2} \partial_{3} \varphi-\partial_{3} \partial_{2} \varphi, \partial_{3} \partial_{1} \varphi-\partial_{1} \partial_{3} \varphi, \partial_{1} \partial_{2} \varphi-\partial_{2} \partial_{1} \varphi\right)=\partial_{31} \varphi-\partial_{13} \varphi, \partial_{12} \varphi-\partial_{21} \varphi\right)=\mathbf{0}
$$

(b) Let $\mathbf{v}\left(x_{1}, x_{2}, x_{3}\right):=\left(-x_{1}, x_{2}, x_{1} x_{3}\right)$. Compute $\nabla \times \mathbf{v}$.

By definition,

$$
\nabla \times \mathbf{v}=\left(0,-x_{3}, 0\right)
$$

Question 3: (a) Recal the definition of the divergence operator acting on vector fields: i.e., let $\mathbf{A}=\left(A_{1}, \ldots, A_{d}\right) \in$ $C^{1}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$ be a d-dimensional vector field over \mathbb{R}^{d}, then $\nabla \cdot \mathbf{A}:=$.

$$
\nabla \cdot \mathbf{A}=\partial_{1} A_{1}+\ldots+\partial_{d} A_{d}
$$

(b) Let $\mathbf{v}\left(x_{1}, x_{2}, x_{3}\right):=\left(x_{1}^{2}, x_{2} x_{3}, x_{1} x_{3}\right)$. Compute $\nabla \cdot \mathbf{v}$.

By definition,

$$
\nabla \cdot \mathbf{v}=2 x_{1}+x_{3}+x_{1}=3 x_{1}+x_{3}
$$

(c) Let $\mathbf{w}=\left(w_{1}, w_{2}, w_{3}\right) \in C^{2}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$. Compute $\nabla \cdot(\nabla \times \mathbf{w})$.
(Recall that $\nabla \times \mathbf{w}=\partial_{2} w_{3}-\partial_{3} w_{2}, \partial_{3} w_{1}-\partial_{1} w_{3}, \partial_{1} w_{2}-\partial_{2} w_{1}$). Then, by definition,

$$
\begin{aligned}
\nabla \cdot(\nabla \times \mathbf{w}) & =\partial_{1}\left(\partial_{2} w_{3}-\partial_{3} w_{2}\right)+\partial_{2}\left(\partial_{3} w_{1}-\partial_{1} w_{3}\right)+\partial_{3}\left(\partial_{1} w_{2}-\partial_{2} w_{1}\right) \\
& =\partial_{12} w_{3}-\partial_{13} w_{2}+\partial_{23} w_{1}-\partial_{12} w_{3}+\partial_{13} w_{2}-\partial_{23} w_{1} \\
& =0
\end{aligned}
$$

$\underline{\text { Hence } \nabla \cdot(\nabla \times \mathbf{w})=0 \text { for all } \mathbf{w}=\left(w_{1}, w_{2}, w_{3}\right) \in C^{2}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right) . ~}$

Question 4: Let $D=(-1,1) \times(-1,1)$ be the square centered at $(0,0)$ and of side 2 .
(a) Let $h(x, y)=3+5 \sin (2 \pi x)^{2} \sin (3 \pi y)^{2}$. Compute the value of h over the boundary of D (i.e., $\left.h\right|_{\partial D}$)

Since the boundary of D is the set $\left\{(x, y) \in \mathbb{R}^{2} ;|x|=1,-1 \leq y \leq 1\right\} \cup\left\{(x, y) \in \mathbb{R}^{2} ;|y|=1,-1 \leq x \leq 1\right\}$, we infer that

$$
\left.h\right|_{\partial D}=3 .
$$

(b) Let $f(\mathbf{X})=\frac{\pi}{7}$ for all $\mathbf{X} \in D$. Let $k(x, y)=1+x^{2}|y|$. Let $\Phi \in C^{2}(D)$ solve $-\nabla \cdot(k \nabla \Phi(\mathbf{X}))=f(\mathbf{X})$ for all $\mathbf{X} \in D$ and $\Phi_{\mid \partial D}=0$. We denote $\partial_{n} \Phi:=\mathbf{n} \cdot \nabla \Phi$. Compute $\int_{\partial D} k \partial_{n} \Phi \mathrm{~d} s$. (Hint: Use the divergence theorem.)
Applying the divergence theorem gives

$$
\int_{\partial D} k \partial_{n} \Phi \mathrm{~d} s=\int_{D} \nabla \cdot(k \nabla \Phi(\mathbf{X})) \mathrm{d} \mathbf{X}=-\int_{D} f(\mathbf{X}) \mathrm{d} \mathbf{X}=-\int_{D} \frac{1}{4} \mathrm{~d} \mathbf{X}=-\frac{\pi}{7}|D|
$$

where $|D|=4$ is the surface of D. As a result,

$$
\int_{\partial D} k \partial_{n} \Phi \mathrm{~d} s=-\frac{4 \pi}{7}
$$

Question 5: Let $L>0$ and $D:=(0, L)$. Let u solve $\partial_{t} u-\partial_{x}\left(x u+\partial_{x} u\right)=f(x) e^{-2 t}, x \in D$, with $\partial_{x} u(0, t)=1$, $L u(L, t)+\partial_{x} u(L, t)=3, u(x, 0)=u_{0}(x)$, where f and u_{0} are two smooth functions.
(a) Compute $\partial_{t} \int_{0}^{L} u(x, t) \mathrm{d} x$ as a function of t.

Integrate the equation over the domain $(0, L)$ and apply the fundamental theorem of calculus:

$$
\begin{aligned}
\partial_{t} \int_{0}^{L} u(x, t) \mathrm{d} x & =\int_{0}^{L} \partial_{t} u(x, t) \mathrm{d} x=\int_{0}^{L} \partial_{x}\left(x u+\partial_{x} u\right) \mathrm{d} x+e^{-2 t} \int_{0}^{L} f(x) \mathrm{d} x \\
& =L u(L, t)+\partial_{x} u(L, t)-\partial_{x} u(0, t)+e^{-2 t} \int_{0}^{L} f(x) \mathrm{d} x \\
& =3-1+e^{-2 t} \int_{0}^{L} f(x) \mathrm{d} x a n=2+e^{-2 t} \int_{0}^{L} f(x) \mathrm{d} x
\end{aligned}
$$

That is

$$
\frac{d}{d t} \int_{0}^{L} u(x, t) \mathrm{d} x=2+e^{-2 t} \int_{0}^{L} f(x) \mathrm{d} x
$$

(b) Assume that that $\int_{0}^{L} u_{0}(x) d x=0$. Compute $\int_{0}^{L} u(x, t) d x$ for all $t>0$.

Using the fundamental theorem of calculus we obtain

$$
\begin{aligned}
\int_{0}^{L} u(x, t) \mathrm{d} x & =\int_{0}^{L} u(x, 0) \mathrm{d} x+2 t-\frac{1}{2}\left(e^{-2 t}-1\right) \int_{0}^{L} f(x) \mathrm{d} x \\
& =2 t-\frac{1}{2}\left(e^{-2 t}-1\right) \int_{0}^{L} f(x) \mathrm{d} x
\end{aligned}
$$

