Quiz 2 (Notes, books, and calculators are not authorized)
Show all your work in the blank space you are given on the exam sheet. Always justify your answer. Answers with no justification will not be graded.

Question 1: Let $k:[-1,+1] \longrightarrow \mathbb{R}$ be such that $k(x)=2$, if $x \in[-1,0]$ and $k(x)=1$ if $x \in(0,1]$. Consider the boundary value problem $-\partial_{x}\left(k(x) \partial_{x} T(x)\right)=0$ with $-\partial_{x} T(-1)+T(-1)=-1$ and $T(1)=3$.
(i) What should be the interface conditions at $x=0$ for this problem to make sense?

The function T and the flux $k(x) \partial_{x} T(x)$ must be continuous at $x=0$. Let T^{-}denote the solution on $[-1,0]$ and T^{+}the solution on $[0,+1]$. One should have $T^{-}(0)=T^{+}(0)$ and $k^{-}(0) \partial_{x} T^{-}(0)=k^{+}(0) \partial_{x} T^{+}(0)$, where $k^{-}(0)=2$ and $k^{+}(0)=1$. (ii) Solve the problem, i.e., find $T(x)$ for all $x \in[-1,+1]$.

On $[-1,0]$ we have $k^{-}(x)=1$, which implies $\partial_{x x} T^{-}(x)=0$. This in turn implies $T^{-}(x)=a+b x$. The Robin boundary condition at $x=-1$ implies $-\partial_{x} T^{-}(-1)+T^{-}(-1)=-1=-2 b+a$. This gives $a=2 b-1$ and $T^{-}(x)=2 b-1+b x$.

We proceed similarly on $[0,+1]$ and we obtain $T^{+}(x)=c+d x$. The Dirichlet boundary condition at $x=+1$ gives $T^{+}(1)=$ $3=c+d$. This implies $c=3-d$ and $T^{+}(x)=3-d+d x$.

The interface conditions $T^{-}(0)=T^{+}(0)$ and $k^{-}(0) \partial_{x} T^{-}(0)=k^{+}(0) \partial_{x} T^{+}(0)$ give

$$
2 b-1=3-d, \quad \text { and } \quad 2 b=d .
$$

This implies $d=2$ and $b=1$. In conclusion

$$
T(x)= \begin{cases}x+1 & \text { if } x \in[-1,0] \\ 2 x+1 & \text { if } x \in[0,+1]\end{cases}
$$

Question 2: Let $k, f:[-1,+1] \longrightarrow \mathbb{R}$ be such that $k(x)=2, f(x)=0$ if $x \in[-1,0]$ and $k(x)=1, f(x)=2$ if $x \in(0,1]$. Consider the boundary value problem $-\partial_{x}\left(k(x) \partial_{x} T(x)\right)=f(x)$ with $T(-1)=-2$ and $T(1)=2$.
(a) What should be the interface conditions at $x=0$ for this problem to make sense?

The function T and the flux $k(x) \partial_{x} T(x)$ must be continuous at $x=0$. Let T^{-}denote the solution on $[-1,0]$ and T^{+}the solution on $[0,+1]$. One should have $T^{-}(0)=T^{+}(0)$ and $k^{-}(0) \partial_{x} T^{-}(0)=k^{+}(0) \partial_{x} T^{+}(0)$, where $k^{-}(0)=2$ and $k^{+}(0)=1$.
(b) Solve the problem, i.e., find $T(x)$ for all $x \in[-1,+1]$.

On $[-1,0]$ we have $k^{-}(x)=2$ and $f^{-}(x)=0$ which implies $-\partial_{x x} T^{-}(x)=0$. This in turn implies $T^{-}(x)=a x+b$. The Dirichlet condition at $x=-1$ implies that $T^{-}(-1)=-2=-a+b$. This gives $a=b+2$ and $T^{-}(x)=(b+2) x+b$.

We proceed similarly on $[0,+1]$ and we obtain $-\partial_{x x} T^{-}(x)=2$, which implies that $T^{+}(x)=-x^{2}+c x+d$. The Dirichlet condition at $x=1$ implies $T^{+}(1)=2=-1+c+d$. This gives $c=3-d$ and $T^{-}(x)=-x^{2}+(3-d) x+d$.

The interface conditions $T^{-}(0)=T^{+}(0)$ and $k^{-}(0) \partial_{x} T^{-}(0)=k^{+}(0) \partial_{x} T^{+}(0)$ give $b=d$ and $2(b+2)=3-d$, respectively. In conclusion $b=-\frac{1}{3}, d=-\frac{1}{3}$ and

$$
T(x)= \begin{cases}\frac{5}{3} x-\frac{1}{3} & \text { if } x \in[-1,0] \\ -x^{2}+\frac{10}{3} x-\frac{1}{3} & \text { if } x \in[0,1]\end{cases}
$$

Question 3: Assume that the following equation has a smooth solution: $-\partial_{x}\left((2+\sin (x)) \partial_{x} T(x)\right)+\partial_{x} T(x)+T(x)=x^{3}$, $T(a)=\sqrt{5}, T(b)=\pi, x \in[a, b], t>0$, where $k>0, b>a$. Prove that this solution is unique by using the energy method. (Hint: Do not try to simplify the expression $-\partial_{x}\left((2+\sin (x)) \partial_{x} T\right)$.
Assume that there are two solutions T_{1} and T_{2}. Let $\phi=T_{2}-T_{1}$. Then

$$
-\partial_{x}\left((2+\sin (x)) \partial_{x} \phi(x)\right)+\partial_{x} \phi(x)+\phi(x)=0, \quad \phi(a)=0, \quad \phi(b)=0
$$

Multiply the PDE by ϕ, integrate over (a, b), and integrate by parts (i.e. apply the fundamental theorem of calculus):

$$
\begin{aligned}
0 & =\int_{a}^{b}\left(-\partial_{x}\left((2+\sin (x)) \partial_{x} \phi(x)\right) \phi(x)+\left(\partial_{x} \phi(x)\right) \phi(x)+(\phi(x))^{2}\right) \mathrm{d} x \\
& =\int_{a}^{b}\left(-\partial_{x}\left(\phi(x)(2+\sin (x)) \partial_{x} \phi(x)\right)+(1+|x|)\left(\partial_{x} \phi(x)\right)^{2}+\partial_{x}\left(\frac{1}{2} \phi(x)^{2}\right)+(\phi(x))^{2}\right) \mathrm{d} x \\
& =\int_{a}^{b}\left((2+\sin (x))\left(\partial_{x} \phi(x)\right)^{2}+(\phi(x))^{2}\right) \mathrm{d} x \geq \int_{a}^{b}\left(\left(\partial_{x} \phi(x)\right)^{2}+(\phi(x))^{2}\right) \mathrm{d} x
\end{aligned}
$$

Question 4: Assume that the following equation has a smooth solution: $-\partial_{x}\left(\left(1+\sin (x)^{2}\right) \partial_{x} T(x)\right)-\pi \partial_{x} T(x)+(1+b-$ $x) T(x)=\cos (x), T(a)=1, T(b)=\pi, x \in[a, b], t>0$. Prove that this solution is unique by using the energy method. (Hint: Do not try to simplify $-\partial_{x}\left(\left(1+x^{2}\right) \partial_{x} T\right)$.
Assume that there are two solutions T_{1} and T_{2}. Let $\phi=T_{2}-T_{1}$. Then

$$
-\partial_{x}\left(\left(1+\sin (x)^{2}\right) \partial_{x} \phi(x)\right)-\pi \partial_{x} \phi(x)+(1+b-x) \phi(x)=0, \quad \phi(a)=0, \quad \phi(b)=0
$$

Multiply the PDE by ϕ, integrate over (a, b), and integrate by parts (i.e. apply the fundamental theorem of calculus):

$$
\begin{aligned}
0 & =\int_{a}^{b}\left(-\partial_{x}\left(\left(1+\sin (x)^{2}\right) \partial_{x} \phi(x)\right) \phi(x)-\pi\left(\partial_{x} \phi(x)\right) \phi(x)+(1+b-x)(\phi(x))^{2}\right) \mathrm{d} x \\
& =-\left[\phi(x)\left(1+\sin (x)^{2}\right) \partial_{x} \phi(x)\right]_{a}^{b}+\int_{a}^{b}\left(\left(1+\sin (x)^{2}\right)\left(\partial_{x} \phi(x)\right)^{2}-\pi \partial_{x}\left(\frac{1}{2} \phi(x)^{2}\right)+(1+b-x)(\phi(x))^{2}\right) \mathrm{d} x
\end{aligned}
$$

But $\phi(a)=T_{2}(a)-T_{1}(a)=0$ and $\phi(b)=T_{2}(b)-T_{1}(b)=0$. Hence,

$$
0=\int_{a}^{b}\left(\left(1+\sin (x)^{2}\right)\left(\partial_{x} \phi(x)\right)^{2}+(1+b-x)(\phi(x))^{2}\right) \mathrm{d} x \geq \int_{a}^{b} \phi^{2}(x) \mathrm{d} x
$$

since $1+b-x \geq 1$ for all $x \in[a, b]$. This implies $\int_{a}^{b}(\phi(x))^{2} \mathrm{~d} x=0$, i.e., $\phi=0$, meaning that $T_{2}=T_{1}$.

Question 5: Let ϕ be a non-zero solution to the eigenvalue problem $\phi(x)-\partial_{x}\left(\left(1+\sin (x)^{2}\right) \partial_{x} \phi(x)\right)=\lambda \phi(x), x \in(0, \pi)$, $\phi(\pi)=0,-\partial_{x} \phi(0)+\phi(0)=0$. Determine the sign of λ using the energy method.
Multiply the equation by ϕ, integrate over $(0, \pi)$, and apply the fundamental theorem of calculus (i.e. integrate by parts):

$$
\begin{aligned}
\lambda \int_{0}^{\pi}(\phi(x))^{2} \mathrm{~d} x & =\int_{0}^{\pi} \phi^{2}(x) \mathrm{d} x-\int_{0}^{\pi} \phi(x) \partial_{x}\left(\left(1+\sin (x)^{2}\right) \partial_{x} \phi(x)\right) \mathrm{d} x \\
& =\int_{0}^{\pi} \phi^{2}(x) \mathrm{d} x-\int_{0}^{\pi}\left(\partial_{x}\left(\phi(x)\left(1+\sin (x)^{2}\right) \partial_{x} \phi(x)\right)-\left(1+\sin (x)^{2}\right)\left(\partial_{x} \phi(x)\right)^{2}\right) \mathrm{d} x \\
& =-\phi(\pi)\left(1+\sin (\pi)^{2}\right) \partial_{x} \phi(\pi)+\phi(0) \partial_{x} \phi(0)+\int_{0}^{\pi}\left(\phi^{2}(x)+\left(1+\sin (x)^{2}\right)\left(\partial_{x} \phi(x)\right)^{2}\right) \mathrm{d} x \\
& =(\phi(0))^{2}+\int_{0}^{\pi}\left(\phi^{2}(x)+\left(1+\sin (x)^{2}\right)\left(\partial_{x} \phi(x)\right)^{2}\right) \mathrm{d} x
\end{aligned}
$$

In conclusion

$$
(\phi(0))^{2}+\int_{0}^{\pi}\left(\phi^{2}(x)+\left(1+\sin (x)^{2}\right)\left(\partial_{x} \phi(x)\right)^{2}\right) \mathrm{d} x=\lambda \int_{0}^{\pi}(\phi(x))^{2} \mathrm{~d} x
$$

As ϕ is nonzero, we obtain that $\lambda=\left((\phi(0))^{2}+\int_{0}^{\pi}\left(\left(1+\sin (x)^{2}\right) \phi^{2}(x)+\left(\partial_{x} \phi(x)\right)^{2}\right) \mathrm{d} x\right) / \int_{0}^{\pi}(\phi(x))^{2} \mathrm{~d} x \geq 0$, i.e. λ is non-negative.

Question 6: Consider the eigenvalue problem $-\frac{d}{d t}\left(t^{\frac{1}{2}} \frac{d}{d t} \phi(t)\right)=\lambda t^{-\frac{1}{2}} \phi(t), t \in(0,1)$, supplemented with the boundary condition $\phi(0)=0, \partial_{t} \phi(1)=0$.
(a) Prove that it is necessary that λ be positive for a non-zero smooth solution to exist.
(i) Let ϕ be a non-zero smooth solution to the problem. Multiply the equation by ϕ and integrate over the domain. Use the Fundamental Theorem of calculus (i.e., integration by parts) to obtain

$$
\int_{0}^{1} t^{\frac{1}{2}}\left(\phi^{\prime}(t)\right)^{2} \mathrm{~d} t-\left[t^{\frac{1}{2}} \phi^{\prime}(t) \phi(t)\right]_{0}^{1}=\lambda \int_{0}^{1} t^{-\frac{1}{2}} \phi^{2}(t) \mathrm{d} t
$$

Using the boundary conditions, we infer

$$
\int_{0}^{1} t^{\frac{1}{2}}\left(\phi^{\prime}(t)\right)^{2} \mathrm{~d} t=\lambda \int_{0}^{1} t^{-\frac{1}{2}} \phi^{2}(t) \mathrm{d} t
$$

which means that λ is non-negative since ϕ is non-zero.
(ii) If $\lambda=0$, then $\int_{0}^{1} t^{\frac{1}{2}}\left(\phi^{\prime}(t)\right)^{2} \mathrm{~d} t=0$, which implies that $\phi^{\prime}(t)=0$ for all $t \in(0,1]$. This implies that $\phi(t)$ is constant, and this constant is zero since $\phi(0)=0$. Hence, ϕ is zero if $\lambda=0$. Since we want a nonzero solution, this implies that λ cannot be zero.
(iii) In conclusion, it is necessary that λ be positive for a nonzero smooth solution to exist.
(b) The general solution to $-\frac{d}{d t}\left(t^{\frac{1}{2}} \frac{d}{d t} \phi(t)\right)=\lambda t^{-\frac{1}{2}} \phi(t)$ is $\phi(t)=c_{1} \cos (2 \sqrt{t} \sqrt{\lambda})+c_{2} \sin (2 \sqrt{t} \sqrt{\lambda})$ for $\lambda \geq 0$. Find all the eigenvalues $\lambda>0$ and the associated nonzero eigenfunctions.
Since $\lambda \geq 0$ by hypothesis, ϕ is of the following form

$$
\phi(t)=\phi(t)=c_{1} \cos (2 \sqrt{t} \sqrt{\lambda})+c_{2} \sin (2 \sqrt{t} \sqrt{\lambda})
$$

The boundary condition $\phi(0)=0$ implies $c_{1}=0$. The other boundary condition implies $\partial_{x} \phi(1)=0=c_{2} \sqrt{\lambda} \cos (2 \sqrt{\lambda})$. The constant c_{2} cannot be zero since we want ϕ to be nonzero; as a result, $2 \sqrt{\lambda}=\left(n+\frac{1}{2}\right) \pi, n=0,2, \ldots$. In conclusion

$$
\lambda=((2 n+1) \pi)^{2} / 16, \quad n=1,2, \ldots, \quad \phi(t)=c \sin \left(\left(n+\frac{1}{2}\right) \pi \sqrt{t}\right)
$$

