HW 3

Show all your work in the blank space you are given on the exam sheet. Always justify your answer. Answers with no justification will not be graded.

Question 1: Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y, z)=\cos \left(x-y+z^{2}\right) \sin (x+\cos (y-z))
$$

(a) Give the expression of $f(y, z, x)$ for any real numbers x, y, z (i.e., I want the value of f at $(y, z, x))$.

We just have to replace x by y, y by z, and z by x in the definition of f.

$$
f(y, z, x)=\cos \left(y-z+x^{2}\right) \sin (y+\cos (z-x))
$$

(b) Compute $\left(\partial_{y} f\right)(y, z, x)$ (here $\left(\partial_{y} f\right)(y, z, x)$ means "value at (y, z, x) of the partial derivative of f with respect to the second variable of f ". You may also write it $\left(\partial_{2} f\right)(y, z, x)$ if you want).
We start by computing the partial derivative of f with respect to the second variable of f :

$$
\partial_{y} f(x, y, z)=\sin \left(x-y+z^{2}\right) \sin (x+\cos (y-z))-\cos \left(x-y+z^{2}\right) \cos (x+\cos (y-z)) \sin (z-x)
$$

Then

$$
\partial_{y} f(y, z, x)=\sin \left(y-z+x^{2}\right) \sin (y+\cos (z-x))-\cos \left(y-z+x^{2}\right) \cos (y+\cos (z-x)) \sin (x-y)
$$

(c) Compute $\left(\partial_{y} f\right)\left(y, z^{2}, x\right)$ (here $\left(\partial_{y} f\right)\left(y, z^{2}, x\right)$ means "value at $\left(y, z^{2}, x\right)$ of the partial derivative of f with respect to the second variable of f ". You may also write it $\left(\partial_{2} f\right)\left(y, z^{2}, x\right)$ if you want).
We have established above that

$$
\partial_{y} f(x, y, z)=\sin \left(x-y+z^{2}\right) \sin (x+\cos (y-z))-\cos \left(x-y+z^{2}\right) \cos (x+\cos (y-z)) \sin (z-x)
$$

Then

$$
\partial_{y} f\left(y, z^{2}, x\right)=\sin \left(y-z^{2}+x^{2}\right) \sin \left(y+\cos \left(z^{2}-x\right)\right)-\cos \left(y-z^{2}+x^{2}\right) \cos \left(y+\cos \left(z^{2}-x\right)\right) \sin (x-y)
$$

(d) Let $\Phi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by $\Phi(x, y, z):=f(y, z, x)$. Compute $\left(\partial_{y} \Phi\right)(x, y, z)$.

We have

$$
\Phi(x, y, z)=\cos \left(y-z+x^{2}\right) \sin (y+\cos (z-x))
$$

Then

$$
\left(\partial_{y} \Phi\right)(x, y, z)=-\sin \left(y-z+x^{2}\right) \sin (y+\cos (z-x))+\cos \left(y-z+x^{2}\right) \cos (y+\cos (z-x))
$$

(e) Let $\Phi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by $\Phi(x, y, z):=f(y, z, x)$. Compute $\left(\partial_{y} \Phi\right)(y, z, x)$.

We have established above that

$$
\Phi(x, y, z)=\cos \left(y-z+x^{2}\right) \sin (y+\cos (z-x))
$$

Then

$$
\left(\partial_{y} \Phi\right)(y, z, x)=-\sin \left(z-x+y^{2}\right) \sin (z+\cos (x-y))+\cos \left(z-x+y^{2}\right) \cos (z+\cos (x-y))
$$

(f) Give the expression of $f\left(z^{2}, y, \sin (x+y)\right)$ for any any real numbers x, y, z.

We just have to replace x by z^{2}, y by y, and z by $\sin (x+y)$ in the definition of f.

$$
f\left(z^{2}, y, \sin (x+y)\right)=\cos \left(z^{2}-y+\left(\sin (x+y)^{2}\right) \sin \left(z^{2}+\cos (y-\sin (x+y))\right)\right.
$$

(g) Compute $\left(\partial_{x} f\right)\left(z^{2}, y, \sin (x+y)\right)$.

We have

$$
\left(\partial_{x} f\right)(x, y, z)=-\sin \left(x-y+z^{2}\right) \sin (x+\cos (y-z))+\cos \left(x-y+z^{2}\right) \cos (x+\cos (y-z))
$$

Hence,
$\left(\partial_{x} f\right)(x, y, z)=-\sin \left(z^{2}-y+\sin (x+y)^{2}\right) \sin \left(z^{2}+\cos (y-\sin (x+y))\right)+\cos \left(z^{2}-y+\sin (x+y)^{2}\right) \cos \left(z^{2}+\cos (y-\sin (x+y))\right)$.
(h) Give the expression of $f(\sin (u), \cos (v), \sinh (u+w))$ for any any real numbers u, v, w.

We have

$$
f(\sin (u), \cos (v), \sinh (u+w))=\cos \left(\sin (u)-\cos (v)+\sinh (u+w)^{2}\right) \sin (\sin (u)+\cos (\cos (v)-\sinh (u+w)))
$$

Question 2: All the following expressions solve the Laplace equation inside the rectangular domain $D:=[0, L] \times[0, H]$ (do not check it).
(a) Show that none of these solutions satisfies the following boundary conditions $\partial_{x} u(0, y)=\frac{20 \pi}{H} \sin \left(\frac{4 \pi y}{H}\right) \cosh \left(\frac{4 \pi L}{H}\right)$, $\partial_{x} u(L, y)=0, u(x, 0)=0, u(x, H)=0$? (justify clearly your answer):

$$
\begin{array}{ll}
u_{1}(x, y)=5 \cos \left(\frac{4 \pi y}{H}\right) \cosh \left(\frac{4 \pi(x-L)}{H}\right), & u_{2}(x, y)=5 \sin \left(\frac{4 \pi y}{H}\right) \cosh \left(\frac{4 \pi(x-L)}{H}\right) \\
u_{3}(x, y)=5 \cos \left(\frac{4 \pi y}{H}\right) \sinh \left(\frac{4 \pi(x-L)}{H}\right), & u_{4}(x, y)=5 \sin \left(\frac{4 \pi y}{H}\right) \sinh \left(\frac{4 \pi(x-L)}{H}\right)
\end{array}
$$

From class, we know that all the above expressions solve the Laplace equation, hence we just need to verify the boundary conditions. We observe that u_{1} and u_{3} do not satisfy the Dirichlet boundary conditions $u(x, 0)=0, u(x, H)=0$; therefore u_{1} and u_{3} must be discarded.
Both u_{2} and u_{4} satify that Dirichlet conditions: $u_{2}(x, 0)=0, u_{2}(x, H)=0$, and $u_{4}(x, 0)=0, u_{4}(x, H)=0$. Now we need to check the Neumann conditions.

Note that u_{4} is such that $\partial_{x} u_{4}(L, y)=5 \frac{4 \pi}{H} \sin \left(\frac{4 \pi y}{H}\right) \cosh (0) \neq 0$; a result u_{4} must be discarded as well.
Finally u_{2} is such that $\partial_{x} u_{2}(L, y)=5 \frac{4 \pi}{H} \sin \left(\frac{4 \pi y}{H}\right) \sinh (0)=0$, but $\partial_{x} u_{2}(0, y)=3 \frac{4 \pi}{H} \sin \left(\frac{4 \pi y}{H}\right) \sinh \left(-\frac{4 \pi L}{H}\right)$, which shows that u_{2} is not the solution to our problem either.
(b) Give the expression of the solution that satisfies the boundary conditions $\partial_{x} u(0, y)=\frac{20 \pi}{H} \sin \left(\frac{4 \pi y}{H}\right) \cosh \left(\frac{4 \pi L}{H}\right), \partial_{x} u(L, y)=$ $\underline{0, u(x, 0)}=0, u(x, H)=0$.
The correct solution is of the form

$$
u(x, y)=a \sin \left(\frac{4 \pi y}{H}\right) \cosh \left(\frac{4 \pi(x-L)}{H}\right)
$$

We know from class that $\Delta u(x, y)=0$ (you calso verify it). We also have

$$
\begin{aligned}
u(x, 0) & =a \sin \left(\frac{4 \pi 0}{H}\right) \cosh \left(\frac{4 \pi(x-L)}{H}\right)=0 \\
u(x, H) & =a \sin \left(\frac{4 \pi H}{H}\right) \cosh \left(\frac{4 \pi(x-L)}{H}\right)=0 \\
\partial_{x} u(L, y) & =a \frac{4 \pi}{H} \sin \left(\frac{4 \pi y}{H}\right) \sinh \left(\frac{4 \pi(L-L}{H}\right)=0 .
\end{aligned}
$$

But to enforce

$$
\partial_{x} u(0, y)=a \frac{4 \pi}{H} \sin \left(\frac{4 \pi y}{H}\right) \sinh \left(-\frac{4 \pi L}{H}\right)=\frac{20 \pi}{H} \sin \left(\frac{4 \pi y}{H}\right) \cosh \left(\frac{4 \pi L}{H}\right) .
$$

we need to set

$$
a:=5 \frac{\cosh \left(\frac{4 \pi L}{H}\right)}{\sinh \left(-\frac{4 \pi L}{H}\right)} .
$$

Hence, the solution is

$$
u(x, y)=5 \frac{\cosh \left(\frac{4 \pi L}{H}\right)}{\sinh \left(\frac{-4 \pi L}{H}\right)} \sin \left(\frac{4 \pi y}{H}\right) \cosh \left(\frac{4 \pi(x-L)}{H}\right)
$$

Question 3: The solution of the equation, $\frac{1}{r} \partial_{r}\left(r \partial_{r} u\right)+\frac{1}{r^{2}} \partial_{\theta \theta} u=0$, inside the domain $D=\left\{\theta \in\left[0, \frac{1}{2} \pi\right], r \in[0,2]\right\}$, subject to the boundary conditions $u(r, 0)=0, \partial_{\theta} u\left(r, \frac{1}{2} \pi\right)=0, u(2, \theta)=g(\theta)$ is $u(r, \theta)=\sum_{n=1}^{\infty} b_{n} r^{2 n+1} \sin ((2 n+1) \theta)$. What is the solution corresponding to $g(\theta)=5 \sin (3 \theta)+2 \sin (7 \theta)$? (Give all the details.)
One must have

$$
g(\theta)=5 \sin (3 \theta)+2 \sin (7 \theta)=\sum_{n=1}^{\infty} b_{n} r^{2 n+1} \sin ((2 n+1) \theta)
$$

The only non-zero terms in the expansion are $b_{1} r^{3} \sin (3 \theta)+b_{3} r^{7} \sin (7 \theta)$, corresponding to $n=1$ and $n=3$. Hence, one must have

$$
5=b_{1} 2^{3}, \quad \text { and } \quad 2=b_{3} 2^{7}
$$

This means $b_{1}=\frac{5}{2^{3}}$ and $b_{3}=\frac{2}{2^{7}}$ and the other coefficients are zero. In conclusion

$$
u(r, \theta)=5 \frac{r^{3}}{2^{3}} \sin (3 \theta)+2 \frac{r^{7}}{2^{7}} \sin (7 \theta)
$$

Question 4: Let $u \in C^{2}\left(\mathbb{R}^{2} ; \mathbb{R}\right)$. Using the cylindrical coordinates, assume that $\Delta u(r, \theta)=0$ for all $r \leq 1$ with boundary condition $u(1, \theta)=\sin (\theta)^{3}$.
(a) Compute u at the point $\mathbf{0}$ (Hint: Use the mean value theorem).

Using the mean value theorem, we infer that for all $\theta \in[0,2 \pi)$

$$
u(0, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u(1, \phi) \mathrm{d} \phi=\frac{1}{2 \pi} \int_{0}^{2 \pi} \sin (\theta)^{3} \mathrm{~d} \phi=0
$$

Hence

$$
u(0, \theta)=0
$$

Question 5: Assume that the following equation has a nonzero solutions $-\partial_{\theta \theta} u=\lambda u, \theta \in\left(0, \frac{1}{2}\right)$ with the boundary conditions $-\partial_{\theta} u(0)+u(0)=0$ and $u\left(\frac{\pi}{2}\right)=0$.
(a) What is the sign of λ ?

The energy method gives

$$
\lambda \int_{0}^{\frac{\pi}{2}} u^{2}(\theta) \mathrm{d} \theta=-\int_{0}^{\frac{\pi}{2}}\left(\partial_{\theta \theta} u\right) u \mathrm{~d} \theta=\int_{0}^{\frac{\pi}{2}}\left(\partial_{\theta} u\right)^{2} \mathrm{~d} \theta-\partial_{\theta} u\left(\frac{\pi}{2}\right) u\left(\frac{\pi}{2}\right)+\partial_{\theta} u(0) u(0)
$$

This gives

$$
\lambda \int_{0}^{\frac{\pi}{2}} u^{2}(\theta) \mathrm{d} \theta=\int_{0}^{\frac{\pi}{2}}\left(\partial_{\theta} u\right)^{2} \mathrm{~d} \theta+u(0)^{2}
$$

Since $u \neq 0$, we infer that $\int_{0}^{\frac{\pi}{2}} u^{2}(\theta) \mathrm{d} \theta \neq 0$, hence $\lambda=\left(u(0)^{2}+\int_{0}^{\frac{\pi}{2}}\left(\partial_{\theta} u\right)^{2} \mathrm{~d} \theta\right) / \int_{0}^{\frac{\pi}{2}} u^{2}(\theta) \mathrm{d} \theta \geq 0$, i.e., $\lambda \geq 0$.
(b) Show that λ cannot be zero.

If $\lambda=0$, then $u(0)^{2}=0$ and $\int_{0}^{\frac{\pi}{2}}\left(\partial_{\theta} u\right)^{2} \mathrm{~d} \theta=0$. The second conditions means that u is contant. But $u(0)=0$ implies that $u(\theta)=0$ for all $\theta \in\left(0, \frac{1}{2}\right)$. Which is a contradiction since u is nonzero by assumption. In conclusion $\lambda>0$.

