name:

1

HW 3

Show all your work in the blank space you are given on the exam sheet. Always justify your answer. Answers with no justification will not be graded.

Question 1: Let $f : \mathbb{R}^3 \to \mathbb{R}$ be defined by

 $f(x, y, z) = \cos(x - y + z^2)\sin(x + \cos(y - z)).$

(a) Give the expression of f(y, z, x) for any real numbers x, y, z (i.e., I want the value of f at (y, z, x)).

We just have to replace x by y, y by z, and z by x in the definition of f.

$$f(y, z, x) = \cos(y - z + x^2)\sin(y + \cos(z - x)).$$

(b) Compute $(\partial_y f)(y, z, x)$ (here $(\partial_y f)(y, z, x)$ means "value at (y, z, x) of the partial derivative of f with respect to the second variable of f". You may also write it $(\partial_2 f)(y, z, x)$ if you want).

We start by computing the partial derivative of f with respect to the second variable of f:

$$\partial_y f(x, y, z) = \sin(x - y + z^2) \sin(x + \cos(y - z)) - \cos(x - y + z^2) \cos(x + \cos(y - z)) \sin(z - x).$$

Then

$$\partial_y f(y, z, x) = \sin(y - z + x^2) \sin(y + \cos(z - x)) - \cos(y - z + x^2) \cos(y + \cos(z - x)) \sin(x - y).$$

(c) Compute $(\partial_y f)(y, z^2, x)$ (here $(\partial_y f)(y, z^2, x)$ means "value at (y, z^2, x) of the partial derivative of f with respect to the second variable of f". You may also write it $(\partial_2 f)(y, z^2, x)$ if you want).

We have established above that

$$\partial_y f(x, y, z) = \sin(x - y + z^2) \sin(x + \cos(y - z)) - \cos(x - y + z^2) \cos(x + \cos(y - z)) \sin(z - x).$$

Then

$$\partial_y f(y, z^2, x) = \sin(y - z^2 + x^2) \sin(y + \cos(z^2 - x)) - \cos(y - z^2 + x^2) \cos(y + \cos(z^2 - x)) \sin(x - y).$$

(d) Let $\Phi : \mathbb{R}^3 \to \mathbb{R}$ be defined by $\Phi(x, y, z) := f(y, z, x)$. Compute $(\partial_y \Phi)(x, y, z)$.

We have

 $\Phi(x, y, z) = \cos(y - z + x^2)\sin(y + \cos(z - x)).$

Then

$$(\partial_y \Phi)(x, y, z) = -\sin(y - z + x^2)\sin(y + \cos(z - x)) + \cos(y - z + x^2)\cos(y + \cos(z - x))$$

(e) Let $\Phi : \mathbb{R}^3 \to \mathbb{R}$ be defined by $\Phi(x, y, z) := f(y, z, x)$. Compute $(\partial_y \Phi)(y, z, x)$.

We have established above that

$$\Phi(x, y, z) = \cos(y - z + x^2)\sin(y + \cos(z - x)).$$

Then

$$(\partial_y \Phi)(y, z, x) = -\sin(z - x + y^2)\sin(z + \cos(x - y)) + \cos(z - x + y^2)\cos(z + \cos(x - y))$$

(f) Give the expression of $f(z^2, y, \sin(x+y))$ for any any real numbers x, y, z.

We just have to replace x by $z^2,\,y$ by $y,\,{\rm and}\,\,z$ by $\sin(x+y)$ in the definition of f.

$$f(z^2, y, \sin(x+y)) = \cos(z^2 - y + (\sin(x+y)^2)\sin(z^2 + \cos(y - \sin(x+y))).$$

(g) Compute $(\partial_x f)(z^2, y, \sin(x+y))$.

We have

$$(\partial_x f)(x, y, z) = -\sin(x - y + z^2)\sin(x + \cos(y - z)) + \cos(x - y + z^2)\cos(x + \cos(y - z))$$

Hence,

$$(\partial_x f)(x, y, z) = -\sin(z^2 - y + \sin(x + y)^2)\sin(z^2 + \cos(y - \sin(x + y))) + \cos(z^2 - y + \sin(x + y)^2)\cos(z^2 + \cos(y - \sin(x + y))).$$

(h) Give the expression of $f(\sin(u), \cos(v), \sinh(u+w))$ for any any real numbers u, v, w.

We have

 $f(\sin(u), \cos(v), \sinh(u+w)) = \cos(\sin(u) - \cos(v) + \sinh(u+w)^2)\sin(\sin(u) + \cos(\cos(v) - \sinh(u+w))).$

Question 2: All the following expressions solve the Laplace equation inside the rectangular domain $D := [0, L] \times [0, H]$ (do not check it).

(a) Show that none of these solutions satisfies the following boundary conditions $\partial_x u(0,y) = \frac{20\pi}{H} \sin(\frac{4\pi y}{H}) \cosh(\frac{4\pi L}{H})$, $\partial_x u(L,y) = 0$, u(x,0) = 0, u(x,H) = 0? (justify clearly your answer):

$$\begin{split} & u_1(x,y) = 5\cos(\frac{4\pi y}{H})\cosh(\frac{4\pi (x-L)}{H}), \quad u_2(x,y) = 5\sin(\frac{4\pi y}{H})\cosh(\frac{4\pi (x-L)}{H}), \\ & u_3(x,y) = 5\cos(\frac{4\pi y}{H})\sinh(\frac{4\pi (x-L)}{H}), \quad u_4(x,y) = 5\sin(\frac{4\pi y}{H})\sinh(\frac{4\pi (x-L)}{H}). \end{split}$$

From class, we know that all the above expressions solve the Laplace equation, hence we just need to verify the boundary conditions. We observe that u_1 and u_3 do not satisfy the Dirichlet boundary conditions u(x,0) = 0, u(x,H) = 0; therefore u_1 and u_3 must be discarded.

Both u_2 and u_4 satify that Dirichlet conditions: $u_2(x,0) = 0$, $u_2(x,H) = 0$, and $u_4(x,0) = 0$, $u_4(x,H) = 0$. Now we need to check the Neumann conditions.

Note that u_4 is such that $\partial_x u_4(L, y) = 5\frac{4\pi}{H}\sin(\frac{4\pi y}{H})\cosh(0) \neq 0$; a result u_4 must be discarded as well.

Finally u_2 is such that $\partial_x u_2(L, y) = 5\frac{4\pi}{H}\sin(\frac{4\pi y}{H})\sinh(0) = 0$, but $\partial_x u_2(0, y) = 3\frac{4\pi}{H}\sin(\frac{4\pi y}{H})\sinh(-\frac{4\pi L}{H})$, which shows that u_2 is not the solution to our problem either.

(b) Give the expression of the solution that satisfies the boundary conditions $\partial_x u(0,y) = \frac{20\pi}{H} \sin(\frac{4\pi y}{H}) \cosh(\frac{4\pi L}{H}), \partial_x u(L,y) = 0, u(x,0) = 0, u(x,H) = 0.$

The correct solution is of the form

$$u(x,y) = a\sin(\frac{4\pi y}{H})\cosh(\frac{4\pi(x-L)}{H}).$$

We know from class that $\Delta u(x,y) = 0$ (you calso verify it). We also have

$$u(x,0) = a\sin(\frac{4\pi 0}{H})\cosh(\frac{4\pi(x-L)}{H}) = 0.$$
$$u(x,H) = a\sin(\frac{4\pi H}{H})\cosh(\frac{4\pi(x-L)}{H}) = 0.$$
$$\partial_x u(L,y) = a\frac{4\pi}{H}\sin(\frac{4\pi y}{H})\sinh(\frac{4\pi(L-L)}{H}) = 0.$$

But to enforce

$$\partial_x u(0,y) = a \frac{4\pi}{H} \sin(\frac{4\pi y}{H}) \sinh(-\frac{4\pi L}{H}) = \frac{20\pi}{H} \sin(\frac{4\pi y}{H}) \cosh(\frac{4\pi L}{H}).$$

we need to set

$$a := 5 \frac{\cosh(\frac{4\pi L}{H})}{\sinh(-\frac{4\pi L}{H})}.$$

Hence, the solution is

$$u(x,y) = 5 \frac{\cosh(\frac{4\pi L}{H})}{\sinh(\frac{-4\pi L}{H})} \sin(\frac{4\pi y}{H}) \cosh(\frac{4\pi (x-L)}{H})$$

Question 3: The solution of the equation, $\frac{1}{r}\partial_r(r\partial_r u) + \frac{1}{r^2}\partial_{\theta\theta}u = 0$, inside the domain $D = \{\theta \in [0, \frac{1}{2}\pi], r \in [0, 2]\}$, subject to the boundary conditions u(r, 0) = 0, $\partial_{\theta}u(r, \frac{1}{2}\pi) = 0$, $u(2, \theta) = g(\theta)$ is $u(r, \theta) = \sum_{n=1}^{\infty} b_n r^{2n+1} \sin((2n+1)\theta)$. What is the solution corresponding to $g(\theta) = 5\sin(3\theta) + 2\sin(7\theta)$? (Give all the details.)

One must have

$$g(\theta) = 5\sin(3\theta) + 2\sin(7\theta) = \sum_{n=1}^{\infty} b_n r^{2n+1} \sin((2n+1)\theta).$$

The only non-zero terms in the expansion are $b_1 r^3 \sin(3\theta) + b_3 r^7 \sin(7\theta)$, corresponding to n = 1 and n = 3. Hence, one must have

$$5 = b_1 2^3$$
, and $2 = b_3 2^7$.

This means $b_1 = \frac{5}{2^3}$ and $b_3 = \frac{2}{2^7}$ and the other coefficients are zero. In conclusion

$$u(r,\theta) = 5\frac{r^3}{2^3}\sin(3\theta) + 2\frac{r^7}{2^7}\sin(7\theta).$$

Question 4: Let $u \in C^2(\mathbb{R}^2; \mathbb{R})$. Using the cylindrical coordinates, assume that $\Delta u(r, \theta) = 0$ for all $r \leq 1$ with boundary condition $u(1, \theta) = \sin(\theta)^3$.

(a) Compute u at the point **0** (*Hint:* Use the mean value theorem).

Using the mean value theorem, we infer that for all $\theta \in [0, 2\pi)$

$$u(0,\theta) = \frac{1}{2\pi} \int_0^{2\pi} u(1,\phi) \mathrm{d}\phi = \frac{1}{2\pi} \int_0^{2\pi} \sin(\theta)^3 \mathrm{d}\phi = 0$$

Hence

 $u(0,\theta)=0.$

Question 5: Assume that the following equation has a nonzero solutions $-\partial_{\theta\theta}u = \lambda u, \ \theta \in (0, \frac{1}{2})$ with the boundary conditions $-\partial_{\theta}u(0) + u(0) = 0$ and $u(\frac{\pi}{2}) = 0$. (a) What is the sign of λ ?

The energy method gives

$$\lambda \int_0^{\frac{\pi}{2}} u^2(\theta) \mathsf{d}\theta = -\int_0^{\frac{\pi}{2}} (\partial_{\theta\theta} u) u \mathsf{d}\theta = \int_0^{\frac{\pi}{2}} (\partial_{\theta} u)^2 \mathsf{d}\theta - \partial_{\theta} u(\frac{\pi}{2}) u(\frac{\pi}{2}) + \partial_{\theta} u(0) u(0)$$

This gives

$$\lambda \int_0^{\frac{\pi}{2}} u^2(\theta) \mathrm{d}\theta = \int_0^{\frac{\pi}{2}} (\partial_\theta u)^2 \mathrm{d}\theta + u(0)^2.$$

Since $u \neq 0$, we infer that $\int_0^{\frac{\pi}{2}} u^2(\theta) d\theta \neq 0$, hence $\lambda = (u(0)^2 + \int_0^{\frac{\pi}{2}} (\partial_\theta u)^2 d\theta) / \int_0^{\frac{\pi}{2}} u^2(\theta) d\theta \ge 0$, i.e., $\lambda \ge 0$.

(b) Show that λ cannot be zero.

If $\lambda = 0$, then $u(0)^2 = 0$ and $\int_0^{\frac{\pi}{2}} (\partial_{\theta} u)^2 d\theta = 0$. The second conditions means that u is contant. But u(0) = 0 implies that $u(\theta) = 0$ for all $\theta \in (0, \frac{1}{2})$. Which is a contradiction since u is nonzero by assumption. In conclusion $\lambda > 0$.