HW 4

Show all your work in the blank space you are given on the exam sheet. Always justify your answer. Answers with no justification will not be graded.

Question 1: Let $f:[-L, L] \rightarrow \mathbb{R}$ and assume that $|f|$ is integrable over $[-L, L]$. Recall the definition of the Fourier series of f.
Recall that $\mathrm{FS}(f): \mathbb{R} \rightarrow \mathbb{R}$ is defined by $\mathrm{FS}(f)(x)=\sum_{n=0}^{\infty} a_{n} \cos \left(n \pi \frac{x}{L}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(n \pi \frac{x}{L}\right)$ with

$$
a_{n}:=\left\{\begin{array}{ll}
\frac{1}{2 L} \int_{-L}^{L} f(x) \cos \left(\pi n \frac{x}{L}\right) \mathrm{d} x & \text { if } n=0 \\
\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\pi n \frac{x}{L}\right) \mathrm{d} x & \text { if } n \neq 0
\end{array} \quad b_{n}:=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(2 \pi n \frac{x}{L}\right) \mathrm{d} x\right.
$$

Question 2: (a) Let $f:[-\pi, \pi] \rightarrow \mathbb{R}$ be defined by $f(x)=\sin (2 x)$. Compute the Fourier series of f.
Recall that $\operatorname{FS}(f)(x)=\sum_{n=0}^{\infty} a_{n} \cos \left(n \pi \frac{x}{\pi}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(n \pi \frac{x}{\pi}\right)=\sum_{n=0}^{\infty} a_{n} \cos (n x)+\sum_{n=1}^{\infty} b_{n} \sin (n x)$ with

$$
a_{0}:=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sin (2 x) \mathrm{d} x, \quad a_{n}:=\frac{1}{\pi} \int_{-\pi}^{\pi} \sin (2 x) \cos (n x) \mathrm{d} x, \forall n \geq 1
$$

We obtain $a_{n}=0$ for all $n \geq 0$. And

$$
b_{n}:=\frac{1}{\pi} \int_{-\pi}^{\pi} \sin (2 x) \sin (n x) \mathrm{d} x, \forall n \geq 1
$$

We obtain $b_{2}=1$ and $b_{n}=0$ for all $n \neq 2, n \geq 1$. Hence $\operatorname{FS}(f)(x)=\sin (2 x)$ for all $x \in \mathbb{R}$.
(b) For which values of $x \in[-\pi, \pi]$ do $\operatorname{FS}(f)(x)$ and $f(x)$ coincide?
f is a smooth function in $(-\pi, \pi)$; hence, $\mathrm{FS}(f)(x)$ and $f(x)$ coincide for all $x \in(-\pi, \pi)$. But also, $f(-\pi)=f(\pi)$; hence, FS (f) and f also coincide at $-\pi$ and π.
(c) Let $f:[-2 \pi, 2 \pi] \rightarrow \mathbb{R}$ be defined by $f(x)=\sin (2 x)$. Compute the Fourier series of f.

Recall that $\operatorname{FS}(f)(x)=\sum_{n=0}^{\infty} a_{n} \cos \left(n \pi \frac{x}{2 \pi}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(n \pi \frac{x}{2 \pi}\right)=\sum_{n=0}^{\infty} a_{n} \cos \left(n \frac{x}{2}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(n \frac{x}{2}\right)$ with

$$
a_{0}:=\frac{1}{4 \pi} \int_{-2 \pi}^{2 \pi} \sin (2 x) \mathrm{d} x, \quad a_{n}:=\frac{1}{2 \pi} \int_{-2 \pi}^{2 \pi} \sin \left(4 \frac{x}{2}\right) \cos \left(n \frac{x}{2}\right) \mathrm{d} x, \quad \forall n \geq 1
$$

We obtain $a_{n}=0$ for all $n \geq 0$. And

$$
b_{n}:=\frac{1}{2 \pi} \int_{-1}^{1} \sin (2 x) \sin \left(n \frac{x}{2}\right) \mathrm{d} x=\frac{1}{2 \pi} \int_{-1}^{1} \sin \left(4 \frac{x}{2}\right) \sin \left(n \frac{x}{2}\right) \mathrm{d} x, \forall n \geq 1
$$

We obtain $b_{4}=1$ and $b_{n}=0$ for all $n \neq 4, n \geq 1$. Hence $\operatorname{FS}(f)(x)=\sin (2 x)$ for all $x \in \mathbb{R}$.
(d) For which values of $x \in[-2 \pi, 2 \pi]$ do $\operatorname{FS}(f)(x)$ and $f(x)$ coincide?
f is a smooth function in $(-2 \pi, 2 \pi)$; hence, $\mathrm{FS}(f)(x)$ and $f(x)$ coincide for all $x \in(-2 \pi, 2 \pi)$. But also, $f(-2 \pi)=f(2 \pi)$; hence, $\mathrm{FS}(f)$ and f also coincide at -2π and 2π.

Question 3: Let $f:(-\pi, \pi) \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}-1 & \text { if }-\pi<x \leq 0 \\ 1 & \text { if } 0<x<\pi\end{cases}
$$

(a) Compute the Fourier series of f.

As f is odd, we have

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \mathrm{d} x=0, \quad a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) \mathrm{d} x=0
$$

Moreover,

$$
\begin{aligned}
\pi b_{n} & =\int_{-\pi}^{\pi} f(x) \sin (n x) \mathrm{d} x=-\int_{-\pi}^{0} \sin (n x) \mathrm{d} x+\int_{0}^{\pi} \sin (n x) \mathrm{d} x \\
& =-\frac{1}{n}(-\cos (0)+\cos (n \pi))+\frac{1}{n \pi}(-\cos (n \pi)+\cos (0)) \\
& =\frac{2}{n}\left(1-(-1)^{n}\right)
\end{aligned}
$$

Hence $b_{2 n}=0$ and $b_{2 n+1}=\frac{4}{(2 n+1) \pi}$. Hence

$$
\mathrm{FS}(f)(x)==\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n+1)} \sin ((2 n+1) x)
$$

(b) For which values of x in $(-\pi, \pi)$ do $\operatorname{FS}(f)(x)$ and $f(x)$ coincide?

As f is a smooth function in $(-\pi, 0)$ and $(0, \pi), \mathrm{FS}(f)(x)$ and $f(x)$ coincide for all $x \in(-\pi, 0)$ and $(0, \pi)$. But $f(0)=-1$ whereas $\mathrm{FS}(f)(0)=0$.
(c) Let $g:[-\pi, \pi] \rightarrow \mathbb{R}$ be defined by

$$
g(x)= \begin{cases}a & \text { if }-\pi=x \\ -1 & \text { if }-\pi<x<0 \\ b & \text { if } 0=x \\ 1 & \text { if } 0<x<\pi \\ c & \text { if } \pi=x\end{cases}
$$

What should be the values of a, b, c so that $\operatorname{FS}(g)(x)$ and $g(x)$ coincide over the entire domain $[-\pi, \pi]$?
By arguing as above we conclude that $\mathrm{FS}(g)(x)$ and $g(x)$ coincide in $(-\pi, 0)$ and $(0, \pi)$. We also have $\mathrm{FS}(g)(-\pi)=0$, $\underline{\mathrm{FS}}(g)(0)=0$, and $\mathrm{FS}(g)(\pi)=0$. Hence we must set $a=b=c$ so that $\mathrm{FS}(g)$ and g coincide over the entire domain [$-\pi, \pi]$.

Question 4: Consider $f:[-L, L] \longrightarrow \mathbb{R}, f(x)=|x| x$. (a) Sketch the graph of the Fourier series of f and the graph of f. $F S(f)$ is equal to the periodic extension of $f(x)$ over \mathbb{R} except at the points $k L, k \in \mathbb{Z}$.

(b) For which values of $x \in \mathbb{R}$ is $F S(f)(x)$ equal to $x|x|$? (Explain)

The periodic extension of $f(x)=x|x|$ over \mathbb{R} is smooth over each interval $[(2 k-1) L,(2 k+1) L], k \in \mathbb{Z}$, but discontinuous at all the points $(2 k+1) L, k \in \mathbb{Z}$. This means that the Fourier series is equal to $x|x|$ over the interval $(-L, L)$. Since

Question 5: Consider $f:[-L, L] \longrightarrow \mathbb{R}, f(x)=x^{4}$. (a) Sketch the graph of the Fourier series of f and the graph of f. $F S(f)$ is equal to the periodic extension of $f(x)$ over \mathbb{R}.

(b) For which values of $x \in \mathbb{R}$ is $F S(f)(x)$ equal to x^{4} ? (Explain)

The periodic extension of $f(x)=x^{4}$ over \mathbb{R} is piecewise smooth and globally continuous since $f(L)=f(-L)$. This means that the Fourier series is equal to x^{4} over the entire interval $[-L,+L]$.

Question 6: Let $h:[0, \pi] \rightarrow \mathbb{R}$ be defined by $h(x):=x(\pi-x)$.
(a) Compute the sine series of h.

Using the definition we have $\mathrm{SS}(f)(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(n \pi \frac{x}{\pi}\right)$ with

$$
b_{n}:=\frac{2}{\pi} \int_{0}^{\pi} h(x) \sin \left(n \pi \frac{x}{\pi}\right) \mathrm{d} x=\frac{2}{\pi} \int_{0}^{\pi} x(\pi-x) \sin (n x) \mathrm{d} x=\frac{4}{n^{3} \pi}\left(1+(-1)^{n+1}\right) .
$$

Hence

$$
\mathrm{SS}(h)(x)=\sum_{m=1}^{\infty} \frac{4}{m^{3} \pi}\left(1+(-1)^{m+1}\right) \sin (m x)=\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{3}} \sin ((2 n-1) x)
$$

(a) Where do h and $\mathrm{SS}(h)$ coincide?
h is smooth over $[0, \pi]$ and $h(0)=0=h(\pi)$; hence, h and $\operatorname{SS}(h)$ coincide over the entire interval $[0, \pi]$.
(b) Let $g:[0, \pi] \rightarrow \mathbb{R}$ be defined by $g(x):=\pi-2 x$. Compute the cosine series of g (Hint: $\partial_{x} h=g$.)

Observe that $h(0)=h(\pi)=0$; as a result the sine series of h is continuous at 0 and $+\pi$. This in turn implies that it is legitimate to differentiate the sine series of h term by term to obtain the cosine series of $h^{\prime}(x)=g(x)$. In other words,

$$
\mathrm{CS}(g)(x)=\partial_{x} \mathrm{SS}(h)(x)=\sum_{m=1}^{\infty} \frac{4}{m^{3} \pi}\left(1+(-1)^{m+1}\right) \partial_{x} \sin (m x)=\sum_{m=1}^{\infty} \frac{4}{m^{2} \pi}\left(1+(-1)^{m+1}\right) \cos (m x)
$$

Notice that the equality holds true for all $x \in[0, \pi]$ since g is smooth and the above is a cosine series.
Question 7: Compute the sine series of $h(x)=\sin (x)$ for $x \in[0,+\pi]$.
By definition

$$
\mathrm{SS}(h)(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(n \pi \frac{x}{\pi}\right)=\sum_{n=1}^{\infty} b_{n} \sin (n x)
$$

with

$$
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} \sin (x) \sin (n x) \mathrm{d} x= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { otherwise }\end{cases}
$$

Obviously

$$
\mathrm{SS}(h)(x)=\sin (x), \quad \forall x \in \mathbb{R}
$$

