Last name:

name:

HW 5

Show all your work in the blank space you are given on the exam sheet. Always justify your answer. Answers with no justification will not be graded.

Question 1: Let $f:[0,1] \to \mathbb{R}$ be defined by f(x) = x. Let $u:[0,1] \to \mathbb{R}$ be the solution to the boundary value problem $-\partial_{xx}u + 2u(x) = f(x), x \in [0,1]$ with u(0) = 0 and u(1) = 0. Accept as a fact that all the derivatives of u are continuous and bounded on [0,1].

(a) Compute the sine series of f.

We have

$$b_n(f) = 2 \int_0^1 t \sin(n\pi t) dt = \frac{2(-1)^{n+1}}{n\pi}$$

Hence

$$\mathsf{SS}(f)(x) = \sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n\pi} \sin(n\pi x).$$

(b) Let $b_n(u)$ be the coefficients of the sine series of u. Give the definition of $b_n(u)$.

The definition of $b_n(u)$ is

$$b_n(u) := 2 \int_0^1 u(t) \sin(n\pi t) \mathrm{d}t.$$

(c) Compute the cosine series of $\partial_x u$ in terms of the coefficients $b_n(u)$.

As u is smooth and u(0) = u(1) = 0, we can differentiate the sine series of u:

$$\partial_x u(x) = \partial_x \left(\sum_{n=1}^{\infty} b_n(u) \sin(n\pi x) \right) = \sum_{n=1}^{\infty} n\pi b_n(u) \cos(n\pi x).$$

That is we have $a_n(\partial_x u) = n\pi b_n(u)$.

(d) Compute the sine series of $\partial_{xx}u$ in terms of the coefficients $b_n(u)$.

As $\partial_x u$ is smooth, we can differentiate the cosine series of $\partial_x u$:

$$\partial_x(\partial_x u(x)) = \partial_x \left(\sum_{n=1}^{\infty} n\pi b_n(u) \cos(n\pi x) \right) = \sum_{n=1}^{\infty} -n^2 \pi^2 b_n(u) \sin(n\pi x).$$

Hence $b_n(\partial_{xx}u) = -n^2\pi^2b_n(u)$.

(e) Compute $\partial_{xx} (SS(u))(x) - SS(\partial_{xx}u)(x)$ for all $x \in (0, 1)$.

Since u is smooth, we have SS(u)(x) = u(x) for all $x \in (0, 1)$. Hence $\partial_x SS(u)(x) = \partial_x u(x)$ for all $x \in (0, 1)$. Similarly, since $\partial_x u$ is smooth, we have $SS(\partial_x u)(x) = \partial_x u(x)$ for all $x \in (0, 1)$. Hence

$$\partial_x \left(\mathsf{SS}(u) \right)(x) = \partial_x u(x) = \mathsf{SS}(\partial_x u)(x) \qquad \forall x \in (0,1)$$

The same argument shows that $\partial_x (SS(\partial_x u)) = \partial_x (\partial_x u)$. Similarly, since $\partial_{xx} u$ is smooth, we have $SS(\partial_{xx} u)(x)) = \partial_{xx} u(x)$ for all $x \in (0, 1)$. In conclusion,

$$\partial_x \left(\mathsf{SS}(\partial_x u)\right)(x) = \partial_x (\partial_x u)(x) = \partial_{xx} u(x) = \mathsf{SS}(\partial_{xx} u)(x) \qquad \forall x \in (0,1).$$

Hence,

$$\partial_{xx} \left(\mathsf{SS}(u) \right)(x) - \mathsf{SS}(\partial_{xx}u)(x) \qquad \forall x \in (0,1). = 0$$

(f) Compute the coefficients $b_n(u)$. (*Hint*: insert the sine series of u and f in the equation $-\partial_{xx}u + 2u(x) = f(x)$.)

We have

$$\mathsf{SS}(f) = \mathsf{SS}(-\partial_{xx}u) + 2\mathsf{SS}(u) = -\partial_{xx}\mathsf{SS}(u) + 2\mathsf{SS}(u).$$

Hence

$$\sum_{n=1}^{\infty} b_n(f) \sin(n\pi x) = \sum_{n=1}^{\infty} n^2 \pi^2 b_n(u) \sin(n\pi x) + \sum_{n=1}^{\infty} 2b_n(u) \sin(n\pi x)$$
$$= \sum_{n=1}^{\infty} (n^2 \pi^2 + 2) b_n(u) \sin(n\pi x).$$

This implies that

$$b_n(u) = \frac{b_n(f)}{2 + n^2 \pi^2}$$

Question 2: Let $f : [0, \pi] \to \mathbb{R}$ be defined by $f(x) = \cos(x)$. (a) Compute the sine series of f.

We have

$$b_n(f) = \frac{2}{\pi} \int_0^{\pi} \cos(t) \sin(n\pi \frac{t}{\pi}) \mathrm{d}t$$

Recall that $\sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha+\beta) + \sin(\alpha-\beta))$. Then

$$b_n(f) = \frac{2}{\pi} \int_0^{\pi} \frac{1}{2} \left(\sin((1+n)t) + \sin((1-n)t) \right) dt$$

= $-\frac{1}{\pi} \left(\frac{1}{n+1} \left(\cos((1+n)\pi) - 1 \right) + \frac{1}{n-1} \left(\cos((1-n)\pi - 1) \right) \right)$
= $\frac{2n(1+(-1)^n)}{\pi(n^2-1)}$

Hence,

$$\mathsf{SS}(f)(x) = \sum_{n=1}^{\infty} \frac{2n(1+(-1)^n)}{\pi(n^2-1)} \sin(nx) = \sum_{n=1}^{\infty} \frac{8n}{\pi(4n^2-1)} \sin(2nx)$$

(b) Compute the cosine series of f.

Solution 1: We have

$$a_n(f) = \frac{2}{\pi} \int_0^{\pi} \cos(t) \cos(n\pi \frac{t}{\pi}) dt = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t) \cos(nt) dt$$

Hence

$$a_n(f) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{otherwise.} \end{cases}$$

This means

$$\mathsf{CS}(f)(x) = \cos(x).$$

Solution 2: The cosine serie of f coincides with the Fourier series of the even extension of f, say $f_{\text{even}} : [-\pi, \pi] \to \mathbb{R}$. We have $f_{\text{even}}(x) = \cos(x)$ and $\text{FS}(f_{\text{even}})(x) = \cos(x)$. Hence $\text{CS}(f)(x) = \cos(x)$ for all $x \in \mathbb{R}$.

Question 3:

Let $f:[0,1] \to \mathbb{R}$ be defined by $f(x) = x^2$. The cosine series of f(x) is

$$\operatorname{CS}(f)(x) = \frac{1}{3} + \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos(n\pi x).$$

(a) Let $g: [0,1] \to \mathbb{R}$ be defined by g(x) = x. Compute the sine series of g.

As f is smooth, we can differentiate the cosine series of f and we obtain

$$2\mathsf{SS}(g)(x) = \mathsf{SS}(2g)(x) = \mathsf{SS}(\partial_x f)(x) = \partial_x (\mathsf{CS}(f))(x) = \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}\pi}{n} \sin(n\pi x).$$

Hence

$$SS(g)(x) = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}\pi}{n} \sin(n\pi x).$$

(Note in passing: SS(g)(x) = g(x) for all $x \in [0,1)$, but $SS(g)(1) = 0 \neq 1 = g(1)$.)

(b) Is it possible to obtain the cosine series of the function $h: [0,1] \to \mathbb{R}$ defined by h(x) = 1 by differentiating the sine series of g.

No it is not legitimate to differentiate the sine series of g because $g(1) \neq 0$.

Question 4: Let N be a positive integer and let \mathbb{P}_N be the set of trigonometric polynomials of degree at most N; that is, $\mathbb{P}_N = \operatorname{span}\{1, \cos(x), \sin(x), \ldots, \cos(Nx), \sin(Nx)\}$.

(i) Consider the function $f: (-\pi, \pi) \longrightarrow \mathbb{R}$ defined by

$$f(x) = \sum_{n=1}^{1000} \frac{1}{n^5} \sin(7n) \cos(2nx).$$

Compute the best L^2 -approximation of f in \mathbb{P}_7 over $(-\pi, \pi)$.

The best L^2 -approximation of f in \mathbb{P}_7 over $(-\pi,\pi)$ is the truncated Fourier series FS₇(f). Clearly

$$\mathsf{FS}_7(f)(x) = \sum_{n=1}^3 \frac{1}{n^5} \sin(7n) \cos(2nx)$$

(ii) Consider the function $f: (-\pi, \pi) \longrightarrow \mathbb{R}$ defined by

$$f(x) = \sum_{n=1}^{11} \frac{1}{n^3 + 1} \cos(35n^2) \sin(3nx).$$

Compute the best L^2 -approximation of f in \mathbb{P}_{35} over $(-\pi, \pi)$.

The best L^2 -approximation of f in \mathbb{P}_{35} over $(0, 2\pi)$ is the truncated Fourier series $FS_{35}(f)$. Observing that $f \in \mathbb{P}_{11} \subset \mathbb{P}_{35}$ it is clear that $FS_{35}(f) = f$.

name:

Question 5: Let L > 0. Let $\mathbb{P}_1 = \operatorname{span}\{1, \cos(\pi t/L), \sin(\pi t/L)\}$ and consider the norm $||f||_{L^2} = \left(\int_{-L}^{L} f(t)^2 dt\right)^{\frac{1}{2}}$. (a) Compute the best approximation of 2 - 3t in \mathbb{P}_1 with respect to the L^2 -norm. (Hint: $\int_{-L}^{L} t \sin(\pi t/L) dt = 2L^2/\pi$.)

We know from class that the truncated Fourier series

$$FS_1(t) = a_0 + a_1 \cos(\pi t/L) + b_1 \sin(\pi t/L)$$

is the best approximation. Now we compute $a_{\rm 0}$, $a_{\rm 1}$, $a_{\rm 2}$

$$a_{0} = \frac{1}{2L} \int_{-L}^{L} (2 - 3t) dt = 2,$$

$$a_{1} = \frac{1}{L} \int_{-L}^{L} (2 - 3t) \cos(\pi t/L) dt = 0$$

$$b_{1} = \frac{1}{L} \int_{-L}^{L} (2 - 3t) \sin(\pi t/L) dt = \frac{1}{L} \int_{-L}^{L} -3t \sin(\pi t/L) dt = -6 \cos(\pi) \frac{L}{\pi} = -\frac{6L}{\pi}$$

As a result

$$FS_1(t) = 2 - \frac{6L}{\pi}\sin(\pi t/L)$$

(b) Compute the best approximation of $h(t) = 2\cos(\pi t/L) + 7\sin(3\pi t/L)$ in \mathbb{P}_1 .

The function $h(t) - 2\cos(\pi t/L) = 7\sin(3\pi t/L)$ is orthogonal to all the members of \mathbb{P}_1 since the functions $\cos(m\pi t/L)$ and $\sin(m\pi t/L)$ are orthogonal to both $\cos(n\pi t/L)$ and $\sin(n\pi t/L)$ for all $m \neq m$; as a result, the best approximation of h in \mathbb{P}_1 is $2\cos(\pi t/L)$. (Recall that the best approximation of h in \mathbb{P}_1 is such that $\int_{-L}^{L} (h(t) - FS_1(h))p(t)dt = 0$ for all $p \in \mathbb{P}_1$.) In conclusion

$$FS_1(h) = 2\cos(\pi t/L).$$