HW 7

Show all your work in the blank space you are given on the exam sheet. Always justify your answer. Answers with no justification will not be graded.
Question 1: We want to solve the following PDE: $\partial_{t} w+3 \partial_{x} w=0$, for $x>-t, t>0$, with $w(x, t)=w_{\Gamma}(x, t)$, for all $(x, t) \in \Gamma$ where $\Gamma=\left\{(x, t) \in \mathbb{R}^{2}\right.$ s.t. $\left.x=-t, x<0\right\} \cup\left\{(x, t) \in \mathbb{R}^{2}\right.$ s.t. $\left.t=0, x \geq 0\right\}$ and w_{Γ} is a given function.
(a) Draw a picture of the domain Ω where the PDE must be solved and properly identify the boundary Γ.
(b) Define a one-to-one parametric representation of the boundary Γ.

For negative s we set $x_{\Gamma}(s)=s$ and $t_{\Gamma}(s)=-s$; clearly we have $x_{\Gamma}(s)=-t_{\Gamma}(s)$ for all $s<0$. For positive s we set $x_{\Gamma}(s)=s$ and $t_{\Gamma}(s)=0$. The map $\mathbb{R} \in s \mapsto\left(x_{\Gamma}(s), t_{\Gamma}(s)\right) \in \Gamma$ is one-t-one.
(c) Give a parametric representation of the characteristics associated with the PDE.
(i) We use t and s to parameterize the characteristics. The characteristics are defined by

$$
\partial_{t} X(t, s)=3, \quad \text { with } \quad X\left(t_{\Gamma}(s), s\right)=x_{\Gamma}(s)
$$

This yields the following parametric representation of the characteristics

$$
X(t, s)=3\left(t-t_{\Gamma}(s)\right)+x_{\Gamma}(s)
$$

where $t \geq 0$ and $s \in(-\infty,+\infty)$.
(d) Give an implicit parametric representation of the solution to the PDE.
(i) Now we set $\phi(t, s)=w(X(t, s), t)$ and we insert this ansatz in the equation. This gives $\partial_{t} \phi(t, s)=0$, i.e., $\phi(t, s)$ does not depend on t. In other words

$$
w(X(t, s), t)=\phi(t, s)=\phi(0, s)=w(X(0, s), t(0, s))=w_{\Gamma}\left(x_{\Gamma}(s), t_{\Gamma}(s)\right)
$$

A parametric representation of the solution is given by

$$
\begin{aligned}
& X(t, s)=3\left(t-t_{\Gamma}(s)\right)+x_{\Gamma}(s) \\
& w(X(t, s), t)=w_{\Gamma}\left(x_{\Gamma}(s), t_{\Gamma}(s)\right)
\end{aligned}
$$

(e) Give an explicit representation of the solution.
(i) We have to find the inverse map $(x, t) \mapsto(s, t)$, where $x-3 t=x_{\Gamma}(s)-3 t_{\Gamma}(s)$. Then, there are two cases depending on the sign of s.
case 1: If $s<0$, then $x_{\Gamma}(s)=s$ and $t_{\Gamma}(s)=-s$. That means $x-3 t=4 s$, which in turns implies $s=\frac{1}{4}(x-3 t)$. Then

$$
w(x, t)=w_{\Gamma}\left(\frac{1}{4}(x-3 t),-\frac{1}{4}(x-3 t)\right), \quad \text { if } x-3 t<0
$$

case 2: If $s \geq 0$, then $x_{\Gamma}(s)=s$ and $t_{\Gamma}(s)=0$. That means $x-3 t=s$. Then

$$
w(x, t)=w_{\Gamma}(x-3 t, 0), \quad \text { if } x-3 t \geq 0 .
$$

Note that the explicit representation of the solution does not depend on the choice of the parameterization.

Question 2: Let $\Omega=\left\{(x, t) \in \mathbb{R}^{2} \mid t>0, x \geq \frac{1}{t}\right\}$. Solve the following PDE in explicit form with the method of characteristics: (Solution: $u(x, t)=(2+\cos (s)) e^{\frac{1}{s}-t}$ with $\left.s=\frac{1}{2}\left[(x-2 t)+\sqrt{(x-2 t)^{2}+8}\right]\right)$

$$
\partial_{t} u(x, t)+2 \partial_{x} u(x, t)=-u(x, t), \quad \text { in } \Omega, \quad \text { and } \quad u(x, t)=2+\cos (x), \text { if } x=1 / t
$$

(i) First we parameterize the boundary of Ω by setting $\Gamma=\left\{x=x_{\Gamma}(s), t=t_{\Gamma}(s) ; s \in \mathbb{R}\right\}$ with $x_{\Gamma}(s)=s$ and $t_{\Gamma}(s)=\frac{1}{s}$. This choice implies

$$
u\left(x_{\Gamma}(s), t_{\Gamma}(s)\right):=u_{\Gamma}(s):=2+\cos (s)
$$

(ii) We compute the characteristics

$$
\partial_{t} X(t, s)=2, \quad X\left(t_{\Gamma}(s), s\right)=x_{\Gamma}(s)
$$

The solution is $X(t, s)=2\left(t-t_{\Gamma}(s)\right)+x_{\Gamma}(s)$.
(iii) Set $\Phi(t, s):=u(X(t, s), t)$ and compute $\partial_{t} \Phi(t, s)$. This gives

$$
\begin{aligned}
\partial_{t} \Phi(t, s) & =\partial_{t} u(X(t, s), t)+\partial_{x} u(X(t, s), t) \partial_{t} X(t, s) \\
& =\partial_{t} u(X(t, s), t)+2 \partial_{x} u(X(t, s), t)=u(X(t, s), t)=-\Phi(t, s)
\end{aligned}
$$

The solution is $\Phi(t, s)=\Phi\left(t_{\Gamma}(s), s\right) e^{-t+t_{\Gamma}(s)}$.
(iv) The implicit representation of the solution is

$$
X(t, s)=2\left(t-t_{\Gamma}(s)\right)+x_{\Gamma}(s), \quad u(X(t, s))=u_{\Gamma}(s) e^{-t+t_{\Gamma}(s)}
$$

(v) The explicit representation is obtained by using the definitions of $-t_{\Gamma}(s), x_{\Gamma}(s)$ and $u_{\Gamma}(s)$.

$$
X(s, t)=2\left(t-\frac{1}{s}\right)+s=2 t-\frac{2}{s}+s
$$

which gives the equation

$$
s^{2}-s(X-2 t)-2=0
$$

The solutions are $s_{ \pm}=\frac{1}{2}\left((X-2 t) \pm \sqrt{(X-2 t)^{2}+8}\right)$. The only legitimate solution is the positive one:

$$
s=\frac{1}{2}\left((X-2 t)+\sqrt{(X-2 t)^{2}+8}\right)
$$

The solution is

$$
\begin{aligned}
& u(x, t)=(2+\cos (s)) e^{\frac{1}{s}-t} \\
& \text { with } s=\frac{1}{2}\left((x-2 t)+\sqrt{(x-2 t)^{2}+8}\right)
\end{aligned}
$$

Question 3: Let $\Omega=\left\{(x, t) \in \mathbb{R}^{2} \mid t>0, x+3 t>0\right\}$. Use the method of characteristics to solve the equation $\partial_{t} u+4 \partial_{x} u+2 u=0$ for $(x, t) \in \Omega$ and $u(x, 0)=x+4$, for $x>0, u(-3 t, t)=t+4$, for $t>0$.
(i) We first parameterize the boundary of Ω by setting $\Gamma=\left\{x=x_{\Gamma}(s), t=t_{\Gamma}(s) ; s \in \mathbb{R}\right\}$ with

$$
x_{\Gamma}(s)=\left\{\begin{array}{ll}
3 s & s<0 \\
s & s>0,
\end{array} \quad t_{\Gamma}(s)= \begin{cases}-s & s<0 \\
0 & s>0\end{cases}\right.
$$

(ii) We compute the characteristics

$$
\partial_{t} X(t, s)=4, \quad X\left(t_{\Gamma}(s), s\right)=x_{\Gamma}(s)
$$

The solution is $X(t, s)=x_{\Gamma}(s)+4\left(t-t_{\Gamma}(s)\right)$.
(iii) Set $\Phi(t, s)=u(X(t, s), t)$. Then

$$
\begin{aligned}
\partial_{t} \Phi(t, s) & =\partial_{x} u(X(t, s), t) \partial_{t} X(t, s)+\partial_{t} u(X(t, s), t) \partial_{t} t \\
& =4 \partial_{x} u(X(t, s), t)+\partial_{t} u(X(t, s), t)=-2 u(X(t, s), t)=-2 \Phi(s, t)
\end{aligned}
$$

The solution is $\Phi(t, s)=\Phi\left(t_{\Gamma}(s), s\right) e^{-2\left(t-t_{\Gamma}(s)\right)}$, i.e., $u(X(t, s))=u\left(X\left(t_{\Gamma}(s), s\right), t_{\Gamma}(s)\right) e^{-2\left(t-t_{\Gamma}(s)\right)}=u\left(x_{\Gamma}(s), t_{\Gamma}(s)\right) e^{-2\left(t-t_{\Gamma}(s)\right)}$.
(iv) The implicit representation of the solution is

$$
X(t, s)=x_{\Gamma}(s)+4\left(t-t_{\Gamma}(s)\right), \quad u(X(t, s))=u\left(x_{\Gamma}(s), t_{\Gamma}(s)\right) e^{-2\left(t-t_{\Gamma}(s)\right)}
$$

(v) The explicit representation is obtained by replacing the parameterization (t, s) by (X, t). Using the definitions of $x_{\Gamma}(s)$ and $t_{\Gamma}(s)$, we have two cases:
Case 1: $s<0$. The definition of $X(t, s)$ gives $X(s, t)=3 s+4(t+s)$, i.e., $s=(X-4 t) / 7$. Then

$$
\begin{aligned}
u(X, t)=\left(t_{\Gamma}(s)+4\right) e^{-2\left(t-t_{\Gamma}(s)\right)} & =(-s+4) e^{-2(t+s)}=(4-(X-4 t) / 7) e^{-2(t+(X-4 t) / 7)} \\
& =\left(4+\frac{4 t-X}{7}\right) e^{-\frac{2}{7}(3 t+X)}
\end{aligned}
$$

i.e., $u(X, t)=\left(4+\frac{4 t-X}{7}\right) e^{-\frac{2}{7}(3 t+X)}$ if $X<4 t$.

Case 2: $s>0$. The definition of $X(t, s)$ gives $X(s, t)=s+4 t$, i.e., $s=X-4 t$. Then

$$
u(X, t)=\left(x_{\Gamma}(s)+4\right) e^{-2\left(t-t_{\Gamma}(s)\right)}=(s+4) e^{-2 t}=(4+X-4 t) e^{-2 t}
$$

i.e., $u(X, t)=(4+X-4 t) e^{-2 t}$ if $X>4 t$.

Question 4: Let $\Omega=\left\{(x, t) \in \mathbb{R}^{2} ; x \geq 0, t \geq 0\right\}$. Solve the following PDE in explicit form

$$
\partial_{t} u(x, t)+t \partial_{x} u(x, t)=2 u(x, t), \quad \text { in } \Omega, \quad \text { and } \quad u(0, t)=t, u(x, 0)=x
$$

(i) First we parameterize the boundary of Ω by setting $\Gamma=\left\{x=x_{\Gamma}(s), t=t_{\Gamma}(s) ; s \in \mathbb{R}\right\}$ with $x_{\Gamma}(s)=s$ and $t_{\Gamma}(s)=0$ if $s>0$ and $x_{\Gamma}(s)=0$ and $t_{\Gamma}(s)=-s$ if $s \leq 0$. This choice implies

$$
u\left(x_{\Gamma}(s), t_{\Gamma}(s)\right):=u_{\Gamma}(s):= \begin{cases}s & \text { if } s>0 \\ -s & \text { if } s \leq 0\end{cases}
$$

(ii) We compute the characteristics

$$
\partial_{t} X(t, s)=t, \quad X\left(t_{\Gamma}(s), s\right)=x_{\Gamma}(s)
$$

The solution is $X(t, s)=\frac{1}{2} t^{2}-\frac{1}{2} t_{\Gamma}^{2}(s)+x_{\Gamma}(s)$.
(iii) Set $\Phi(t, s):=u(X(t, s), t)$ and compute $\partial_{t} \Phi(t, s)$. This gives

$$
\begin{aligned}
\partial_{t} \Phi(t, s) & =\partial_{t} u(X(t, s), t)+\partial_{x} u(X(t, s), t) \partial_{t} X(t, s) \\
& =\partial_{t} u(X(t, s), t)+t \partial_{x} u(X(t, s), t)=2 u(X(t, s), t)=2 \Phi(t, s)
\end{aligned}
$$

The solution is $\Phi(t, s)=\Phi\left(t_{\Gamma}(s), s\right) e^{2\left(t-t_{\Gamma}(s)\right)}$.
(iv) The implicit representation of the solution is

$$
X(t, s)=\frac{1}{2} t^{2}-\frac{1}{2} t_{\Gamma}^{2}(s)+x_{\Gamma}(s), \quad u(X(t, s))=u_{\Gamma}(s) e^{2\left(t-t_{\Gamma}(s)\right)}, \quad u_{\Gamma}(s)= \begin{cases}s & \text { if } s>0 \\ -s & \text { if } s \leq 0\end{cases}
$$

(v) We distinguish two cases to get the explicit form of the solution:

Case 1: Assume $s>0$, then $t_{\Gamma}(s)=0$ and $x_{\Gamma}(s)=s$. This implies $X(t, s)=\frac{1}{2} t^{2}+s$, meaning $s=X-\frac{1}{2} t^{2}$. The solution is

$$
u(x, t)=\left(x-\frac{1}{2} t^{2}\right) e^{2 t}, \quad \text { if } \quad x>\frac{1}{2} t^{2}
$$

Case 2: Assume $s \leq 0$, then $t_{\Gamma}(s)=-s$ and $x_{\Gamma}(s)=0$. This implies $X(t, s)=\frac{1}{2} t^{2}-\frac{1}{2} s^{2}$, meaning $s=-\sqrt{t^{2}-2 X}$. The solution is

$$
u(x, t)=\sqrt{t^{2}-2 x} e^{2\left(t-\sqrt{t^{2}-2 x}\right)}, \quad \text { if } \quad x \leq \frac{1}{2} t^{2}
$$

