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HW 9

Show all your work in the blank space you are given on the exam sheet. Always justify your answer. Answers with
no justification will not be graded.

Question 1: (a) Consider the following flux f(v) = sin(v) and the entropy η(v) = 1
2v

2. Find the associated entropy flux
G(v) (Hint: Recall that G′(v) := η′(v)f ′(v).)

By definition

G(v) =

∫ v

0

η′(z)f ′(z)dz.

Integrating by parts gives

G(v) =

∫ v

0

z cos(z)dz = −
∫ v

0

sin(z)dz + v sin(v) = cos(v)− 1 + v sin(v).

Hence, up to a nonessential constant, the entropy flux associated with the entropy η(v) = 1
2v

2 is

G(v) = cos(v) + v sin(v).

(b) Let η(v) = 1
3 |v|v

2. Compute η′(v)− |v|v for all v ∈ R. (Hint: Consider the two cases v ≤ 0 and 0 ≤ v.)

If v ≥ 0, we have

η(v) =
1

3
v3, and η′(v) = v2 = |v|v.

If v ≤ 0, we have

η(v) = −1

3
v3, and η′(v) = −v2 = |v|v.

Hence
η′(v) = |v|v.

(c) Show that the function η(v) = 1
3 |v|v

2 is convex. (Hint: Consider the two cases v ≤ 0 and 0 ≤ v.)

If v ≥ 0, we have

η(v) =
1

3
v3, and η′′(v) = 2v = 2|v| ≥ 0.

If v ≤ 0, we have

η(v) = −1

3
v3, and η′′(v) = −2v = 2|v| ≥ 0.

Hence η′′(v) ≥ 0 for all v ∈ R. This proves that η is convex.
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(d) Consider the following flux f(v) = cos(v) and the entropy η(v) = 1
3 |v|v

2. Find the associated entropy flux G(v) (Hint:
Recall that G′(v) := η′(v)f ′(v).)

From the previous question we know that η′(v) = |v|v. If v ≥ 0, we have

G(v) =

∫ v

0

η′(z)f ′(z)dz =

∫ v

0

|z|zf ′(z)dz =
∫ v

0

z2f ′(z)dz = −
∫ v

0

z2 sin(z)dz.

Integrating by parts gives

G(v) = −
∫ v

0

2z cos(z)dz + z2 cos(z)|0v =

∫ v

0

2 sin(z)dz − 2z sin(z)|v0 + z2 cos(z)|v0

= −2 cos(0) + 2 cos(v) + 2v sin(v)− v2 cos(v)

= cos(0) + 2 cos(v) + 2|v| sin(v)− |v|v cos(v).

If v ≤ 0, we have

G(v) =

∫ v

0

η′(z)f ′(z)dz =

∫ v

0

|z|zf ′(z)dz =
∫ v

0

−z2f ′(z)dz =
∫ v

0

z2 sin(z)dz.

Hence

G(v) = 2 cos(0)− 2 cos(v)− 2v sin(v) + v2 cos(v)

= 2 cos(0)− 2 cos(v) + 2|v| sin(v)− |v|v cos(v)

In conclusion the entropy flux is

G(v) = 2 cos(0)− 2 cos(v) + 2|v| sin(v)− |v|v cos(v).

Question 2: Let k ∈ R and η(v) := |v − k|. (a) Show that for all v, w ∈ R, all k ∈ R, all θ ∈ [0, 1], η(θv + (1 − θ)w) ≤
θη(v) + (1− θ)η(w), i.e., η is convex. (Hint: recall that |a+ b| ≤ |a|+ |b| and k = θk + (1− θ)k.)

Using the hint, we have

η(θv + (1− θ)w) = |θv + (1− θ)w − k| = |θv + (1− θ)w − θk − (1− θ)k| = |θ(v − k) + (1− θ)(w − k)|
≤ |θ(v − k)|+ |(1− θ)(w − k)| = θ|(v − k)|+ (1− θ)|(w − k)|
= θη(v) + (1− θ)η(w).

Hence
η(θv + (1− θ)w) ≤ θη(v) + (1− θ)η(w).

(b) Let f ∈ C1(R;R). Show that the entropy flux associated with the flux f(v) and the entropy η(v) := |v − k| is
G(v) := sgn(v − k)(f(v)− f(k)) for all v ̸= k, where sgn(v − k) is the sign of v − k.

If v > k, then
G(v) = f(v)− f(k), and η(v) = v − k.

Hence
G′(v) = f ′(v), and η′(v) = 1.

Which shows that
G′(v) = η′(v)f ′(v).

If v < k, then
G(v) = −f(v) + f(k), and η(v) = k − v.

Hence
G′(v) = −f ′(v), and η′(v) = −1.

Which shows again that
G′(v) = η′(v)f ′(v).
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Question 3: Consider the equation ∂tu+∂x(−u6) = 0, where x ∈ (−∞,+∞), t > 0, with initial data u0(x) = 1 if x < 0,
u0(x) = 0 otherwise.
(a) Show that u(x, t) = 1−H(x+ t) is a solution in the distribution sense.

Using the chain rule and denoting by δ0 the Dirac measure at {x = 0}, we have

∂tu = −δ0(x+ t).

Moreover, using that (1−H(x+ t))6 = 1−H(x+ t), we also have

∂x(−u6) = +δ0(x+ t).

This implies that ∂tu+ ∂x(−u6) = 0, i.e., u(x, t) = H(x+ t) is a solution in the distribution sense.

(b) What is the entropy flux associated with the entropy η(v) = v2?

By definition, the entropy flux is

F (v) =

∫ v

0

f ′(z)η′(z)dz =

∫ v

0

−6z52zdz = −12

7
v7,

i.e., F (v) = − 12
7 v

7.

(c) Is it the entropy solution? Clearly justify your answer either by invoking the characteristics or invoking an entropy
inequality (say using η(v) = v2).

Solution 1: By looking at the characteristics (X(t, s) = s− 6t for s < 0 and X(s, t) = s for s > 0) we observe that the correct
solution should be an expansion wave.

Solution 2: Consider the entropy η(v) = v2, then the entropy flux is F (v) =
∫ v

0
−6z52zdz = − 12

7 v
7. Then upon observing

that η(u) = u2 = 1−H(x+ t) and F (u) = − 12
7 u

7 = − 12
7 (1−H(x+ t)), we infer that

∂tη(u) = −∂tH(x+ t) = −δ0(x+ t)

and

∂tF (u) =
12

7
∂tH(x+ t) =

12

7
δ0(x+ t).

In conclusion

∂tη(u) + ∂tF (u) = (−1 +
12

7
)δ0(x+ t) =

5

7
δ0(x+ t) > 0.

The entropy residual ∂tη(u) + ∂tF (u) is a positive measure, which implies that the 1−H(x+ t) is not the entropy solution.
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Question 4: Consider the conservation equation ∂tu + ∂xf(u) = 0 with f(v) = v4 and initial data u0(x) = 2H(x) − 1.
(a) Compute f(u0(x)) (Hint: consider the cases x < 0 and 0 < x).

If x < 0, we have u0(x) = −1, whence
f(u0(x)) = 1.

If 0 < x, then u0(x) = 1, whence
f(u0(x)) = 1.

(b) Show that u(x, t) = u0(x) is a weak solution. (Hint: compute ∂tu+ ∂xf(u))

Using the hint we have
∂tu(x, t) = ∂tu0(x) = 0,

and
∂xf(u0) = ∂x(1) = 0.

In conclusion, ∂tu+ ∂xf(u) = 0.

(c) Consider the entropy η(v) = v2. Compute the associated entropy flux q(v).

We have

q(v) =

∫ v

0

2z4z3dz =
8

5
v5.

(d) Using the entropy η(v) = v2 and the associated entropy flux, compute ∂tη(u(x, t)) + ∂xq(u(x, t)) = 0 where u(x, t) =
u0(x) (Hint: Use the distribution theory/theory of weak derivatives.)

We have
η(u(x, t)) = (u0(x))

2 = 1,

and

g(u(x, t)) =
8

5
(u(x, t))5 =

8

5
(u0(x))

5 =
8

5
u0(x).

This show that

∂tη(u(x, t)) + ∂xq(u(x, t)) = ∂t(1) + ∂x
8

5
u0(x) =

8

5
2δ0 =

16

5
δ0.

(e) What do you conclude from (d)? (Based on the observation that
∫
δ0ψ = ψ(0) ≥ 0 for all nonnegative functions

ψ ∈ C0(R; [0,∞)), we say that δ0 ≥ 0, i.e., δ0 is a positive measure)

We conclude that

∂tη(u(x, t)) + ∂xq(u(x, t)) =
16

5
δ0 ≥ 0.

Hence, the entropy inequality is violated. The proposed solution is not the entropy solution.
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(f) Compute the entropy solution to this problem.

By looking at the characteristics we conclude that the entropy solution is an expansion wave.

Case 1: s < 0, u0(x) = −1, f ′(u0(x)) = −4. Hence

X(x, t) = s− 4t.

This gives s(X, t) = X + 4t. Hence,
u(X, t) = −1, if X ≤ −4t.

Case 2: s = 0 and we use u0 as parameter with −1 ≤ u0 ≤ 1. Then

X(s, t) = 0 + 4u30t.

This implies that u0 = X
4t .

u(X, t) = u0 =
X

4t
, if −1 ≤ X

4t
≤ 1.

Case 3: 0 < s, u0(x) = 1, f ′(u0(x)) = 4. Hence
X(x, t) = s+ 4t.

This gives s(X, t) = X − 4t. Hence,
u(X, t) = 1, if 4t ≤ X.


