1 Theory

Definition 1.1. For space E (total space), B (base), F (fiber) and surjection
\[\pi : E \rightarrow B \] (1)
if there is an open neighborhood U of $\pi(x)$ ($x \in E$) such that $\pi^{-1}(U)$ and $U \times F$ are homeomorphic, (E, B, F, π) is a fiber bundle. And E has the form of product space $B \times F$.

Figure 1: Base and Fiber

Here are two kinds of fiber bundle on a torus.

Figure 2: Trivial Fibers
Figure 3: Nontrivial Fibers
Definition 1.2. \(\{U_i\} \) is an atlas of an \(n \)-dimensional manifold \(U \). For each chart \(U_i \), define

\[
\phi_i : U_i \rightarrow \mathbb{R}^n
\]

(2)

If \(U_i \cap U_j \neq \emptyset \), define

\[
\varphi_{ij} = \phi_j \circ \phi_i^{-1}
\]

(3)

And if \(\varphi_{ij} \) has the form of

\[
\varphi_{ij} = (\varphi_{ij}^1(x), \varphi_{ij}^2(x, y))
\]

(4)

\[
\varphi_{ij}^1 : \mathbb{R}^{n-p} \rightarrow \mathbb{R}^{n-p}
\]

(5)

\[
\varphi_{ij}^2 : \mathbb{R}^n \rightarrow \mathbb{R}^p
\]

(6)

then for any stripe \(s_i : x = c_i \) in \(U_i \) there must be a stripe in \(U_j \) \(s_j : x = c_j \) such that \(s_i \) and \(s_j \) are the same curve in \(U_i \cap U_j \) and can be connected. The maximal connection is a leaf. This structure is called a \(p \)-dimensional foliation \(F \) of an \(n \)-dimensional manifold \(U \).

Property 1.1. All the fiber bundles compose a group \(G_F = \{ F_i \} \).

If we regard the fiber bundle(1-manifold) as a parameterization on a surface(2-manifold), we can prove it easily. As an example, we use the parameterization on a torus.

\[
\{u, v\} \rightarrow \{(R + r \cos v) \cos u, (R + r \cos v) \sin u, r \sin v\}
\]

(7)

Then we can get the trivial fibers in Fig. 2.

\[
\{u, v\} = \{t, \text{const}\}
\]

(8)

To generalize the creating method of fiber bundle, it’s necessary to define the transformation functions.

Definition 1.3. A transformation function \(F : [0, 1]^2 \rightarrow [0, 1]^2 \) for fiber bundle must be:

- \(F \) is \(C^1([0, 1]^2) \)
- \(F \) is bijection
 - \(F(u, 0) = F(u, 1) \), \(F(0, v) = F(1, v) \)
 - \(F_u(u, 0) = F_u(u, 1) \), \(F_u(0, v) = F_u(1, v) \)
 - \(F_v(u, 0) = F_v(u, 1) \), \(F_v(0, v) = F_v(1, v) \)

An example is \(F(u, v) = \{u, \{v + u/2\}\} \). The \(\{\} \) inside means the fractional part. Generally, transformation functions always use \(\{\} \) to make sure that \(F \) have the properties listed above. In the following parts, we will omit it.

With transformation functions, we can easily get any fiber in any fiber bundle:

\[
F : \{u, v\} = \{t, \text{const}\} \rightarrow \{u', v'\} = F(u, v) \rightarrow \{(R + r \cos v') \cos u', (R + r \cos v') \sin u', r \sin v'\}
\]

(9)

And

Property 1.2. For \(G_F \), we have following properties:

- \(\forall F_i, F_j, F_i \circ F_j \) is defined as
 \[
 F_j \circ F_i : \{u', v'\} = F_j(F_i(u, v)) \rightarrow \{(R + r \cos v') \cos u', (R + r \cos v') \sin u', r \sin v'\}
 \]

(10)

- Identity element is
 \[
 I : I(u, v) = \{u, v\}
 \]

(11)

- \(\forall F_i \),
 \[
 F_i^{-1} : \{u', v'\} = F_i^{-1}(u, v) \rightarrow \{(R + r \cos v') \cos u', (R + r \cos v') \sin u', r \sin v'\}
 \]

(12)
2 Result

As an example, assume

\begin{align*}
F_1(u, v) &= \{u, v + \frac{u}{2}\} \\
F_2(u, v) &= \{u, v + \sin 2\pi u\} \\
F_3(u, v) &= \{u + \frac{1}{2} \sin 2\pi v, v\} \\
F &= F_3 \circ F_2 \circ F_1
\end{align*}

Figure 4: A fiber of I

Figure 5: A fiber of I

Figure 6: Five fibers of I

Figure 7: Five fibers of I
Figure 8: A fiber of F_1

Figure 9: A fiber of F_1

Figure 10: Five fibers of F_1

Figure 11: Five fibers of F_1
Figure 12: A fiber of F_2

Figure 13: A fiber of F_2

Figure 14: Five fibers of F_2

Figure 15: Five fibers of F_2
Figure 16: A fiber of F_3

Figure 17: A fiber of F_3

Figure 18: Five fibers of F_3

Figure 19: Five fibers of F_3
Figure 20: A fiber of $F_2 \circ F_1$

Figure 21: A fiber of $F_2 \circ F_1$

Figure 22: Five fibers of $F_2 \circ F_1$

Figure 23: Five fibers of $F_2 \circ F_1$
Figure 24: A fiber of $F_3 \circ F_2 \circ F_1$

Figure 25: A fiber of $F_3 \circ F_2 \circ F_1$

Figure 26: Five fibers of $F_3 \circ F_2 \circ F_1$

Figure 27: Five fibers of $F_3 \circ F_2 \circ F_1$
Figure 28: Base and Fiber