CUTTING TOOLS

Objectives

- Name two types of material of which end mills are made and state their application
- Describe the purpose of two-flute and multipleflute end mills
- Know the purpose of climb and conventional milling

End Mills

- Greatly improved since days of carbon-steel cutting tools
- High-speed steel (HSS) cutting tools maintain very important place in metal-cutting industry
- Variables influencing cutter decision
 - Part shape, work material, wear resistance of tool, red hardness, machine condition

High-Speed End Mills

- Relatively inexpensive, easy to get and do jobs quite well
- Capable of machining with close tolerances
- Single most versatile rotary tools used on conventional and CNC machines
- If need harder tool, frequent solution is cobalt end mill
 - Less expensive than carbide, long tool life

Coated End Mills

- Greatly improved performance of cutting tools by using hard, wear resistant coatings of
 - Carbides
 - Nitrides
 - Oxides
- These coatings
 - Increase tool life
 - Increase manufacturing productivity
 - Reduce machining costs

Coated End Mills (Continued)

- Combinations of two or three materials coating the end mill can provide qualities such as
 - Strong wear-resistance
 - Toughness
 - Shock resistance
 - Chemical stability at high temperatures
- Polycrystalline is another coating that can be used in the machining of abrasive, non-metallic, nonferrous materials

Carbide End Mills

- Carbide properties vs. HSS tool materials
 - Higher hardness
 - Greater rigidity
 - Can withstand higher cutting temperatures
- Can run at higher speeds and feeds
 - Increasing production rates
 - Providing long tool life
- High-performance tool material

Common Machining Operations

Performed with HSS, cobalt, solid carbide, or indexable insert type end mill

- Open and closed pockets
- Facing operations for small areas
- Counterboring and spotfacing

- Peripheral end milling
- Milling of slots and keyways
- Channel groves, face grooves and recesses
- Chamfering

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

End Mill Forms

- Ground into required shapes
 - Flat bottom end mill (most common)
 - Used for all operations requiring flat bottom and sharp corner between wall and bottom
 - End mill with full radium (ball nose end mill)
 - Used for 3D machining of various surfaces
 - End mill with corner radium (bull nose end mill)
 - Used for either 3D work or for flat surfaces that require corner radius between wall and bottom

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Three common types and the relationship of the radius to the tool diameter.

Common Types of End Mills

- Two-Flute End Mill
 - Have large, open flutes that provide excellent chip flow
 - Recommended for general-purpose milling
 - Always select shortest end mill possible for job to obtain maximum tool rigidity
 - Can have different length lips on end
 - Mill slots, keyways, plunge cut and drill shallow holes

Common Types of End Mills

- Three-Flute End Mill
 - With end teeth
 - Used to plunge into workpiece
 - Used to mill slots, pockets and keyways
 - Minimize chatter and better chip removal
- Roughing End Mill
 - Designed to provide best performance while machining broad range of materials
 - Allows deeper cuts at faster feed rates

Common Types of End Mills

- Multiple-Flute End Mill
 - Have four or more flutes
 - Produces fine finish after roughing cut
 - Center-cutting end teeth allow drilling into work to start machining operation
 - Recommended for pocketing, tracer milling, cam milling, die sinking and slotting

Direction of Cut: Climb

- Cutter rotation and table feed going in same direction
- Vertical milling: cutter tendency to pull work into cutting flutes
- Horizontal milling: cutter pushes work against table
- Maximum thickness of chip occurs at beginning of cut and exits when thin
 - Result chip absorbs heat generated

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Direction of Cut: Conventional

- When cutter rotation and table feed are moving in opposite directions
 - Has tendency to pull or lift workpiece up from table
- Important that work be held securely

Direction of Cut

Milling Cutter Failure

- Excessive heat
 - One of main causes of total cutting edge failure
 - Caused by cutting edges rubbing on workpiece and chips sliding along faces of teeth
 - Ever-expanding cycle
 - Minimized by correct speeds, feeds, and coolant
- Abrasion
 - Wearing-away action caused by metallurgy of workpiece
 - dulls cutting edges and cause "wear lands"

Chipping or Crumbling of Cutting Edges

- Small fractures occur and small areas of cutting edges chip out when cutting forces impose greater load on cutting edges
 - Material left uncut imposes greater cutting load
 - Condition progressive
 - Once started will lead to total cutter failure
- Dull edges increase friction, heat, and horsepower requirements

Major Causes of Chipping and Fracturing of Cutting Edges

- Excessive feed per tooth (FPT)
- Poor cutter design
- Brittleness due to improper heat treatment
- Running cutters backward
- Chattering due to nonrigid condition
- Inefficient chip washout
- Built-up edge break-away

Clogging

- Some workpiece materials have "gummy" composition
 - Chips long, stringy and compressible
- Chips clog or jam into flute area
- Minimize by reducing depth or width of cut, reducing FPT, using tools with fewer teeth, creating more chip space and coolant
 - Coolant applied under pressure to flush out flute area

Built-Up Edges

- Occur when particles of material cold-weld, gall, or otherwise adhere to faces of teeth adjacent to cutting edges
 - Periodically built-up material break away
 - Intermittent break-away takes portion of cutting edge
- Moderated by reducing feed / depth of cut
 - Solution in forceful application of coolant

Work Hardening of Workpiece

- Can cause milling cutter failure
- Result of action of cutting edges deforming or compressing surface of workpiece, causing change in work material structure that increases its hardness
- Important to use sharp tools at generous power feeds and use coolant
- Causes glaze break by vapor honing or abrading surface with coarse emery cloth

Cratering

- Caused by chips sliding on tooth face adjacent to cutting edge
 - Area of high heat and extreme abrasion due to high chip pressures
 - Sliding and curling of chips erodes groove into tooth face
- Minimized by applying coolant that provides highpressure film to prevent metal-to-metal contact