Chat Log: Unit 4 Communicating

CONTENTS
Monday- undergrads
Monday- grads
Wed- undergrads no show
Wed- grads

Monday, September 24, 2012 undergrad

8:01 PM: Edna has entered the room.
8:01 PM: HOST: Hi Edna!
8:01 PM: Eliza has entered the room.
8:02 PM: Edna: Good evening, Dr. P!
8:02 PM: HOST: Hi Eliza!
8:02 PM: Eliza: Hi Edna! Hi Dr. P!
8:02 PM: Edna: Hi, Eliza!
8:03 PM: HOST: How are you two this eve?
8:04 PM: Eliza: Pretty good, how about you?
8:04 PM: Edna: Doing well!
8:04 PM: HOST: Great, I am loving this cooler weather!
8:05 PM: HOST: also learning about the super sources that folks have been submitting in their draft inquiries
8:06 PM: Eliza: Me too!!! I think a trip to Lick Creek might be in order for me this week.
8:06 PM: HOST: good idea! look for coyote tracks in the sandy trails and creek bed
8:07 PM: Eliza: Ooo, I will.
8:08 PM: HOST: there used to be a family of coyotes who lived over where the subdivisions have been built....we are wondering if they moved over to the park
8:08 PM: Eliza: I hope so. I really like the houses out there, but it makes me sad at the same time that CS is becoming less and less wild.
8:09 PM: HOST: I agree
8:10 PM: Eliza: I have a question about one of the quiz questions. Is it alright to ask about it tonight since not everyone has submitted theirs yet?
8:10 PM: HOST: sure!
8:12 PM: HOST: which one?
8:13 PM: Eliza: Awesome. So for the question about mormyrid fish, I said that none of the answers were false. But the quiz thing said they don't cause temporary deafness with their electrical impulses. I'm really confused about if they do or don't, because the book seems to indicate that they do. Am I getting the contexts confused or something?
8:13 PM: Edna: I think the book was referring that they actually cause deafness to themselves, not to other fish.
8:14 PM: Edna: That one tripped me up a little too.
8:14 PM: Eliza: Oh, and the question was in reference to other fish?
8:14 PM: Edna: I believe it was!
8:14 PM: Eliza: That makes so much more sense... I was so confused! Thanks!!!
8:15 PM: Edna: No problem! I was pretty confused too until I reread it a few times...
8:15 PM: HOST: lets all get on the same page with this where are you?
8:16 PM: Eliza: The bottom of page 85.
8:20 PM: HOST: I agree that the use of the term "deafness" is confusing
8:21 PM: HOST: the mormyrid fish have a mechanism that dampens the response to their own signal, but they still can sense other signals.....so they are really not deaf
8:21 PM: Edna: Yeah, it's definitely a little vague.
8:23 PM: Eliza: So although the fish are "deaf" to electrical impulses for a time, for the purposes of the quiz, they aren't being considered "deaf" because their other senses are still functional?
8:23 PM: HOST: good critical thinking!
8:23 PM: Eliza: Ok, that makes sense as well.
8:24 PM: Edna: "in mormyrid fish, the blast of electricity may be used to deafen each other"
8:24 PM: Edna: I took the 'each other' part as...well, one another, instead of themselves, which the text seemed to be saying.
8:24 PM: Eliza: Huh... Yeah, now that I'm seeing how it was worded, I'm confused again.
8:24 PM: Eliza: It was definitely worded a bit strangely. I had to think on it for a while.
8:25 PM: HOST: Edna, where did you get that quote?
8:26 PM: Edna: From Quiz 4! The question was "Which of the following is NOT true about electric fish?"
8:28 PM: HOST: sounds to me like there may be something wrong with the quiz. Please write this up as a shared PS and let me look at it.
8:28 PM: Edna: Ok, I can definitely do that. I'm really glad it wasn't just me who was confused though!
8:29 PM: Edna: Sure thing. May we both do it? If not, I'll let Eliza do it since she was the one that brought it up!
8:29 PM: HOST: you may both do it!
8:29 PM: Eliza: Works for me!
8:29 PM: Edna: Awesome, thank you :)
8:30 PM: HOST: Anything else you want to bring up about the quiz>
8:30 PM: Eliza: No, that was the only question I really got stuck on.
8:31 PM: HOST: who wants to practice answering spotlight questions for Unit 4?
8:31 PM: Eliza: Practice is always good. I'm willing to at least try. =)
8:32 PM: Edna: Same here!
8:32 PM: HOST: Great! when you look at the list of Q's which one looks the hardest to you?
8:37 PM: Edna: Honestly, anything about the PC, PD, UE, and UF
8:38 PM: Edna: Still want to make sure I'm getting those down right.
8:38 PM: HOST: ok. want to start with the ultimate concepts UE & UF since they seem to be the hardest?
8:39 PM: Edna: Actually, I don't think the Unit 4 notes have been updated with your class notes, so that could be why I'm confused on flexible vs. fixed
8:39 PM: Edna: Yes please!
8:39 PM: Eliza: That sounds good to me too.
8:40 PM: HOST: Edna, have you looked recently and refreshed your browser window? I fixed the broken links for Unit 4-6 and posted the learning modules this morning
8:40 PM: HOST: Please let me know if there is still a problem
8:42 PM: Edna has left the room.
8:43 PM: HOST: Lets start with Q4.5 What is an example of an evolutionary change in a FIXED signal?
8:43 PM: Edna has entered the room.
8:44 PM: Edna: Well, there's something up there now, but it doesn't look at all like your powerpoint notes.
8:44 PM: HOST: on pg 85, what are some of the comparisons between species that Robinson writes about the electric fish?
8:44 PM: HOST: Edna, I posted the notes from last year, they should follow in the same order as the Lecture video slides
8:45 PM: **Edna:** Ah okay, awesome then!
8:45 PM: **Edna:** I see it now, the flexible and fixed signals/signs
8:45 PM: **HOST:** But if you would rather have the powerpoint version, send me another PS! I just did not have time to make the switch today.
8:46 PM: **Eliza:** There are two sorts of electric fish; those that stun prey, and those that use the electric signals for communication.
8:46 PM: **Edna:** Oh, i meant to ask you! Would you prefer we post the PS on elearning, or does emailing you on elearning still work okay?
8:47 PM: **HOST:** emailing a PS works fine; I prefer posting on the discussion board, because then others can see that i am in the process of fixing it.
8:47 PM: **Eliza:** Ok, thanks.
8:48 PM: **Edna:** Understood
8:48 PM: **HOST:** Eliza, good! Which variation of the trait would you hypothesize would be more ancestral, the stunning or the communication?
8:49 PM: **Eliza:** Hm. I would guess stunning, because even before the fish developed a social structure that made communication necessary, they had to eat. And stunning your prey is certainly an effective way to hunt.
8:49 PM: **Edna:** I would think the stunning, personally? Because there are some fish today that only use electricity for stunning, not communication...
8:49 PM: **Edna:** Also, what Eliza said! Good defense against predators, too.
8:51 PM: **HOST:** I agree, but for different reasons!
8:51 PM: **Eliza:** What'd we miss?
8:51 PM: **HOST:** Eliza, electrical fish do not have a social structure....they are pretty much solitary
8:52 PM: **Eliza:** Oh. Huh. Well then I have no idea...
8:53 PM: **HOST:** think more in terms of the small changes in the genes....first comes electrical mechanisms....then the function of the mechanism changes to communication with species divergence
8:53 PM: **Edna:** So would they first develop the ability to produce the electricity, and then later on, receptors to interpret electrical pulses as well?
8:54 PM: **Edna:** Or sense, rather than interpret.
8:54 PM: **HOST:** yes, that is more like it! you will be learning about several examples of where the ancestral form of a trait had a different function than communication
8:54 PM: **Edna:** Ah okay! Makes sense.
8:54 PM: **Eliza:** I hope I do better on other questions!
8:55 PM: **HOST:** that's why we have chat sessions! these concepts take discussion
8:56 PM: **HOST:** want to apply the same concept to the femme fatale fireflies on pg 84?
8:56 PM: **Eliza:** Well thank goodness! I know we only have a few more minutes, but could we do another example for that question real quick?
8:56 PM: **Edna:** Yes, please!
8:56 PM: **HOST:** sure
8:57 PM: **HOST:** on page 84, what is the males response to the flashing of a female from his own species?
8:58 PM: **Edna:** The predator male, or the prey male?
8:58 PM: **Eliza:** He flies down and mates. I think this is the ancestral behavior. Later, the females evolved the bogus reply strategy.
8:59 PM: **HOST:** Eliza, good thinking!
8:59 PM: **Eliza:** Yay, I got it right!
8:59 PM: **HOST:** so once it was fixed in the genes that males responded to the species-specific signal of their own females
9:00 PM: **Edna**: And then after that, the males of the predator species evolved to mimic the prey species to trick the females of the predator species, right?

9:00 PM: **Edna**: *the, oh my goodness, so many typos of mine tonight

9:00 PM: **HOST**: the next step in coevolution was that those females that emitted the signal of the other species, got a free meal!

9:01 PM: **HOST**: without the fixed response to the fixed signal, the "deception" would not have evolved

9:01 PM: **Edna**: Makes sense!

9:02 PM: **HOST**: great! hope this has helped clarify the distinction between evolution and function

9:02 PM: **Eliza**: Thanks so much!

9:05 PM: **HOST**: You are welcome, have a good evening!

9:06 PM: **Eliza**: You too!

9:06 PM: **HOST**: Bye!

9:06 PM: **Edna**: You as well! Have a good night!

Monday, September 24, 2012 grads

7:54 PM: **HOST** has entered the room.

7:57 PM: **Enrique** has entered the room.

7:58 PM: **HOST**: Hi Enrique!

7:58 PM: **Eloise** has entered the room.

7:59 PM: **Eloise**: Good evening!

7:59 PM: **Enrique**: howdy

7:59 PM: **HOST**: Hi Eloise!

8:00 PM: **HOST**: How are you two this eve?

8:01 PM: **Eloise**: Doing well - its only monday

8:02 PM: **Enrique**: I'm well. trying to figure out why that wolf inquiry file was corrupted

8:02 PM: **Enrique**: how are you

8:03 PM: **HOST**: Eloise, you did really well on your draft inquiry!

8:03 PM: **Eloise**: Oh I did?!?!? Yay!!!!!

8:04 PM: **Eloise**: That's super news - I was afraid I was not keeping up with the rest of the class

8:04 PM: **HOST**: Anything you would like to chat about before we dive into Unit 4 Communicating?

8:05 PM: **Enrique**: nothing specific for me. Will be back in a few -- doing some problem solving :)

8:05 PM: **Eloise**: I don't have anything, but I am reviewing a really interesting article on deceptive communication in stomatopod crustaceans

8:05 PM: **Emma** has entered the room.

8:05 PM: **Emma** has left the room.

8:05 PM: **HOST**: cool! crustaceans are not on my horizon for intelligence!

8:06 PM: **HOST**: what do they consider to be deceptive communication?

8:06 PM: **Eloise**: Apparently, when they molt, they are very vulnerable to probing by other in a fight, so they create threat displays to defend their cavities

8:07 PM: **HOST**: hmmm...so why is that deceptive? I would think it is just escalation due to the hormones

8:07 PM: **Eloise**: the mere threatening display is meant to ward off an actual fight, which they could not endure due to their soft body condition

8:08 PM: **Eloise**: The authors claim it is deceptive because it is misrepresenting the true ability of the animal to fight
8:09 PM: HOST: that wakes up my critical thinking processes!
8:09 PM: Eloise: "Bluffs by residents inhibited escalation by intruders and increased the probability of successful cavity defence"
8:09 PM: Emma has entered the room.
8:09 PM: HOST: Hi Emma
8:10 PM: Emma: Hi everyone. Sorry I’m late; eLearning decided I was logged in already and would not let me in.
8:10 PM: Eloise: Hey there!
8:10 PM: HOST: Eloise, that is really different than what Krebs & Davies refer to as deceptive manipulation, which is more of a cognitive process
8:11 PM: HOST: for example, fox barks, companion looks up, leaving food tidbit unguarded, fox grabs food and takes off with it
8:12 PM: Eloise: Yes, I understand - just like when swallows emit false alarm calls to keep its mate from extra-pair copulations
8:13 PM: Eloise: I think the crustacean threat displays are interesting, but perhaps not exactly the kind of deceptive communication we are looking for?
8:16 PM: Eloise: perhaps more defending of territory than actual communicating
8:17 PM: HOST: We will be working more with the concepts of escalating and de-escalating
8:17 PM: Emma: There’s a little of it in the third wolf module!
8:17 PM: HOST: deception is more a matter of manipulating the response of the receiver in a manner that benefits the sender
8:18 PM: Eloise: well, could I argue that in this example, the sender of the threat display benefits by the receiver backing away and the sender keeping its cavity?
8:18 PM: Eloise: or is the benefit something the sender does not already have
8:19 PM: Eloise: i.e. a mate or tidbit of food
8:20 PM: HOST: you make a strong argument in critique of this slippery definition!
8:22 PM: Eloise: slippery indeed! On another note, perhaps less dramatic - I searched whale communication and discovered (this may already be known to most) that whales (specifically orcas) have specific inter-group and intra-group communication
8:22 PM: HOST: the "femme fatale" photurnis firefly is also said to be an example of deceptive communication
8:22 PM: Eloise: oh? how so?
8:23 PM: Emma: Those were the fireflies that imitate another species and prey on the males who land attempting to mate, correct?
8:23 PM: HOST: correct!
8:23 PM: Eloise: oh that is sneaky!
8:24 PM: Emma: So in that case they are giving a signal that they are of the second species and ready to mate, when they are actually attempting to deceive the males of the other species so they can prey on them.
8:24 PM: Eloise: are the males of the other species aware of the deception? how do they all not fall prey?
8:26 PM: Emma: I would assume they are not able to differentiate between a deceptive photurnis and a female of their own species. If they were and landed anyway, that would be highly maladaptive!
8:27 PM: HOST: they are not aware, which is why the firefly codes are such a good example of a FIXED signal, highly heritable!
8:28 PM: HOST: Enrique, thanks for a great source!
8:29 PM: Enrique: this article discusses how deception can partly explain why communication evolves towards increasing complexity. Interesting
8:29 PM: **Eloise**: Fork-tailed Drongos are shown to use deceptive alarm calls to steal food (Flowers, Proceedings of the Royal Society, 2011, 1548)

8:30 PM: **HOST**: that is more along the lines of what Krebs & Davies referred to as "mind reading and manipulation"

8:31 PM: **Emma**: (See page 297)

8:32 PM: HOST: Emma, good point. When an animal alters its response based on the context, that is a clue that higher order cognitive processing is going on.

8:32 PM: **Eloise**: Counterdeception is shown in Tufted Capuchins by a decrease in responses to alarm calls (Wheeler, International Journal of Primatology, 2010, 665-675)

8:33 PM: HOST: ya'll are coming up with some great sources here!

8:33 PM: **Emma**: Right. Clearly, if the "femme fatale" is unable to attract mates of her own species, the genotype will not propagate through the population anyway. This gives evidence that they can alter their behavior based on whether they have mated or not.

8:34 PM: **Eloise**: that is interesting

8:34 PM: HOST: Emma, the femme fatale does attract mates of her own species. She alters her behavior and copulates with them rather than eating them.

8:34 PM: **Enrique**: I have an off topic question real quick ... the calendar says a week from this friday we are to submit a draft of our open inquiry? Is that the draft of the outline, as listed in the syllabus or schedule documents, or is it a draft of our actual paper or project?

8:35 PM: HOST: draft of the outline

8:35 PM: **Emma**: So she is able to decide which signal she displays based on whether she wants to mate or to eat?

8:35 PM: **Enrique**: k, thank you

8:35 PM: HOST: Emma, I think there is not much going on in the brain of a firefly

8:35 PM: **Eloise**: Hal

8:36 PM: **Emma**: Looks like I slipped into a little FP there. "Deciding" in this case would be more driven by the biological processes at play.

8:36 PM: HOST: my hypothesis would be that the species specific response of her own species releases mating behavior; the other species signal does not (nothing inhibits eating)

8:37 PM: **Emma**: That makes much more sense. I was starting to think fireflies were shockingly smart. :)

8:38 PM: HOST: LOL! but it would be interesting to see what El-Hanni et al. (2010) say about this

8:40 PM: **Enrique**: according to El-Hani et al, "The difficulty of ascribing conscious intentional states to nonhuman animals is avoided by requiring only that E systematically benefits if R is deceived. Then, we do not need to claim that E intended to deceive R, but only that there is a correlation between E's past events of benefiting from emitting Y to R and the fact the E in a specific circumstance emits Y" (2009:35).

8:42 PM: HOST: it may be that the critique of this concept is shifting more to an operational definition

8:42 PM: **Enrique**: --where an organism R registers (or believes) something Y from some organism E

8:44 PM: **Emma**: This is getting confusing to me. From this definition it sounds like E doesn't have to intentionally deceive R, but R must be somehow deceived. So E can give any signal, and as long as it's somehow deceptive to R it falls under deceptive communication.

8:46 PM: HOST: the important part is in the concept of "registers"

8:46 PM: **Enrique**: I don't think 'intentional' deception has to include that the thought process of the individual was specifically to 'deceive'

8:47 PM: HOST: register could be a learned expectation that behavior X follows event Y

8:48 PM: **Emma**: So if we were to turn on a light and 5 seconds later deliver a shock to a rat unless it jumped onto
a platform in its cage, it could eventually register that behavior "jump" needs to follow the event of the light coming on?
8:48 PM: **Eloise**: is the learned expectation in the form of communication?
8:49 PM: **HOST**: yes, Emma
8:49 PM: **HOST**: the learned expectation would be more like if monkey screams "chunk" then a tree predator is nearby
8:50 PM: **HOST**: if no tree predator is nearby, but monkey screams "chunk" and receiver looks up in the tree, then the sender grabs the receivers food.....that would be deception
8:51 PM: **Eloise**: I see, so the monkey has learned that screaming "chunk" will be followed by his buddy scanning trees
8:53 PM: **Emma**: I think this is starting to make more sense. So if we look at the vervet example from Dugatkin (421-422), we know that the vervets have learned that an alarm call means that they need to seek shelter. However, when one animal uses the alarm call to avoid conflict, that is an example of deceptive communication.
8:55 PM: **HOST**: Emma, BINGO!
8:58 PM: **HOST**: since we are on the topic of flexible signs, how could you use that example to answer the BLOG Q4.....proximate cause?

9:01 PM: **Enrique**: the cause would be the different calls, right?
9:01 PM: **Emma**: Flexible signs are shaped through experience over the course of the lifetime of the sender and the receivers; that is they are learned through interaction and are not heritable (although the ability to learn them is heritable). In vervets, the animals learn over time that an alarm call is a cue to seek shelter. However, certain individuals are able to exploit this flexible signal for their own advantage, by using it to avoid conflict with other troupe. In these interactions, on individual emits an alarm call to gain the benefit of not having to interact aggressively with an opposing troupe.
9:03 PM: **Eloise**: the communication is used to elicit different or flexible responses
9:04 PM: **HOST**: so the vervets learn to associate three different sounds with three different types of predators, ground, three and aerial.....that would be the PC perspective
9:05 PM: **HOST**: the PD perspective would be that these calls are socially transmitted, infant vervets do not call the right way the first time they make the call....they learn with experience so it is obviously not a fixed signal
9:05 PM: **HOST**: three = tree predator!
9:08 PM: **HOST**: anything else before we sign off for this eve?
9:08 PM: **Enrique**: i'm good
9:09 PM: **HOST**: Have a good evening!
9:09 PM: **Enrique**: you too. hasta luego

Wednesday, September 26, 2012

8:02 PM: **HOST**: Hi John!
8:03 PM: **Enrique**: Hi Dr. Packard, how are you
8:04 PM: **HOST**: Tired. We just had a review session for some of the undergrads still struggling with the CDEF foundation concepts.
8:05 PM: **HOST**: before that was chat time with the seminar that I lead "cross cultural communication"
8:07 PM: **Enrique**: oh yeah, i saw the email for those review sessions. long day sounds like! If nobody shows up, we can just call it a night so you can relax or tend to other things. I don't have any specific questions at this point. Things seem to be going well for me so far.
8:08 PM: **Enrique**: i'm listening to my dart frog call. its pretty neat. Phyllobates terribilis supposedly they rarely call in captivity but mine does frequently. poor guy doesn't know there are no lady frogs around here
8:09 PM: **HOST**: cool! do you think he is happy?
8:10 PM: Enrique: i think so. i have him in a 30 gallon terrarium that's heavily planted with moss and some
tropica ls, plenty of hides, etc. individuals of this species are much more 'bold' than other dart frog species
8:11 PM: Enrique: i feed him a really varied diet to give him a little variety like may be found in the wild
8:14 PM: HOST: is he a poison dart species? is that the "terribils"?
8:14 PM: Enrique: if i feed him a cricket that is a bit large, after he takes it in his mouth, he uses his 'hands' to cram
the cricket in his mount. its hilarious
8:15 PM: Enrique: yes, poison species. not poisonous in captivity though. the poison is from the ants they eat in
the wild. and the ants eat some sort of poisonous plant. that's where the poison chemically 'originates'
8:15 PM: HOST: Rachel was showing me a video of a toad in her compost. He did the same thing to cram a
cockroach into his mouth.
8:16 PM: HOST: That is so cool! I did not know that is where they get their poison!
8:16 PM: HOST: sort of like the monarch caterpillars picking up the nasty tasting chemicals from the milkweed
8:17 PM: Enrique: Yes, i believe its some sort of alkaloid in the plant. I don't know the chemistry behind all it, but i
suspect the chemical composition changes a bit between the plant and the frog
8:18 PM: Enrique: this species only has 1 natural predator in the wild. some species of snake that is resistant to the
venom. pretty neat. well, and i guess man would be a sort of predator in that man is destroying the habitat where
this species lives in columbia
8:19 PM: HOST: humans would be competitors, since they do not eat the toads
8:19 PM: Enrique: mine was captive born. all of them in the States are these days. the captive population is huge,
but in the wild they're endangered i believe
8:20 PM: HOST: the coevolution of predator/prey adaptations is fascinating!
8:20 PM: Enrique: ah, yes, competitors
8:20 PM: HOST: I was just reading an article about sea slugs in the Red Sea
8:20 PM: Enrique: don't they have some sort of toxin?
8:20 PM: HOST: There were some really amazing species specific variations
8:21 PM: HOST: yes, some of them eat sponges and incorporate the silicon spikes in their skin, a defensive
adaptation
8:22 PM: HOST: others eat anemones and store the poisons in little pouches which they eject in response to a
predator
8:22 PM: Enrique: amazing
8:22 PM: HOST: some have yellow circles on their backs, with elaborate gills on the rear and sensors on the front
8:23 PM: Enrique: i read something awhile back that humans and some species of slug share genes for alzheimer's
8:23 PM: HOST: others have gills in the shape of "trees" all over their backs!
8:23 PM: HOST: wow, that is a stretch for me
8:23 PM: HOST: since sea slugs do not have brains like vertebrates
8:24 PM: Enrique: yeah, that's what i was wondering. i'll see if i can find it real quick
8:24 PM: HOST: maybe it is something about the neuronal proteins that get scrambled in an Alzheimer'like
condition?
8:24 PM: Enrique: found it www.scientificamerican.com/article.cfm?id=human-sea-slug-brains-sha
8:26 PM: Enrique: sounds like you're right on with that idea
8:28 PM: HOST: let me go look
8:30 PM: HOST: nice fun fact; sea slugs have 20, 000 neurons compared to 100 billion in people!
8:30 PM: HOST: Kandel is definitely a well-known key author in the field of neuroethology
8:31 PM: Enrique: lol, that's quite a disparity. i would propose that there may be some humans with neuron counts
closer to that of the slugs :)
8:32 PM: HOST: chuckle! we used to joke about how our first weimeraner was so smart because he had two brain
cells
8:32 PM: **Enrique**: haha, i had an american bulldog like that
8:32 PM: **HOST**: then along came Sybille, and its as hard to keep ahead of her as it is to care for a two-year old child
8:33 PM: **Enrique**: best dog i ever had was a newfoundland. amazing breed! at least my newfie was
8:33 PM: **HOST**: what did you like about your newfie?
8:33 PM: **Enrique**: weimeraners are gorgeous dogs
8:34 PM: **HOST**: reading your sea slug article, the author is a little slippery with the comparisons
8:35 PM: **Enrique**: she was extremely intelligent. i never really had to 'train' her. spent a few minutes teaching sit, stay, come, etc. over a few days time and that was it. i could leave her in the driveway and tell her to stay and she wouldn't leave, even for hours. super gentle despite her size. she had an interesting behavior of staying up all night laying by the backdoor 'guarding'/barking at anything suspicious, etc. then she'd nap during the day
8:35 PM: **Enrique**: yes, i kind of had that impression too
8:36 PM: **Enrique**: scientific american is geared more towards 'laypeople' i think, so maybe that explains it.
8:36 PM: **HOST**: what they actually found was that 104 "genes" in the sea slugs matched up when compared to 164 "genes" in the human genome
8:37 PM: **HOST**: from my perspective, those would be the genes that "build neurons"
8:37 PM: **Enrique**: that would make sense
8:38 PM: **HOST**: which might mean that sea slugs are a good model for testing drugs proposed to treat Alzheimers
8:38 PM: **HOST**: But its going too far to say that sea slugs have the genes for Alzheimers!
8:39 PM: **Enrique**: there are many diseases/conditions that i don't understand why cures or more effective treatments haven't been developed yet
8:39 PM: **HOST**: good point about marketing....still I get mad at science writers who write in an ambiguous manner that may be even more confusing for the educated public
8:40 PM: **Enrique**: yeah i agree. its borderline dishonest. and frankly these days, that seems to be the rule not the exception in most media. its a shame
8:40 PM: **HOST**: It would be interesting to go look at Kandel's article and see what he really said!
8:41 PM: **Enrique**: i wager it was quite different than what the article portrayed
8:41 PM: **HOST**: Good example of where there might be a big gap between the primary (Kandel) and the secondary csource (science writer)!
8:41 PM: **Enrique**: yes indeed
8:42 PM: **HOST**: Anthing you wanted to chat about on the wolf inquiry?
8:44 PM: **Enrique**: nothing in particular right now. I'm going to try to knock out changes on the first 2 modules and the third module this weekend so i can submit the 3rd module next week. I have a general outline of sorts worked up for my paper and i've noted all pertinent info in the articles, so hopefully i can get going on writing that this weekend or next week
8:45 PM: **HOST**: Good plan!
8:45 PM: **Enrique**: we can call it a night any time, by the way. You don't have to hang around to chat with me lol. I know you've had a long day
8:46 PM: **HOST**: OK. Nice chatting with you. Have a good evening!
8:46 PM: **Enrique**: nice chatting. thank you. you too. hasta luego
8:46 PM: **Enrique** has left the room.
8:48 PM: **HOST** has left the room.