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ABSTRACT

Signalized intersections aremanaged by controllers that assign right
of way (green, yellow, and red lights) to non-conflicting directions.
Optimizing the actuation policy of such controllers is expected to
alleviate traffic congestion and its adverse impact. Given such a
safety-critical domain, the affiliated actuation policy is required
to be interpretable in a way that can be understood and regulated
by a human. This paper presents and analyzes several on-line op-
timization techniques for tuning interpretable control functions.
Although these techniques are defined in a general way, this paper
assumes a specific class of interpretable control functions (poly-
nomial functions) for analysis purposes. We show that such an
interpretable policy function can be as effective as a deep neural
network for approximating an optimized signal actuation policy.
We present empirical evidence that supports the use of value-based
reinforcement learning for on-line training of the control func-
tion. Specifically, we present and study three variants of the Deep
Q-learning algorithm that allow the training of an interpretable
policy function. Our Deep Regulatable Hardmax Q-learning variant
is shown to be particularly effective in optimizing our interpretable
actuation policy, resulting in up to 19.4% reduced vehicles delay
compared to commonly deployed actuated signal controllers.
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1 INTRODUCTION

Travel time studies in urban areas show that 12–55% of commute
travel time is due to delays induced by signalized intersections
(stopped or approach delay) [18, 35]. Hence, optimized signal con-
trollers have the potential of reducing commute time, traffic con-
gestion, emissions, and fuel consumption, while requiring minimal
infrastructure changes.

Recent publications [17, 19, 36] proposed to utilize state–of–the–
art reinforcement learning algorithms for online optimization of
signal controllers. Such previous work showed a potential reduc-
tion of up to 73% in vehicle delays when compared to fixed–time
actuation [25]. Despite showing compelling empirical results, the
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controllers defined in such previous work have little applicability
in the real world since their underlying control function is based on
a deep neural network (DNN). While providing flexible and power-
ful function approximations, DNNs lack an interpretable inference
process [29] which might prevent the implementation of related
controllers in practice. Given their liability for drivers’ safety and
mobility, governmental transportation agencies are conservative
in requiring that signal controllers are interpretable and regulated.
Consequently, this paper focuses on defining and studying self–
optimizing, regulatable signal control policies.

The following contributions are made, which, to the best of our
knowledge, were not addressed in previous work:

(1) Define and justify a regulatable control function for the
signal control domain.

(2) Define and study the effectiveness of a domain specific regu-
latable function when compared to a DNN–based policy.

(3) Study the effectiveness of different optimization methods for
online training of a signal control policy. Namely, Covariance
Matrix Adaptation Evolution Strategy (cma–es) [11], Prox-
imal Policy Optimization (PPO) [31], and Deep Q–learning
(DQN) [23].

(4) Develop three variants of the DQN algorithm that utilize
and train a regulatable control function. These variants are
denotedDeep Regulatable Q–learning (DRQ), deep regulatable
softmax Q-learning (DRSQ), and deep regulatable hardmax
Q–learning (DRHQ).

(5) Test the performance of the aforementioned optimization
methods through computer–based simulation of a real–life
intersection and observed demand.

(6) Compare the proposed methods with the commonly de-
ployed actuated signal controller [7]. As opposed to previous
work that were compared to, the less effective, fixed–timing
actuation policy.

We show that a designed regulatable control function can reduce
traffic delays by up to 30% when compared to common actuated
signal controllers. Moreover, such a regulatable control function
is shown to be competitive with the performance of a DNN based
controller. Next, we turn to study online optimization approaches
for signal controllers. Our empirical study shows that a value–
based approach (specifically DQN) converges faster, and to a better
policy, compared to a policy–gradient approach (specifically PPO).
Our regulatable Q–learning variant, DRHQ, is shown to result in
a policy that is competitive with commonly deployed actuated
signal controllers after a single training episode. The control policy
is further improved in successive episodes, reaching up to 19.4%
reduced delays.



Figure 1: Common phase allocation for a 4–way intersec-

tion.

2 BACKGROUND AND RELATEDWORK

This section provides the necessary background which includes
the domain description, Markov decision processes, reinforcement
learning, and related work.

2.1 The traffic signal domain

A signalized intersection is composed of incoming and outgoing
roads where each road is affiliated with one or more lanes. Each
signalized intersection is assigned a set of phases, Φ. Each phase,
𝜑 ∈ Φ, is affiliated with a specific traffic movement through the
intersection, as illustrated in Figure 1. Two phases are defined
to be in conflict if they cannot be enabled simultaneously (their
affiliated trafficmovement is intersecting). For example, in the phase
allocation presented in Figure 1, 𝜑2 and 𝜑1 are conflicting phases.

2.2 Reinforcement learning

In reinforcement learning (RL) an agent is assumed to learn through
interactions with the environment. The environment is commonly
modeled as a Markov decision process (MDP) which is defined
by: S – the state space, A - the action space, P(𝑠𝑡 , 𝑎, 𝑠𝑡+1) – the
transition function of the form S × A × S → 𝑃𝑟𝑜𝑏, 𝑅(𝑠, 𝑎) – the
reward function of the form S × A → R, and 𝛾 – the discount
factor. The agent is assumed to follow an internal policy 𝜋 which
maps states to actions, i.e., S → A. The agent’s chosen action (𝑎𝑡 )
at the current state (𝑠𝑡 ) affects the environment such that a new
state emerges (𝑠𝑡+1) as well as some reward (𝑟𝑡 ) representing the
immediate utility gained from performing action 𝑎 at state 𝑠 , given
by 𝑅(𝑠, 𝑎). The observed reward is used to tune the policy such that
the expected sum of discounted reward, 𝐽𝜋 =

∑
𝑡 𝛾

𝑡𝑟𝑡 , is maximized.
The policy 𝑎𝑟𝑔𝑚𝑎𝑥𝜋 [𝐽𝜋 ] is the optimal policy denoted 𝜋∗.

Recent publications [32, 36] suggest applying one RL approach,
Deep Q–learning (DQN) [23], for training and operating signal
controllers. In DQN, a deep neural network (DNN) is trained to
map state–action pairs to a real number denoted the 𝑄–value i.e.,
S × A → R. The 𝑄–value for a given state–action pair, (𝑠, 𝑎),
represents the sum of discounted reward after performing 𝑎 at 𝑠
and then following the optimal policy (𝜋∗). Algorithm 1 presents the
pseudocode for DQN (for now, ignore lines in red i.e., Lines 4, 10, 17–
29). For each training episode, DQN sets the initial state in Line 6.
Next, for each time step within an episode, an action is chosen in an
epsilon greedy manner (Lines 8–9) where the greedy action is the
one with the maximal𝑄–value as approximated by the Q–function.
The chosen action is executed and the outcome (immediate reward

and next state) is stored in the replay memory (Lines 11–12). Next,
a minibatch of transitions (state, action, immediate reward, next
state) is sampled and the Q–function weights (\ ) are updated such
that the squared error from the target𝑄–value,𝑦 𝑗 , is reduced (Lines
13–15). The target 𝑄–value (𝑦 𝑗 ) is computed using the temporal
difference propagated from the next state [33]. Finally (Line 16),
every 𝐶 steps, the target Q–function (�̂�) is set to equal the trained
Q–function (𝑄). Doing such a delayed update is justified by Mnih et
al. [23] as a way to reduce oscillations or divergence of the policy.

2.3 Related work

Previous works have examined reinforcement learning algorithms
for online optimization of signal controllers. Unfortunately, the
applicability of these protocols is questionable due to various draw-
backs: (a) long and unsafe tuning process [9, 20, 25, 32, 36], (b) cum-
bersome policies that cannot be easily interpreted and regulated
(mostly relying on deep artificial neural networks) thereby provid-
ing limited liability [9, 19, 20, 25, 32, 36, 40], (c) limited scalability
(with regards to the number of managed phases) [19, 25, 36, 40], (d)
reliance on (currently) unrealistic traffic sensing capabilities [25, 40],
(e) experiments evaluated on unrealistic scenarios such as synthetic
traffic demand [1, 4, 9, 19, 20, 25, 26], and handling only through
traffic (no turning vehicles) [19, 25].

A line of previous work [3, 17, 26, 36, 39] focused on controlling
and coordinating a set of signal controllers. The goal of such work is
optimizing traffic flow over a road network that consists of several
signalized intersections. Such a multiagent control manifests a
combinatorial action space which results in limited scalability as
well as slow and inefficient learning.

While some of the aforementioned publications presented com-
pelling results, none yielded a control function that is human inter-
pretable and liable. Given liability and regularity constraints faced
by governmental transportation agencies, signal control functions
will most likely not be adopted unless they can be interpreted and
regulated.

Interpretability of deep reinforcement learning has recently been
examined. Similar to this work, techniques for mimicking deep neu-
ral networks with interpretable actuation were suggested. One
work [21] suggests using a variant of continuous U trees, however
this approach requires that the affiliated deep Q–network be trained
to convergence initially. As a result, the control policy remains unin-
terpretable for the duration of the training episodes. Consequently,
such an approach cannot be utilized in safety critical domains that
require online learning. This shortcoming is shared by other works
[12, 37], each requiring learning a model that is based on a deep
neural net prior to utilizing an interpretable controller.

3 PROBLEM DEFINITION

The focus of this paper is around online optimization of a human
interpretable signal controller. Following previous work [27, 32, 40]
we model this problem as an MDP. The state space is defined by
the possible input assignments. The set of available actions per
state is defined by the possible output assignments and constraints.
Constraints are considered as part of the transition function of the
environment. For example, actions do not include yellow lights,
these are set automatically when required for safety. The transition



function is provided by the environment. Reward is defined by
reduction in accumulated traffic delay. The controller’s operation
is defined as follows:
Input: (1) current signal assignment (green, yellow, and red assign-
ment for each phase), for each lane: (2) number of approaching
vehicles, (3) stopped vehicles accumulated waiting time, (4) number
of stopped vehicles, and (5) average speed of approaching vehicles.
Note that all inputs are necessarily non–negative.
Output: next signal assignment for a duration of time equal to a
given minimum phase length. Signal assignments are abstracted to
phases which group individual assignments into traffic movements.
Non-conflicting pairs of phases give a complete signal assignment.
Constraints: (1) right–of–passage cannot be assigned to conflict-
ing phases, (2) a yellow signal must appear for a predefined time
interval between red and green signals.
Assumptions: (1) the intersection’s layout is known, i.e., incom-
ing/outgoing lanes, phases, and conflicting phases, (2) real–time
sensing of incoming traffic as specified in the problem input. These
sensing assumptions are reasonable given latest advances in traf-
fic sensing technology, namely, radar [28], Wi–Fi scanning [15],
drivers’ smartphones [24], connected vehicles [38], image process-
ing [5], infrared sensing [13], and Synthetic Aperture Radar (SAR)
satellites [22].
Desiderata: The signal controller is expected to assign right–
of–passage such that: (1) the average delay suffered by incoming
vehicles is minimized (2) the actuation policy can be interpreted
and regulated by a human (a precise definition is given next).

Regulatable signal controller policy

Control of safety critical tasks in general, and signal control specif-
ically, require interpretable policies for liability and performance
guarantee purposes. Unfortunately, there is little agreement on
the meaning of interpretability. Ahmad et al [2018] state that “The
choice of interpretable models depends upon the application and
use case for which explanations are required". Consequently, this
section provides a definition for an interpretable model for the
signal domain.

A signal control policy is defined as, 𝜋 (𝑠;\ ) → (Φ𝑔 ,Φ𝑦,Φ𝑟 ),
mapping a given traffic state, 𝑠 , and a set of parameters, \ , to a
signal assignment, that is three sets of phases representing green,
yellow, and red signal assignments, Φ𝑔 , Φ𝑦, Φ𝑟 , respectively. A
valid signal assignment is one that results in no conflicting traffic
movements. The traffic state, 𝑠 , is defined by the provided sensors
input. The control function’s parameters, \ , should be tuned such
that the control policy yields optimized performance.

We define a precedence function, 𝑔(𝑠,Φ;\ ′) → R, mapping a
given traffic state, 𝑠 , a set of parameters, \ ′, and a non–conflicting
set of signal phases,Φ, to a real number representing the precedence
of assigning right–of–passage to Φ. Note that a 𝑄-function [23]
could serve as a precedence function but a precedence function is
not necessarily a 𝑄-function. Such a precedence function suggests
a control policy where the chosen signal assignment in state 𝑠 , is
argmaxΦ𝑔(𝑠,Φ;\ ′). A series of precedence functions, 𝐺 , one for
each action, defines a full order over all phase assignments. \ ′
is tuned such that the action with the highest precedence is the
optimal action in expectation.

Definition 1 (Regulatable precedence function). A prece-
dence function 𝑔 is defined as regulatable, if for all state variables
𝑠 [𝑖] ∈ 𝑠 , 𝜕𝑔

𝜕𝑠 [𝑖 ] exists and is either non–negative or non–positive for
any possible assignment of 𝑠 , i.e., the precedence function is monotonic
in the state variables.

A control policy that is based on a regulatable precedence func-
tion is defined as a regulatable control policy. For such a policy,
changes to the signal assignment can be intuitively interpreted as
following changes in state variables, e.g., the right–of–passage was
revoked from 𝜑2 and granted to 𝜑4 (as defined in Figure 1) because
the number of stopped Southbound vehicles increased while the
number of such Eastbound vehicles decreased. Moreover, should
policy adjustment be required, adding a weighting parameter to
each state variable allows for intuitive tuning of the control function
with regards to the specific state variable.

Consider the example in Figure 2, traffic has accumulated on
the Eastbound left–turn lane, however the light configuration has
not yet been switched. A simple regulatable control function can
be optimized which chooses between two configurations, allowing
Westbound traffic, or allowing Eastbound traffic. In this example,
the precedence function is a simple summation of 4 input variables
(Queue length, number of approaching vehicles, accumulated wait-
ing time for stopped vehicles, and average speed). Each of these
variables is affiliated with one tunable parameter. E.g., “W-Through
Queued" specifies the weight factor affiliated with the queue length
variable for the Westbound trough lanes. We later generalize and
discuss this type of controller in greater detail. The table at the
bottom of the figure specifies optimized values for the different
tunable parameters. By inspecting the values assigned we can ob-
serve that the speed of approaching vehicles on the Westbound
left–turn lane is the primary factor in the decision to maintain the
current light configuration. However, it might be the case that the
Eastbound left–turn lanes are too short to accommodate the typical
number of vehicles. The parameters can be easily tuned to give
higher precedence to clearing traffic from these lanes by increasing
the weight parameter E-Left Queued.

Action Queued Approaching Waiting (s) Speed Value
W–Through 0.0 2.1 0.0 0.33
W–Left 3.64 0.77 4.65 11.04 22.53
E–Through 1.25 0.0 0.73 0.0
E–Left 5.32 1.67 10.34 0.0 19.31

Figure 2: Optimized actuation policy for the presented inter-

section (top). The policy is based on a linear control function

that assigns values to input variables presented in the table

(bottom).



This work makes the assumption that a regulatable control func-
tion is interpretable (a similar assumption was made in [12]).

4 DESIGNING A REGULATABLE

PRECEDENCE FUNCTION

Based on the problem input (as defined in the problem definition)
we define the following, phase dependent state variables, 𝑠𝜑 [1, ..., 6]:
(1) number of stopped vehicles, (2) number of approaching vehicles,
(3) cumulative stopped time, (4) average stopped time, (5) average
queue length = stopped vehicles divided by the number of lanes, and
(6) average speed for approaching vehicles. These phase dependent
variables relate only to vehicles that are present on lanes served by
phase 𝜑 . For example, 𝑠𝜑1 returns the number of stopped vehicles
on the Eastbound left–turning lanes. On top of these state variables,
the proposed precedence function penalizes phase assignments
that enforce clearance intervals. For instance, activating (assigning
right–of–passage) the Southbound through phase straight after an
active Eastbound through phase commonly requires a clearance
interval. The clearance interval activation and duration is intersec-
tion dependent. For general guidelines see [7]. Transitioning from
a currently active phase set to another phase set, Φ, triggers one of
the following cases.

(1) Full clearance – an interval where no phase is active (all
red).

(2) Partial clearance – an interval where part of the phases in
Φ are inactive (prior to becoming active).

(3) Permissive clearance – a short interval (shorter than in
the partial clearance case) where part of the phases in Φ are
inactive. Commonly due to a currently active permissive–left
phase (when applicable).

(4) No clearance – no clearance is required.
Each of these cases is affiliated with a flag, denoted 𝑓1,...,4, that is
set to 1 for the active case and 0 for the others. In a state where two
cases are simultaneously active, only the one with the lowest index
will be set to 1.

Our proposed precedence function can now be defined as:

𝑔(𝑠,Φ;\ ′) =
∑
𝜑 ∈Φ

6∑
𝑖=1

(
𝑤
Φ𝜑
𝑖

𝑠 [𝑖]
)𝑝Φ𝜑

𝑖 ·
4∑
𝑗=1

(
𝑤 ′Φ
𝑗 𝑓𝑗

)𝑝′Φ
𝑗 (1)

Where \ ′ = {𝑤, 𝑝,𝑤 ′, 𝑝 ′}. In total, the designed function is com-
posed of 6 state variables per𝜑 in Φ, each with two affiliated tunable
parameters, a weight (𝑤Φ𝜑

1...6) and an exponent (𝑝Φ𝜑1...6). Also, each of
the clearance flags (𝑓1...4) is affiliated with two tunable parameters,
a weight (𝑤 ′Φ

1...4) and an exponent (𝑝 ′Φ1...4). Each phase combination
(Φ), phase (𝜑), and index (𝑖 or 𝑗 ) defines a unique tunable param-
eter. All together, this function defines 12 parameters per phase
within a phase combination (𝑤Φ𝜑 , 𝑝Φ𝜑 ) and 8 parameters per phase
combination (𝑤 ′Φ, 𝑝 ′Φ). In the phase diagram defined in Figure 1
there are 8 phases which result in 8 sets of non–conflicting pairs.
Namely, {(𝜑1, 𝜑2)

>(𝜑5, 𝜑6) ∪ (𝜑3, 𝜑4)
>(𝜑7, 𝜑8)}. Consequently,

the appropriate regulatable function𝐺 (over all 8 phase pair prece-
dence functions) will be composed of 8(2 · 12 + 8) = 256 tunable
parameters.

Lemma 1. The precedence function defined in Equation 1 is regu-
latable according to Definition 1.

Proof.

𝜕𝑔

𝜕𝑠 [𝑖] = 𝑤
Φ𝜑
𝑖

𝑝
Φ𝜑
𝑖

𝑠 [𝑖]𝑝
Φ𝜑
𝑖

−1 ·
4∑
𝑗=1

(
𝑤 ′Φ
𝑗 𝑓𝑗

)𝑝′Φ
𝑗

𝑠 [𝑖] ≥ 0 for any 𝑖 ∈ {1, ..., 6} (see ‘input’ in problem definition).
Consequently, 𝑠 [𝑖]𝑝

Φ𝜑
𝑖

−1 ≥ 0. All other components of the partial

derivative i.e., 𝑤Φ𝜑
𝑖

𝑝
Φ𝜑
𝑖

· ∑4
𝑗=1

(
𝑤 ′Φ
𝑗
𝑓𝑗

)𝑝′Φ
𝑗 , are not dependent on

any of the state variables and can be viewed as a constant (𝜗). As a
result, 𝜕𝑔

𝜕𝑠 [𝑖 ] would be either non–negative (𝜗 ≥ 0), non–positive
(𝜗 ≤ 0), or both (𝜗 = 0), for any 𝑖, 𝑠 and a given Φ, \ ′ assignment.

□

The precedence function defined in Equation 1 is hereafter de-
noted the designed precedence function. The affiliated control policy
which returns argmaxΦ𝐺 (𝑠,Φ;\ ′) is hereafter denoted the designed
control policy. Next, we discuss general techniques for online tuning
of \ ′ such that the performance of any regulatable control policy
(and specifically the designed control policy) is optimized.

5 PARAMETER TUNING

A line of publications [20, 36, 40] reported that the DQN algorithm
is particularly suitable for online signal control optimization. Un-
fortunately, the underlying policy in DQN is not regulatable as
it is based on a DNN (Line 9 in Algorithm 1). In order to bridge
this gap, we suggest training a given regulatable policy function
of the type argmax𝑎𝐺 (𝑠, 𝑎; \̃ ), to imitate the Q–network actuation
i.e., argmax𝑎𝑄 (𝑠, 𝑎;\ ). A simple approach would be to directly use
Q–learning with a function approximator that is defined as the reg-
ulatable function. However, doing so was found to make reaching
a reasonable policy infeasible under even artificially low demands.
Such a simple function approximator is incapable of representing
the required intermediate functions for learning action values over
an extended period of time.

Consequently, other approaches for leveraging DQN to opti-
mize regulatable policies are considered. These approaches fol-
low the pseudocode described in Algorithm 1. The lines in red
(Lines 4, 10, 17–29) show the required additions on top of the
original DQN algorithm. It is important to note that instead of
selecting an action according to argmax𝑎𝑄 (𝑠, 𝑎;\ ) (Line 9), the reg-
ulatable version selects an action according to a regulatable policy,
argmax𝑎𝐺 (𝑠, 𝑎; \̃ ) where 𝐺 is a previously initialized regulatable
function (Line 4). Replacing the actuator in the DQN algorithm
(Line 10 in lieu of Line 9) is reasonable as DQN is an off–policy algo-
rithm, i.e., training the Q–function does not require that the same
function interacts with the environment. Moreover, the powerful
(DNN based) Q–function approximation that is trained by DQN
can be used to train the regulatable function,𝐺 . Consequently,𝐺 is
repeatedly trained to minimize the error between argmax𝑎𝐺 and
argmax𝑎𝑄 . This training is performed at every time step over 𝑁
random minibatches from the replay memory (Lines 17,18). Next,
we discuss 3 different strategies for training 𝐺 .



Algorithm 1: DQN and 3 DRQ variants shown in red
1 Initialize replay memory 𝐷 to capacity 𝑁

2 Initialize 𝑄 function with random weights \
3 Initialize target �̂� function with weights \̄ = \

4 Initialize regulatable function 𝐺 with weights \̃ = [1, ..., 1]
5 for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1 to𝑀 do

6 Initialize 𝑠1 with observed state
7 for 𝑡 = 1 to 𝑇 do

8 With probability 𝜖 select a random action 𝑎𝑡

otherwise select:
9 𝑎𝑡 = argmax𝑎𝑄 (𝑠𝑡 , 𝑎;\ ) # for DQN

10 𝑎𝑡 = argmax𝑎𝐺 (𝑠𝑡 , 𝑎; \̃ ) # for regulatable
11 Execute action 𝑎𝑡 and observe reward 𝑟𝑡 and state

𝑠𝑡+1
12 Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in 𝐷

13 Sample random minibatch of transitions
(𝑠 𝑗 , 𝑎 𝑗 , 𝑟 𝑗 , 𝑠 𝑗+1) from 𝐷

14 Set 𝑦 𝑗 = 𝑟 𝑗 + 𝛾max𝑎′�̂� (𝑠 𝑗+1, 𝑎′; \̄ )
15 Perform a gradient descent step on

(𝑦 𝑗 −𝑄 (𝑠 𝑗 , 𝑎 𝑗 ;\ ))2 with respect to \
16 Every C steps reset �̂� = 𝑄

17 for 𝑛 = 1 to 𝑁 do

18 Sample random minibatch of transitions
(𝑠 𝑗 , 𝑎 𝑗 , 𝑟 𝑗 , 𝑠 𝑗+1) from 𝐷

19 case DRQ do

20 Set 𝑦 𝑗 = 𝑟 𝑗 + 𝛾max𝑎′�̂� (𝑠 𝑗+1, 𝑎′;\ )
21 Perform a gradient descent step on

(𝑦 𝑗 −𝐺 (𝑠 𝑗 , 𝑎 𝑗 ; \̃ ))2 with respect to \̃
22 case DRSQ do

23 Set 𝑋 𝑗 = softmax𝑎
(
𝑄 (𝑠 𝑗 , · ;\ )

)
24 Set 𝑍 𝑗 = softmax𝑎

(
𝐺 (𝑠 𝑗 , · ; \̃ )

)
25 Perform a gradient descent step on

−∑
𝑎∈𝐴 𝑋 𝑗 [𝑎]𝑙𝑜𝑔(𝑍 𝑗 [𝑎]) w.r.t. \̃

26 case DRHQ do

27 Set 𝑋 𝑗 =

{
1 argmax𝑎′𝑄 (𝑠 𝑗 , 𝑎′;\ )
0 𝑎 ∈ 𝐴 \ {𝑎′}

28 Set 𝑍 𝑗 = softmax𝑎
(
𝐺 (𝑠 𝑗 , · ; \̃ )

)
29 Perform a gradient descent step on

−∑
𝑎∈𝐴 𝑋 𝑗 [𝑎]𝑙𝑜𝑔(𝑍 𝑗 [𝑎]) w.r.t. \̃

5.1 Deep Regulatable Q–Learning (DRQ)

DRQ is our basic Regulatable Q–Learning variant where the param-
eters of the regulatable function \̃ are tuned towards equivalency
between 𝐺 and the 𝑄–function (using SGD with a squared loss
function over the provided minibatch, Line 21). This variant follows
the fact that if𝐺 (𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) for all (𝑠, 𝑎) then the required policy
equivalency is achieved i.e., ∀𝑠, argmax𝑎𝐺 (𝑠, 𝑎) = argmax𝑎𝑄 (𝑠, 𝑎).

Attempting to tune \̃ such that the regulatable function𝐺 would
match the DNN–based 𝑄–function may not be feasible in many

cases. A regulatable function is more constrained and possesses far
fewer tunable parameters compared to a DNN. As a result, a DNN is
usually able to approximate amuch larger set of functions compared
to a regulatable approximator. Indeed, our empirical study found
that the designed precedence function is very limited in its ability to
approximate 𝑄–values. However, setting the regulatable function,
𝐺 , to imitate the action selection of DQN does not require that
𝐺 (𝑠, 𝑎) ≡ 𝑄 (𝑠, 𝑎). This understanding leads us to DRQ variants that
provide extra flexibility with regards to the function approximated
by 𝐺 .

5.2 Deep Regulatable Softmax Q–Learning

(DRSQ)

In DRSQ the parameters of the regulatable function \̃ are tuned
towards proportional equivalency between𝐺 and the𝑄–function.
This variant follows the fact that if𝐺 (𝑠, ·) ∝ 𝑄 (𝑠, ·) for all 𝑠 then the
required policy equivalence is achieved i.e., ∀𝑠, argmax𝑎𝐺 (𝑠, 𝑎) =
argmax𝑎𝑄 (𝑠, 𝑎). The proportionality values over all actions are stan-
dardized using the softmax function. As a result the SGD applied
for tuning \̃ takes a gradient based on the cross–entropy objective
i.e., using the log loss function (Lines 22–25).

5.3 Deep Regulatable Hardmax Q–Learning

(DRHQ)

DRHQ stems from the understanding that policy equivalency does
not require full equivalency or even proportional equivalency be-
tween 𝐺 and the 𝑄–function. In fact, for achieving policy equiva-
lency it is sufficient to tune \̃ directly towards argmax𝑎 equivalency
between 𝐺 and the 𝑄–function. This can be achieved by setting
the target value for a given 𝑠, 𝑎 pair as 1 for argmax𝑎𝑄 (𝑠, 𝑎) or 0
otherwise (Line 27). Next, SGD is used to tune \̃ according to the
log loss between the target values and softmax (𝐺 (𝑠, ·)).

5.4 Other tuning approaches

The covariance matrix adaptation evolutionary strategy (cma–es)
algorithm [11] is known to be a particularly effective parameter
tuning approach. cma–es is specifically suitable for domains where
the tunable parameters have a continuous value range. Moreover,
cma–es is known for having few hyper–parameters with fairly low
sensitivity. As a result, it is particularly appealing for testing and
validating our designed policy. On the other hand, cma–es may
be unsuitable for online tuning due to inefficient data sampling,
requiring several full episodes for a single policy update step. More-
over, the erratic exploration of cma–es, though helpful in avoiding
local optimums, is less suitable for safety critical domains.

Another natural candidate for online parameter tuning is the
policy gradient approach [34]. Specifically, the Proximal–Policy Op-
timization (PPO) algorithm [31] is particularly suitable for safety–
critical domains as it encourages bounded policy gradient steps.
PPO achieves this behaviour by clipping the expected advantage
for large policy divergence. Consequently, PPO is expected to re-
sult in smooth and steady convergence but, on the other hand, is
more prone to settle in a local optimum and achieve sub–optimal
performance.



Demand Total Avg Rate Low Rate High Rate
Low 45,112 1.04 0.59 1.29
Medium 51,298 1.19 0.76 1.42
High 61,261 1.42 0.98 1.59

Table 1: Traffic demand for three different days representing

low, medium, and high traffic volumes. Each day is affiliated

with: the total number of approaching vehicles (Total), ap-

proaching vehicle per second on average (Avg Rate), during

off–peak (Low Rate), and during peak hour (High Rate).

6 EMPIRICAL STUDY

The purpose of the empirical study is to evaluate and analyze the
performance of the proposed designed control policy along with
the affiliated online tuning algorithms. Specifically, the empirical
study aims at answering the following questions:

(1) Can the designed control policy approximate a deep Q–
learning optimized policy?

(2) Is a policy gradient optimization approach suitable for train-
ing the designed control policy?

(3) How do the regulatable Q–learning variants compare to the
state–of–the–art, DQN–based signal controller?

6.1 Experimental settings

The reported experiments rely on a well–established traffic simula-
tor, Simulation of Urban MObility (SUMO) [6], along with traffic
scenarios that are based on real–life observations. The Utah depart-
ment of transportation (UDOT) provides an open access database
(https://udottraffic.utah.gov/ATSPM) specifying the observed traffic
demand for 2092 signalized intersections. The database specifies
the number of vehicles affiliated with each incoming, outgoing road
combination in 5 minutes aggregation. The demand reported by
UDOT is parsed into SUMO where vehicles are spawned with equal
probability along equivalent 5 minute intervals.

The reported results relate to a representative major intersection,
State St & E 4500 S, Murray, Utah. Source code for all experiments
is available at: https://github.com/jault/StateStreetSumo. This inter-
section is chosen as it is affiliated with high volumes of traffic
arriving from two arterial roads. It typically receives more than
50,000 vehicles a day, peaking at 95 cars per minute in rush hour.
Figure 3 provides a snapshot of the simulated intersection (right)
and a picture from the actual intersection (left). This intersection
is affiliated with 10 phases, the 8 reported in Figure 1, and 2 North
and South bound permissive left turns. The minimum phase length
is set to 3 seconds for this intersection. These 10 phases form 11
unique pairs of non–conflicting phase combinations. As a result,
the affiliated designed control policy has 352 tunable parameters.
The UDOT database (Signal #7157) specifies the affiliated clearance
interval’s activation and duration.

In order to examine various traffic conditions, demand from
3 different days is chosen for simulation, Wednesday – May 1,
Monday – May 6, and Friday – June 21, all of 2019. For each day, a
14 hour time period is considered from 7 A.M. to 9 P.M. These dates
were chosen as representative examples of low (May 6th), medium
(May 1st), and high (June 21st) traffic volumes. Table 1 presents

the total number of vehicles that crossed the intersection on each
day as well as the average number of vehicles arriving per second,
during off–peak (Low Rate), and peak–hour (High Rate).

The reported cma–es implementation is based on pycma [10],
and the initial variance and population size were chosen to be 0.2
and 12 respectively. The simulated intersection controller is defined
as an environment within OpenAI’s GYM [8], which gives a stan-
dard interface for reinforcement learning. Hyper–parameters for
the online algorithms under all demand profiles aside from discount
factor are identical throughout the different variants. The discount
factor and epsilon were chosen empirically. Other values resulted
in similar trends yet yielded slightly worse outcomes. Under low
and medium demand the discount factor is set as 0.8. The discount
is raised to 0.9 in high demands; this change was found to be impor-
tant as clearing traffic from a set of lanes requires a larger planning
horizon.

For DQN and the regulatable variants, the minibatch size is set
to 32 and replay capacity at 100,000 transitions. The epsilon greedy
action–selection probability in DQN and its variants is reduced
from 0.05 to 0 (full exploit) after 20 training episodes resulting
in the observed drop in the graphs. The Q–network is a DNN
composed of 3 hidden layers with 64 units each, where the first
layer is a 2x2 kernel convolutional layer grouping the input for
lanes that belong to the same road. The Huber loss function is
used in line with the original DQN work. Leaky ReLU activation
is used for all layers along with the Adam optimizer with a step–
size of 0.001, and decay rates 𝛽1 and 𝛽2 are set as 0.9 and 0.999
respectively. The same parameters were used for both optimizers
in the two–stage regulatable variants. The PPO implementation
follows the advantage actor–critic paradigm defining the actor by
the regulatable function and the critic by a similar neural network
as described prior with an alternative objective of estimating state
advantages. The step size for each optimizer in this case are 0.001
for the actor and 0.001 for the critic with all other hyper parameters
remaining the same.

Finally, as a baseline for comparison, the results include per-
formance measures for the commonly deployed actuated signal
control [7]. This type of controller is provided by the SUMO sim-
ulator. Phases for the actuated controller are set in a fixed order,
protected lefts followed by through traffic. The maximum green
time is set to 300 seconds.

6.2 Regulatable control function

The first set of experiments aim at addressing the question: can the
designed control policy approximate a deep Q–learning optimized
policy?

Given the stochastic nature of the signal domain and the com-
binatorial state space, it is infeasible to compute the true optimal
performance. Instead, we say that the control function can ap-
proximate an optimized policy if it results in performance that is
competitive with a state–of–the–art, DNN based controller [32]. In
order to address this question, a parameter tuning process is applied
to the regulatable function. cma–es is chosen as the optimization
approach since it is comparatively insensitive to hyper–parameter
settings with just the population size and initial variance as hyper–
parameters. Further, policy performance can be determined over

https://udottraffic.utah.gov/ATSPM


Figure 3: A signalized intersection at State St & E 4500 S, Murray, Utah (left), (picture credit: Google Maps), and an equivalent

intersection modeled in SUMO (right).

Figure 4: Average seconds of delay caused by the intersection under each demand profile. In each experiment the 95% confi-

dence intervals per episode over a population of 30 trials with random seeds is given.

entire episodes as cma–es is highly parallelizable. Finally, the sim-
ulator provides our goal of delay directly when vehicles exit the
simulation. This allows for optimization of the designed control
policy with respect to the delay rather than approximated through
the observed waiting time as real–time algorithms require.

Figure 4 presents the average delay suffered by approaching
vehicles for each of the three representative days as a function of
the training episode (full day of traffic). For now, consider the DQN
curve (representing the state–of–the–art, DNN based controller)
and the cma–es datapoint (in green). As can be seen, cma–es with
the designed regulatable control function achieves competitive
delay measurements on all three traffic scenarios. Note that, cma–
es is presented as a single data–point (post convergence), as it
requires two orders of magnitudemore samples in order to converge
compared to the other approaches. The full tuning process cannot
be fitted on the presented plots.

It is important to note that other, simpler regulatable control func-
tions were also examined, specifically based on Polynomial [16],
and Fourier basis [14] function approximators. Both yielded ex-
tremely poor performance. After over 100 epochs either policy
failed to complete the scenario by clearing all vehicles by the end of
the simulated time period. The polynomial function showed some
improvement, while Fourier basis was stagnant.

Despite its impressive ability to optimize the designed, regulat-
able function, cma–es is not practical for online optimization for

two reasons. (1) Inefficient sampling – each learning step (update of
parameters’ mean value) requires 24 episodes (24 full days of traffic).
(2) Erratic exploration – extreme parameters values are sampled
leading to unacceptable performance during the tuning process.
These drawbacks are immediately evident in Figure 5 where the
average delay over each epoch is presented. cma–es fails to meet
actuated performance for at least 25 epochs (600 episodes) for the
medium demand scenario (similar trends were observed for the high
and low demand scenarios). The erratic exploration is a hindrance
as some solutions entirely fail to complete the scenario or perform
much worse than average. Performance doesn’t become stable for
nearly another 4,000 episodes (11 years of traffic). Nonetheless,
these results are still valuable as they provide a promising lower
bound estimate on the performance of the regulatable policy (as
seen in Figure 4).

6.3 Policy gradient approach

Policy–gradient approaches [41] are known to be especially suitable
for optimizing a given policy function while providing some bounds
on the exploration rate [30, 31]. As a result, such algorithms are
promising candidates for online tuning of regulatable functions in
safety critical domains.

Figure 4 presents the performance curve for tuning the designed
control policy using the PPO algorithm. As expected, the learning



Figure 5: Average seconds of delay caused by the intersec-

tion under medium delay optimized by cma–es plotted as

the mean of 24 episode epochs.

curve is smooth and monotonic suggesting a safe exploration pro-
cess. On the other hand, PPO requires about 15 episodes to reach
actuated control performance in low and medium demand, while
not even reaching actuated level performance in the case of high
demand. As a result, such an approach is unlikely to be adopted
in practice. Moreover, bounded exploration can cause PPO to con-
verge to suboptimal local optimums as evidenced by the presented
results.

6.4 Q–learning

Given that the DQN algorithm achieves state–of–the–art results in
the signal control domain (yellow curve in Figure 4), the next set
of experiments is set to examine how the regulatable Q–learning
variants compare.

Figure 4 presents the performance curve for DRSQ (in purple)
and DRHQ (in brown). As stated above, vanilla DRQ performs sig-
nificantly worse and is, thus, not presented in this plot. Both DRSQ
and DRHQ outperform PPO and, for low and medium demand,
outperform actuated control after a single episode. On the other
hand, it takes them 20 episodes to outperform actuated control for
high demand (once epsilon is reduced to 0). In order to mitigate the
long training time on high demand, Laval et al. [2019] suggested
to train the controller on low demand prior to applying it to high
demand scenarios. Such an approach is expected to be specifically
useful for training regulatable control functions.

DRHQ has a small, yet significant, advantage over DRSQ for low
demand while yielding similar performance for medium and high
demand. Finally, while DQN outperforms both, it is important to
keep in mind that the policy induced by DQN cannot be interpreted
and regulated. Consequently, DQN is unlikely to be implemented
and serves only as an expected lower bound on regulatable perfor-
mance.

7 SUMMARY AND CONCLUSIONS

This paper discusses online optimization of interpretable signal
control policies. Unlike previous work that based such controllers

on deep neural networks, this paper suggests utilizing a policy
function that can be interpreted and regulated. A regulatable policy
function is defined as one with a monotonic relation between each
state variable and the precedence of a given action. The following
conclusions are drawn.
1. A regulatable function can approximate an optimized policy in a
way that is competitive with a deep neural network.
2. A policy gradient approach is not suitable for training a regulat-
able function in this domain due to slow and sub–optimal conver-
gence.
3. A Q–learning approach which trains a regulatable function re-
sults in good performance both with regards to convergence speed
and the final policy. The regulatable function should be trained to fit
the hardmax action as provided by the underlying deep Q–network
according to DRHQ.

Future work will examine techniques for warm starting the learn-
ing process by observing the operation of a currently deployed
controller.
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