THERMAL PERFORMANCE OF MICROCHANNELS
WITH PATTERNED SUPER-HYDROPHOBIC
SURFACES UNDER LAMINAR FLOW

Qibo Li1 and Jorge L. Alvarado2
1Department of Mechanical Engineering, Texas A\&M University,
College Station, TX, USA
2Department of Engineering Technology and Industrial Distribution,
Texas A\&M University, College Station, TX, USA

This article presents the simulation results and the effects of slip length and fractal ratio on
patterned super-hydrophobic surfaces in microchannels under laminar flow conditions. The
effects of using different slip length ratios and fractal ratios on patterned surfaces were
simulated numerically at two Reynolds number values. Dimensionless parameters such as
Nusselt number, friction factor, and performance efficiency indicator were used to study
the effects of boundary conditions (i.e., surface features) on microchannel thermal perfor-
mance. The results show that the flow structure within a patterned microchannel
experiences flow fluctuations near the wall boundary caused by the super-hydrophobic surface.
The results also indicate that patterned surfaces with high slip length enhance heat transfer
performance and reduce pressure drop.

1. INTRODUCTION AND BACKGROUND

With the rapid development of microtechnologies and nanotechnologies,
microdevices and nanodevices are finding a wide use in industry [1–4]. The interfacial
phenomena of flowing fluids in microdevices have been receiving increased attention
since they have proven to be effective in improving the heat transfer performance in
devices such as microchannels. Recently, Chen et al. [5–7] focused their study on the
development of the boundary layer of laminar flow in microchannels with rough sur-
faces. They found that the self-affine fractal dimension of a rough surface is able to
affect the heat transfer behavior and pressure drop characteristics in a microchannel.
Turbulence flow cases in microdevices have received more attention lately since the
boundary layer tends to separate and reattach in the turbulent region with increasing
speed, resulting in enhanced heat transfer performance. Hattori and Nagano [8]
presented detailed flow structures and suggested heat transfer mechanisms in the
turbulent boundary layer characterized by separation and reattachment using the

Received 23 June 2014; accepted 4 August 2014.
Address correspondence to Jorge L. Alvarado, Department of Engineering Technology and
Industrial Distribution, MS 3367, Texas A\&M University, College Station, TX, 77843-3367, USA.
E-mail: jorge.alvarado@tamu.edu

1163