Overview Diagnostics Print View with Answers

Chapter 1

Due: 11:59pm on Sunday, January 22, 2023
To understand how points are awarded, read the Grading Policy for this assignment.

Exercise 1.6 - Enhanced - with Feedback

Description: The following conversions occur frequently in physics and are very useful. (a) Use $1 \mathrm{mi}=5280 \mathrm{ft}$ and $1 \mathrm{~h}=3600 \mathrm{~s}$ to convert 60 mph to units of ft / s. (b) The acceleration of a freely falling object is $32 \mathrm{ft} / \mathrm{s}^{\wedge} 2$. Use $1 \mathrm{ft}=30.48 \mathrm{~cm}$ to...

The following conversions occur frequently in physics and are very useful.

Part A

Use $1 \mathrm{mi}=5280 \mathrm{ft}$ and $1 \mathrm{~h}=3600 \mathrm{~s}$ to convert 60 mph to units of ft / s.
Express your answer in feets per second.
ANSWER:
$60 \mathrm{mph}=88 \mathrm{ft} / \mathrm{s}$

Also accepted: 88.0, 88

Part B

The acceleration of a freely falling object is $32 \mathrm{ft} / \mathrm{s}^{2}$. Use $1 \mathrm{ft}=30.48 \mathrm{~cm}$ to express this acceleration in units of $\mathrm{m} / \mathrm{s}^{2}$.
Express your answer in meters per square second.
ANSWER:

```
32 ft/\mp@subsup{\textrm{s}}{}{2}=9.8\textrm{m}/\mp@subsup{\textrm{s}}{}{2}
```

Also accepted: 9.75, 9.8

Part C

The density of water is $1.0 \mathrm{~g} / \mathrm{cm}^{3}$. Convert this density to units of $\mathrm{kg} / \mathrm{m}^{3}$.
Express your answer in kilograms per cubic meter.
ANSWER:
$1.0 \mathrm{~g} / \mathrm{cm}^{3}=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Also accepted: 1000, 1000

Exercise 1.30 - Enhanced - with Feedback

 Let the direction of a vector be the angle that the vector makes with the $+x$-axis, measured counterclockwise ...

Part A

Find the magnitude of the vector $\overrightarrow{A_{1}}$ represented by the pair of components: $A_{x_{1}}=-9.30 \mathrm{~cm}, A_{y_{1}}=4.30 \mathrm{~cm}$.
Express your answer in centimeters.
ANSWER:

$$
\left|\overrightarrow{A_{1}}\right|=\sqrt{\left(A_{\mathrm{x}_{1}}{ }^{2}+{A_{y_{1}}}^{2}\right)}=10.2 \mathrm{~cm}
$$

Part B

Let the direction of a vector be the angle that the vector makes with the $+x$-axis, measured counterclockwise from that axis. Find the direction of the vector $\overrightarrow{A_{1}}$.

Express your answer in degrees.
ANSWER:
angle $=180-\operatorname{atan}\left(\frac{A_{\mathrm{y}_{1}}}{-A_{\mathrm{x}_{1}}}\right)=155 。$

Part C

Find the magnitude of the vector $\overrightarrow{A_{2}}$ represented by the pair of components: $A_{x_{2}}=-9.70 \mathrm{~m}, A_{y_{2}}=-1.60 \mathrm{~m}$.
Express your answer in meters.
ANSWER:

$$
\left|\overrightarrow{A_{2}}\right|=\sqrt{\left({A_{\mathrm{x}_{2}}}^{2}+{A_{y_{2}}}^{2}\right)}=9.83 \mathrm{~m}
$$

Part D

Find the direction of the vector $\overrightarrow{A_{2}}$. Let the direction of a vector be the angle that the vector makes with the $+x$-axis, measured counterclockwise from that axis.

Express your answer in degrees.
ANSWER:

Part E

Find the magnitude of the vector $\overrightarrow{A_{3}}$ represented by the pair of components: $A_{x_{3}}=8.15 \mathrm{~km}, A_{y_{3}}=-3.70 \mathrm{~km}$.

Express your answer in kilometers.

ANSWER:

Part F

Find the direction of the vector $\overrightarrow{A_{3}}$. Let the direction of a vector be the angle that the vector makes with the $+x$-axis, measured counterclockwise from that axis.

Express your answer in degrees.

ANSWER:

$$
\begin{aligned}
& \text { angle }=360-\operatorname{acos}\left(\frac{A_{\mathrm{x}_{3}}}{\left.\sqrt{\left({\left.A_{\mathrm{x}_{3}}{ }^{2}+A_{\mathrm{y}_{3}}{ }^{2}\right)}^{2}\right.}\right)=336 。 . ~}\right.
\end{aligned}
$$

Exercise 1.22 - Enhanced - with Feedback

Description: (a) For the vectors A_vec and B_vec in the figure , use a scale drawing to find the magnitude of the vector sum A_vec+B_vec. (b) Find the direction of the vector sum A_{-}vec+B_vec. (c) Find the magnitude of the vector difference $A_{_}$vec - B_vec. (d) ...

Part A

For the vectors \vec{A} and \vec{B} in the figure, use a scale drawing to find the magnitude of the vector sum $\vec{A}+\vec{B}$.

Express your answer in meters.

ANSWER:
$|\vec{A}+\vec{B}|=9.0 \mathrm{~m}$
Also accepted: 9.01, 9.0

Part B

Find the direction of the vector sum $\vec{A}+\vec{B}$.
Express your answer in degrees.
ANSWER:

```
angle = 34 }\mp@subsup{}{}{\circ}\mathrm{ counterclockwise from +x
```

Also accepted: 33.6, -326, 34

Part C

Find the magnitude of the vector difference $\vec{A}-\vec{B}$.
Express your answer in meters.
ANSWER:
$|\vec{A}-\vec{B}|=22 \mathrm{~m}$
Also accepted: 22.3, 22

Part D

Find the direction of the vector difference $\vec{A}-\vec{B}$.
Express your answer in degrees.
ANSWER:

```
angle =250 * counterclockwise from +x-axis
```

Also accepted: -110, 250

Part E

Use your answers to find the magnitude of $-\vec{A}-\vec{B}$.
Express your answer in meters.
ANSWER:
$|-\vec{A}-\vec{B}|=9.0 \mathrm{~m}$
Also accepted: 9.01, 9.0

Part F

Find the direction of $-\vec{A}-\vec{B}$.
Express your answer in degrees.
ANSWER:

```
angle =214 * counterclockwise from +x-axis
```

Also accepted: -146, 214

Part G

Find the magnitude of $\vec{B}-\vec{A}$.
Express your answer in meters.
ANSWER:
$|\vec{B}-\vec{A}|=22 \mathrm{~m}$
Also accepted: 22.3, 22

Part H

Find the direction of $\vec{B}-\vec{A}$.
Express your answer in degrees.
ANSWER:

```
angle = 70 *}\mathrm{ counterclockwise from +x}\mathrm{ -axis
```

Also accepted: 70.3, -290, 70

Exercise 1.23

Description: A spelunker is surveying a cave. She follows a passage \#\# m straight west, then s2 in a direction 45 degree(s) east of south, and then 280 m at 30 degree(s) east of north. After a fourth unmeasured displacement, she finds herself back ...

A spelunker is surveying a cave. She follows a passage 130 m straight west, then 230 m in a direction 45° east of south, and then 280 m at 30° east of north. After a fourth unmeasured displacement, she finds herself back where she started.

Part A

Use a scale drawing to determine the magnitude of the fourth displacement.
Express your answer in meters.
ANSWER:

$$
\begin{aligned}
& \sqrt{\left(\left(140 \cdot \sqrt{3}-\frac{s 2}{\sqrt{2}}\right)^{2}+\left(\frac{s 2}{\sqrt{2}}+140-s 1\right)^{2}\right)}=190 \mathrm{~m} \\
& \text { Also accepted: } \sqrt{\left(\left(140 \cdot \sqrt{3}-\frac{s 2}{\sqrt{2}}\right)^{2}+\left(\frac{s 2}{\sqrt{2}}+140-s 1\right)^{2}\right)}=190, \sqrt{\left(\left(140 \cdot \sqrt{3}-\frac{s 2}{\sqrt{2}}\right)^{2}+\left(\frac{s 2}{\sqrt{2}}+140-s 1\right)^{2}\right)}=190
\end{aligned}
$$

Part B

Determine the direction of the fourth displacement.
Express your answer in degrees.
ANSWER:

$$
\left.\begin{array}{l}
\operatorname{asin}\left(\frac{140 \cdot \sqrt{3}-\frac{s 2}{\sqrt{2}}}{\sqrt{\left(\left(140 \cdot \sqrt{3}-\frac{s 2}{\sqrt{2}}\right)^{2}+\left(\frac{s 2}{\sqrt{2}}+140-s 1\right)^{2}\right)}}\right)=25 \circ \text { South of West } \\
\\
\text { Also accepted: } \operatorname{asin}\left(\frac{140 \cdot \sqrt{3}-\frac{s 2}{\sqrt{2}}}{\sqrt{\left(\left(140 \cdot \sqrt{3}-\frac{s 2}{\sqrt{2}}\right)^{2}+\left(\frac{s 2}{\sqrt{2}}+140-s 1\right)^{2}\right)}}\right)=24.8, \operatorname{asin}\left(\frac{140 \cdot \sqrt{3}-\frac{s 2}{\sqrt{2}}}{\sqrt{\left(\left(140 \cdot \sqrt{3}-\frac{s 2}{\sqrt{2}}\right)^{2}+\left(\frac{s 2}{\sqrt{2}}+140-s 1\right)^{2}\right)}}\right)=25
\end{array}\right)
$$

Exercise 1.36 - Enhanced - with Feedback

Description: (a) Given the vector A_vec $=4.00$ i_unit +7.00 j_unit , find the magnitude of the vector. (b) Given the vector B_vec $=5.00$ i_unit -2.00 j_unit , find the magnitude of the vector. (c) Write an expression for the vector difference A_vec - B_vec...

Part A

Given the vector $\vec{A}=4.00 \hat{i}+7.00 \hat{j}$, find the magnitude of the vector.
ANSWER:
$|\vec{A}|=8.06$

Part B

Given the vector $\vec{B}=5.00 \hat{i}-2.00 \hat{j}$, find the magnitude of the vector.
ANSWER:

$$
|\vec{B}|=5.39
$$

Part C

Write an expression for the vector difference $\vec{A}-\vec{B}$ using unit vectors.
Express your answer in terms of the unit vectors \hat{i} and \hat{j}. Use the 'unit vector' button to denote unit vectors in your answer. ANSWER:

$$
\vec{A}-\vec{B}=-1.00 \hat{i}+9.00 \hat{j}
$$

Part D

Find the magnitude of the vector difference $\vec{A}-\vec{B}$.
ANSWER:

$$
|\vec{A}-\vec{B}|=9.06
$$

Part E

Find the direction of the vector difference $\vec{A}-\vec{B}$.
Express your answer in degrees.
ANSWER:
96.3° counterclockwise from $+x$ direction

Part F

In a vector diagram show \vec{A}, \vec{B}, and $\vec{C}=\vec{A}-\vec{B}$.
Draw the vectors starting at the black dot. Both the orientation and length of your vectors will be graded.
ANSWER:

No elements selected

Exercise 1.44 - Enhanced - with Feedback

Description: (a) For the two vectors in the figure, find the magnitude of the vector product A_vec * B_vec. (b) Find the direction of the vector product A_vec * B_vec. (c) Find the magnitude of B_vec * A_vec. (d) Find the direction of B_vec * A_vec.

Part A

For the two vectors in the figure, find the magnitude of the vector product $\vec{A} \times \vec{B}$.
Express your answer in square centimeters.

ANSWER:

$$
|\vec{A} \times \vec{B}|=4.61 \mathrm{~cm}^{2}
$$

Part B

Find the direction of the vector product $\vec{A} \times \vec{B}$.
ANSWER:

```
+z-direction
```

(-) -z-direction
$+x$-direction

- x-direction

Part C

Find the magnitude of $\vec{B} \times \vec{A}$.
Express your answer in square centimeters.
ANSWER:
$4.61 \mathrm{~cm}^{2}$

Part D

Find the direction of $\vec{B} \times \vec{A}$.
ANSWER:

```
    O}+z\mathrm{ -direction
    -z-direction
    +x-direction
    -x-direction
```


Problem 1.62

Description: On a training flight, a student pilot flies from Lincoln, Nebraska to Clarinda, lowa, then to St. Joseph, Missouri, and then to Manhattan, Kansas . The directions are shown relative to north: 0 degree(s)is north, 90 degree(s)is east, 180 degree(s) is...

On a training flight, a student pilot flies from Lincoln, Nebraska to Clarinda, lowa, then to St. Joseph, Missouri, and then to Manhattan, Kansas . The directions are shown relative to north: 0° is north, 90° is east, 180° is south, and 270° is west.

Part A

Use the method of components to find the distance she has to fly from Manhattan to get back to Lincoln.
Express your answer in kilometers.
ANSWER:

```
1 8 9 ~ k m
```


Part B

Find the direction (relative to north) she must fly to get there.
Express your answer in degrees.
ANSWER:
$\theta=-10.5$ 。
Also accepted: 350, -10.5

Problem 1.64

Description: An explorer in Antarctica leaves his shelter during a whiteout. He takes n 1 steps northeast, then n 2 steps at an angle 60 degree(s) north of west, then n 3 steps due south. Assume his steps all have equal length. (a) Select the...

An explorer in Antarctica leaves his shelter during a whiteout. He takes 39 steps northeast, then 84 steps at an angle 60° north of west, then 46 steps due south. Assume his steps all have equal length.

Part A

Select the correct diagram, roughly to scale, of the three vectors and their resultant.
ANSWER:

Part C

What is the direction of the displacement that will return the explorer to his shelter?
Express your answer in degrees.
ANSWER:

$$
\begin{aligned}
\theta= & 90-\operatorname{atan}\left(\frac{1}{\frac{-n 1 \cos (45)+n 2 \cos (60)}{n 1 \ln (45)+n 2 \sin (60)-n 3}}\right)=15 \circ \text { east of south } \\
& \text { Also accepted: } 90-\operatorname{atan}\left(\frac{1}{\frac{-n 1 \cos (45)+n 2 \cos (60)}{n 1 \sin (45)+n 2 \sin (60)-n 3}}\right)=14.9,90-\operatorname{atan}\left(\frac{1}{\frac{-n \operatorname{locos}(45)+n 2 \cos (60)}{n 1 \ln (45)+n 2 \sin (60)-n 3}}\right)=15
\end{aligned}
$$

Problem 1.72

Description: Ricardo and Jane are standing under a tree in the middle of a pasture. An argument ensues, and they walk away in different directions. Ricardo walks I1 in a direction 60.0 degree(s) west of north. Jane walks 12 in a direction 30.0 degree(s) south of...

Ricardo and Jane are standing under a tree in the middle of a pasture. An argument ensues, and they walk away in different directions. Ricardo walks 24.0 m in a direction 60.0° west of north. Jane walks 16.0 m in a direction 30.0° south of west. They then stop and turn to face each other.

Part A

What is the distance between them?
Express your answer with the appropriate units.
ANSWER:
$d=\sqrt{l 1^{2}+l 2^{2}-l 1 l 2}=21.2 \mathrm{~m}$

Part B

In what direction should Ricardo walk to go directly toward Jane?
Express your answer in degrees.
ANSWER:

$$
\operatorname{atan}\left(\frac{l 1-l 2}{l 1+l 2} \sqrt{3}\right)=19.1 \circ \text { east of south }
$$

<All Assignments

University Physics with Modern Physics, 15e
Young/Freedman
mahapatra62745
Ends: 05/11/23

Mastering Physics

with Adaptive Follow-Ups
Copyright © 2023 Pearson. All rights reserved.
Legal Notice Privacy Policy Permissions

