GENERATING ADAPTIVE DISTANCE FIELDS FROM TRIANGLE MESHES

Pedro Figueirêdo, Csaba Bálint, Róbert Bán

Eötvös Loránd University, Faculty of Informatics

7th International Conference on Mathematics and Informatics

Târgu Mureş/Marosvásárhely, Romania September 3, 2019

EFOP-3.6.3-VEKOP-16-2017-00001

European Union European Social Fund

Hungarian Government

INVESTING IN YOUR FUTURE

TABLE OF CONTENTS

- Signed Distance Function and Field
- Octree
- Discretizing SDFs using Octrees
 - Octree Creation
 - Inside/Outside Partition
 - Optimizations
- Results
 - SDF vs Triangle List
 - Soft Shadows
 - Offset Operation
- Debugging tool
- Future Work

SIGNED DISTANCE FUNCTION AND FIELD

- f(p) is the distance from p to the surface;
- Negative if inside, positive if outside;
- Example:
 - Unit sphere: $f(p) = ||p||_2 1$.

$$f(p) = \begin{cases} d(p, \partial \Omega), & \text{if } p \notin \Omega \\ -d(p, \partial \Omega), & \text{if } p \in \Omega \end{cases}$$

OCTREE

- Spatial data structure;
- Eight children;
- Much less memory footprint;
- Quick access to SDF values;
- High level of regularity;
- GPU friendly.

DISCRETIZING SDFs USING OCTREES OCTREE CREATION

Steps

- 1. Calculate root node's bounding box;
- 2. Recursively create child nodes until:
 - 1. A depth limit has been reached, or
 - 2. The number of triangles inside the node's bounding box is below a predefined value, or
 - 3. Discretization error is negligible;

Subproblem 1:

Box \cap Triangle \rightarrow Separating Axis Theorem;

Subproblem 2:

SDF computing for corners of leaf nodes.

DISCRETIZING SDFs USING OCTREES OCTREE CREATION: SEPARATION AXES THEOREM

- Intersection of convex shapes;
- Separating hyperplane;
- Project objects onto perpendicular axes;
- Do the intervals overlap?
- Find non-overlapping axis.
- If there is none, shapes intersect.
- For box and triangle, 13 tests.

"If two convex objects are not penetrating, there exists an axis for which the projection of the objects will not overlap."

DISCRETIZING SDFs USING OCTREES OCTREE CREATION: SDF COMPUTING

Steps

- 1. For every leaf's corner:
 - 1. Calculate SDF values for all nearby triangles;
 - 2. Keep minimum;

DISCRETIZING SDFs USING OCTREES OCTREE CREATION: SDF COMPUTING

Steps

- 1. For every leaf's corner:
 - 1. Calculate SDF values for all nearby triangles;
 - 2. Keep minimum;

Does it work?

DISCRETIZING SDFs USING OCTREES OCTREE CREATION: SDF COMPUTING

Confidence based graph

- The graph is composed by a set of all node's corners in the octree
- Edges are all edges from all leaf nodes and their box diagonals
- Each vertex in the new graph has a confidence $-1.0 \le c \le 1.0$

Confidence based graph

- The graph is composed by a set of all node's corners in the octree
- Edges are all edges from all leaf nodes and their box diagonals
- Each vertex in the new graph has a confidence $-1.0 \le c \le 1.0$

Confidence computing algorithm

- Starting node: utmost negative corner, c = 1.0
- Priority queue hosts unprocessed nodes (highest confidence first)
- Confidence of a node = weighted average of neighbors' confidence
- 1) Apply Lipschitz Continuity \rightarrow solves a set of nodes
- 2) Undecided nodes \rightarrow triangle intersection count

Outside

Inside

DISCRETIZING SDFs USING OCTREES OPTIMIZATIONS

Number of nodes: 21.801

DISCRETIZING SDFs USING OCTREES OPTIMIZATIONS

Adaptively Sampled Distance Fields (ADFs)

- Removes unnecessary child nodes
- Child nodes are removed if their sdf values can be approximated interpolating the parent's sdf values

DISCRETIZING SDFs USING OCTREES OPTIMIZATIONS

Number of nodes: 10.825 (-50%)

RESULTS

81.000 triangles, octree depth: 7

RESULTS SDF vs TRIANGLE LIST

81.000 triangles, octree depth: 5

5.002 triangles, octree depth: 7

RESULTS SOFT SHADOWS

12776 triangles, octree depth: 5

RESULTS OFFSET OPERATION

5.002 triangles, octree depth: 5

Original

More Offset

RESULTS NEGATIVE OFFSET OPERATION

5.002 triangles, octree depth: 5

More Offset

Original

Offset

DEBUGGING TOOL

FUTURE WORK

- Optimize generation to support live updates;
- Parallelize creation and painting of octree;
- Introduce more interpolation techniques for smoother results;
- Rediscretization with offset surfaces yield shape deformations.

THANK YOU FOR YOUR ATTENTION!

HUNGARIAN

Government

European Union European Social Fund

INVESTING IN YOUR FUTURE