- If the objective function is optimized at two adjacent vertices of S, then it is optimized at every point on the line segment joining these vertices. In this case, there are infinitely many solutions to the problem.
- The Method of Corners for a BOUNDED Feasible Set Step 1: Graph the feasible set.
Step 2: Find the coordinates of all corner points of the feasible set.
Step 3: Evaluate the objective function at each corner point.
Step 4: Find the vertex which gives the maximum (minimum) value of the objective function.
- If there is only one such vertex, then this vertex is the unique solution to the problem.
- If the objective function is maximized (minimized) at two adjacent corner points of S, then there are infinitely many solutions given by the points on the line segment joining these two vertices.
- NOTE: For an UNBOUNDED solution set, the procedure for the Method of Comers is the same, but depending on the coefficients of your objective function, a maximum value or a minimum value of the objective function may not be possible.

1. True/False

TRUE FALSE TRUE

FALSE TRUE

FALSE
a) $I_{n} A=A I_{n}=A$ for all matrices A. (This is thu e for all
b) A nonsingular matrix has no inverse. Square matrices A.)
b) A nonsingular matrix has no inverse.
c) To be able to compute the matrix product $A B$, the number of columns of A must equal the number of rows of B.

TRUE

d) If B is a 2×2 matrix, then $B+I_{2}=B . \quad\left(B I_{2}=B\right.$ is true $)$

TRUE

When solving the matrix equation $A X=B$ by computing $A^{-1} B$ in the calculator, a message of "ERR: SINGULAR MAT" implies that the system of equations has no solution.

TRUE

f) Every square matrix has an inverse.
g) If the parametric solution to a system of equations is ($3 t+2,-t-3, t)$, then $(-7,0,-3)$ is a particular solution.
2. Find the value of k so that the following system has no solution:

Verify $2 y=-5 x-7$

$$
\begin{aligned}
& y=-5 x-7 \\
& y=-\frac{5}{2} x-\frac{7}{2} \Rightarrow m=-\frac{5}{2}
\end{aligned}
$$

Verify

$$
-3 x+16 y=8
$$

$$
k y=3 x+8
$$

$$
-\frac{5}{2}=\frac{3}{k}
$$

$$
y=\frac{3}{k} x+\frac{8}{k}
$$

$$
m=\frac{3}{k}
$$

$$
\begin{aligned}
& -(-3)-3=0 \\
& 3(-3)+2=-9+2=-7
\end{aligned}
$$

$$
5 x+2 y=-7
$$

$$
-3 x+k y=8
$$

$$
-5 x+n y-0
$$

$$
\left[\begin{array}{cc|c}
1 & -4 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Nosolx.
3. For each of the following, if the matrix is in row reduced form, interpret its meaning as a solution to a system of equations. If the matrix is not in row reduced form, explain why.
(a) $\left[\begin{array}{ccc|c}1 & 0 & 0 & 4 \\ 0 & 1 & 8 & -5 \\ 0 & 0 & 1 & 0\end{array}\right]$
(e) $\left[\begin{array}{lll|l}0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 4 \\ 1 & 0 & 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{ccc|c}0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 8 \\ 0 & 0 & 0 & 0\end{array}\right]$
(f) $\left[\begin{array}{lll|l}{\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 5 \\ 0 & 0 & 1\end{array}\right.} & 4 \\ 0 & 0 & 0 & 1\end{array}\right]>$
(c) $\left[\begin{array}{cc|c}1 & 0 & 15 \\ 0 & 1 & -7 \\ 0 & 0 & 0\end{array}\right]$
(g) $\left[\begin{array}{ll|l}0 & 0 & 0 \\ 1 & 0 & 3 \\ 0 & 1 & 8\end{array}\right]$
(d) $\left[\begin{array}{ccc|c}1 & 0 & 0 & 5 \\ 0 & -1 & 0 & -3 \\ 0 & 0 & 1 & 8\end{array}\right]$
a) Not in reform b / c col 3 has a leading 1 , but not all other entries in cot zaire 0 .
b) If in rr. form. Let $x=t$ where t is anyrealt. $y=-3, z=8 \quad(t,-3,8)=$ parametric sole
c) Is in rr. form. Unique sold $(15,-7)$
d) Not in rr. form. Est nonzero entry in row 2 should be al
e) Not in cr. form. Leading is are not down and to the right frack other.
(f) Is in reform $\begin{aligned} 0 x+0 y+0 z=1 \\ b=1 \text {. FALSE }\end{aligned}$

No sole.
(g) Not in or. from. Rows pill i's must be below all cows w/ nonzero entices.
4. For the next two word problems do the following:

1) Define the variables that are used in setting up the system of equations.
II) Set up the system of equations that represents this problem. III) Solve for the solution.
IV) If the solution is parametric, then tell what restrictions should be placed on the parameters). Also give three specie solutions.
(a) Fred, Bob, and George are avid collectors of baseball cards. Among the three of them, they have 924 cards. Bob has three times as many cards as Fred, and George has 100 more cards than Fred and Bob do combined. How

$$
\begin{aligned}
x+y+z & =924 \\
y & =3 x \\
z & =100+x+y
\end{aligned}
$$

(b) In a laboratory experiment, a researcher wants to provide a rabbit with exactly 1000 units of vitamin A, exactly 1600 units of vitamin C and exactly 2400 units of vitamin E. The rabbit is fed a mixture of three foods. Each gram of food 1 contains 2 units of vitamin A, 3 units of vitamin \dot{C}, and 5 units of vitamin E. Each gram of food 2 contains 4 units of vitamin A, 7 units of vitamin C, and 9 units of vitamin E. Each gram of food 3 contains 6 units of vitamin A, 10 units of vitamin C, and 14 units of vitamin E. How many grams of each food should the rabbit be fed?

$$
\text { Let } x=\text { the of rams of food } 1
$$

$$
\operatorname{Let} g=
$$

$$
\operatorname{Ret} z=
$$

$$
\begin{aligned}
& \begin{aligned}
x+y+z & =924 \\
-3 x+y & =0
\end{aligned} \\
& \begin{array}{l}
\\
x+y+z=924 \\
-3 x+y=0 \\
x-y+z=100
\end{array} \\
& \begin{array}{l}
\text { Fred has } 103 \text { hands, } \\
\text { Bor. } 309 \ldots \\
\text { longe. } 512 \ldots \\
\hline
\end{array} \\
& -x-y+z=100 \\
& {\left[\begin{array}{ccc|c}
1 & 1 & 1 & 924 \\
-3 & 1 & 0 & 0 \\
-1 & -1 & 1 & 100
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{lll|ll}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 3 & 9 \\
0 & 0 & 1 & 512
\end{array}\right]}
\end{aligned}
$$

5. Solve the system $\begin{aligned} & 5 x-3 y=7 \\ & 2 x+6 y=-1\end{aligned}$ using the Gauss-Jordan elimination method.

$$
=\left[\begin{array}{lll}
1 & -15 & 9
\end{array}\right]+\left[\begin{array}{lll}
0 & 15 & -\frac{95}{12}
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
1 & 0 & \frac{13}{12}
\end{array}\right]
$$

6. Solve for the variables x, y, z, and u. If this is not possible, explain why.

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-1 & 0 & 5 \\
7 & 3 & 0
\end{array}\right]\left[\begin{array}{cc}
7 x & -2 \\
4 & -3 z \\
x & 8
\end{array}\right]+\left[\begin{array}{cc}
y & -40 x \\
-12 & 16
\end{array}\right]^{T}=\left[\begin{array}{cc}
9 & 3 u \\
-6 & 0
\end{array}\right]} \\
& \frac{2 \times 3 \hat{3}+2}{2 \times 2} \\
& \left.\left[\begin{array}{cc}
-7 x+5 x & 2+40 \\
49 x+12 & -14
\end{array}\right]+97\right]\left[\begin{array}{cc}
y & -12 \\
-40 x & 16
\end{array}\right]=\left[\begin{array}{cc}
9 & 34 \\
-6 & 0
\end{array}\right] \\
& -2(-2)+y=9 \\
& {\left[\begin{array}{ll}
-2 x & 42 \\
49 x+12 & -14-9 z
\end{array}\right]+\left[\begin{array}{cc}
y & -12 \\
-40 x & 16
\end{array}\right]=} \\
& {\left[\begin{array}{lc}
-2 x+y & 42-12 \\
49 x+12-40 x & -14-9 z+16
\end{array}\right]=\left[\begin{array}{cc}
9 & 34 \\
-6 & 0
\end{array}\right]} \\
& 4+y=9 \\
& 9 x+12^{5}=-4 \\
& 9 x=-18 \\
& x=-2 \\
& 30=3 u \\
& 10=u \\
& -9 z+2=0 \\
& -97=-2 \\
& z=2 / 9
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
5 & -3 & 7 \\
2 & 6 & -1
\end{array}\right] \xrightarrow{R_{1}-2 R_{2}}\left[\begin{array}{cc|c}
1 & -15 & 9 \\
2 & 6 & -1
\end{array}\right] \xrightarrow{R_{2}-2 R_{1}}\left[\begin{array}{ccc}
1 & -15 & 9 \\
0 & 36 & -19
\end{array}\right]} \\
& {\left[\begin{array}{lll}
5 & -3 & 7
\end{array}\right]-2\left[\begin{array}{lll}
2 & 6 & -1
\end{array}\right]} \\
& =\left[\begin{array}{lll}
5 & -3 & 7
\end{array}\right]+\left[\begin{array}{lll}
-4 & -12 & 2
\end{array}\right] \\
& {\left[\begin{array}{lll}
2 & 6 & -1
\end{array}\right]-2\left[\begin{array}{lll}
1 & -15 & 9
\end{array}\right]} \\
& =\left[\begin{array}{lll}
2 & 6 & -1
\end{array}\right]+\left[\begin{array}{lll}
-2 & 30 & -18
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & -15 & 9
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & 312 & -19
\end{array}\right] \\
& \left.\left[\begin{array}{cc|c}
1 & -15 & 9 \\
0 & 1 & -\frac{19}{36}
\end{array}\right] \xrightarrow{R_{1}+15 R_{2}}\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right] \begin{array}{c}
13 / 12 \\
{\left[\begin{array}{cc}
19 & -156
\end{array}\right.} \\
\hline
\end{array}\right]+15\left[\begin{array}{lll}
0 & 1 & -\frac{15}{36}
\end{array}\right]\left[\begin{array}{l}
x=\frac{13}{12} \\
y=\frac{-19}{36}
\end{array}\right]
\end{aligned}
$$

7. Find the matrix A that makes the following equation true:

$$
\underbrace{\left[\begin{array}{cc}
-5 & 3 \\
8 & 7
\end{array}\right]}_{B}+\frac{1}{3}[\underbrace{\left[\begin{array}{cc}
2 & -1 \\
-7 & 5
\end{array}\right]}_{C} A=I_{2}
$$

$B+\frac{1}{3} C A=I_{2}$

$$
\begin{aligned}
\frac{1}{3} C A & =I_{2}-B \\
C^{-1} C A & =\left[3\left(I_{2}-B\right)\right] \\
A & =C^{-1}\left(3 I_{2}-3 B\right) \\
A & =\left[\begin{array}{ll}
22 & -21 \\
26 & -33
\end{array}\right]
\end{aligned}
$$

8. Use the given matrices to compute each of the following. If an operation is not possible, explain why.

$$
A=\left[\begin{array}{cc}
-5 & 3 \\
7 & 8
\end{array}\right], B=\left[\begin{array}{cc}
1 & 2 \\
5 & -8 \\
3 & 5
\end{array}\right], \quad C=\left[\begin{array}{ccc}
5 & 4 & 7 \\
6 & -3 & 1
\end{array}\right], \quad \begin{aligned}
& D=3 \times 3 \text { nonsingular matrix. } \\
& E=4 \times 4 \text { singular matrix. }
\end{aligned}
$$

(a) $B+C$
(b) $B C$
(c) $D^{-1} C$
(d) $A B^{T}-5 C$
(e) $D D^{-1}$
(f) $E^{-1} E$
(g) $C A$
(h) C^{-1}
a) Bis $3 \times 2\}$ dif. sizes, so cannot add.

$$
\operatorname{cis} 2 \times 3\}
$$

b) $\frac{\sin 88 B}{3 \times 2} \frac{\sin +8 C}{2 \times 3}, B C$ is 3×3
not possible - the \#.fcolumes of $D^{-1} \neq \#$ or row if C
 subtract
e) $D D^{-1}=I_{3}$
f) $E^{-1} E$

Not positive ${ }^{6}$ -
Es singular,
ADEMASNO Inverse
g)

h) $C-1$

Not possible. Only square matrices can have in cases.
9. Work \#41 on page 130 of Section 2.5 in your textbook by Tan. This is a problem about understanding the meaning of the entries in the product of two matrices. There is also another example in Week in Review \#2.
10. First write the following system as a matrix equation and then solve by using a matrix inverse.

$$
\begin{array}{cc}
-3 x=4 y+z \\
y-7=-x+5 z \\
2 x+z=14-y \\
-3 x-4 y-z=0 \\
x+y-5 z=7 \\
2 x+y+z=14
\end{array} \quad A=\left[\begin{array}{ccc}
-3 & -4 & -1 \\
1 & 1 & -5 \\
2 & 1 & 1
\end{array} \quad A, X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text {, and } B=\left[\begin{array}{c}
0 \\
7 \\
4
\end{array}\right]\right.
$$

11. A simple economy depends on three commodities: oil, corn, and coffee. Production of 1 unit of oil requires 0.1 units of oil and 0.2 units of corn. Producing 1 unit of corn requires 0.2 units of oil, 0.1 units of corn, and 0.05 units of coffee. To produce 1 unit of coffee, 0.1 units of oil, 0.05 units of corn, and 0.1 units of coffee are used.
(a) Find the production level required to meet an external demand of 1,000 units of each of these three commodities. (118, pg. 114 of Finite Mathematics and Calculus by Lial, Grcenwell, and Ritchey) Let $x_{1}=$ the of unerios of oil produced

Let $x_{2}=$ the \# o units of con produced Let $x_{3}=$ the \#t of units of coffee produced

$$
X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], D=\left[\begin{array}{l}
1000 \\
1000 \\
1000
\end{array}\right]
$$

$$
X=\left(I_{3}-A\right)^{-1} D=\left[\begin{array}{c}
1583.9072 \\
1529.5397 \\
1196.0855
\end{array}\right]
$$

(b) How much of each commodity is consumed internally to meet this demand?

$$
1583.9072 \text { units of oil }
$$ $1,529.5397$ unis of wren $1,196.0855$ units of yer 1 196.08

shoved be produced

Thermal consumption
583.9072 units of oil, 529.5397 units of cam, and 196.0855 units of coffee are consed.
12. Graph the solution set for the following system of inequalities. Label all corner points. Is the solution set bounded or unbounded?

$$
x-y=0
$$

wren $x=0, y=0 \quad(0,0)$
Test $(0,5)$

$$
\text { when } x=1, y=1 \quad(1,1)
$$

$A(2,2)$

$$
\begin{aligned}
& 0-5 \leq 07 \\
& -5 \leq 0 \text { TRUE }
\end{aligned}
$$

$$
2 x+y=6
$$

$$
x-y=0
$$

$$
\begin{aligned}
& x-y=0 \\
& {\left[\begin{array}{cc|c}
2 & 1 & 6 \\
1 & -1 & 0
\end{array}\right] \xrightarrow{\operatorname{rref}}\left[\begin{array}{ll|l}
1 & 0 & 2 \\
0 & 1 & 2
\end{array}\right]}
\end{aligned}
$$

$$
(2,2)
$$

$$
\begin{aligned}
2 x+y & =6 \\
x=0, y & =6 \quad(0,6) \\
y=0 \quad 2 x & =6 \\
x & =3 \\
\frac{\operatorname{tes}+(0,0)}{2(0)+0} & \leqslant 6 \quad ? \\
0 & \leqslant 6 \text { true }
\end{aligned}
$$

$$
4 x-y=-6
$$

$$
y=6 \quad(0,6)
$$

$$
0 \geqslant \frac{-6}{T R U E}
$$

$$
\begin{aligned}
4 x & =-4 \\
x & =-\frac{3}{2}
\end{aligned} \quad\left(-\frac{3}{2}, 0\right)
$$

13. Ruff, Inc. makes dog food out of chicken and grain. Chicken has 10 grams of protein and 5 grams of fat per ounce, and grain has 2 grams of protein and 2 grams of fat per ounce. A bag of dog food must contain at least 200 grams of protein and at least 150 grams of fat. If chicken costs 10 cents per ounce and grain costs 1 cent per ounce, how many ounces of each should Ruff use in each bag of dog food in order to minimize cost? Formulate as a linear programming problem, but do not solve.
(H23, pg 217 of Finite Matherwaricr by Weaner and Cosianobie)
Let $x=$ the number ofounces 8 chicken that should be used in each bag.
Let $y=$ the number of ounces of grain. hat should be used in each borg.

14. A company makes two calculators: a business model and a scientific model. The business model contains 10 microcircuits and requires 20 minutes to program, while the scientific model contains 20 microcircuits and requires 30 minutes to program. The company has a contract that requires it to use at least 320 microcircuits each day, and the company has 14 hours of programming time available each day. The company also wants to make at least twice as many business calculators as scientific calculators. If each business calculator requires 10 production steps and each scientific calculator requires 12 production steps, how many calculators of each type should be made each day to minimize the number of production steps? Formulate as a linear programming problem, but do not solve.
Let $x=$ the number of lresiners calculates to be made each day.
Let $y=$ the member of scientific calculator to be made each day.
Basinars Scientific

The \#of business case. should beateeast 2 times the 12 odentific calls
15. Solve using the Method of Corners.
(1)
(2)

* Not all instructors teach this method, but toe should still be able foreloghize that there is nomoximim.

16. Solve using the Method of Corners.

Conclusion: The maximum value of P is 5 and occurs at every point on the line segment connecting $(1,3)$ to $\left(\frac{5}{3}, \frac{5}{3}\right)$. there are infinitely many solutions.

