Math 166 Fall 2006 ©Heather Ramsey

## Math 166 - Week in Review #7

### Section 7.2 - Definition of Probability

- The probability of an event is a number between 0 and 1 inclusive that indicates the likelihood of that event occurring. The closer the probability is to 1, the more likely the event is to occur.
- <u>Probability Distribution</u> a table that lists all of the simple events of an experiment and their corresponding probabilities.

NOTE: The sum of all probabilities in a probability distribution is always 1.

- Uniform Sample Space a sample space in which all outcomes are equally likely.
- If  $E = \{s_1, s_2, \dots, s_k\}$  is an event of an experiment with sample space S, then  $P(E) = P(s_1) + P(s_2) + \dots + P(s_k)$ .

### Section 7.3 - Rules of Probability

Let S be a sample space of an experiment and suppose E and F are events of the experiment. Then

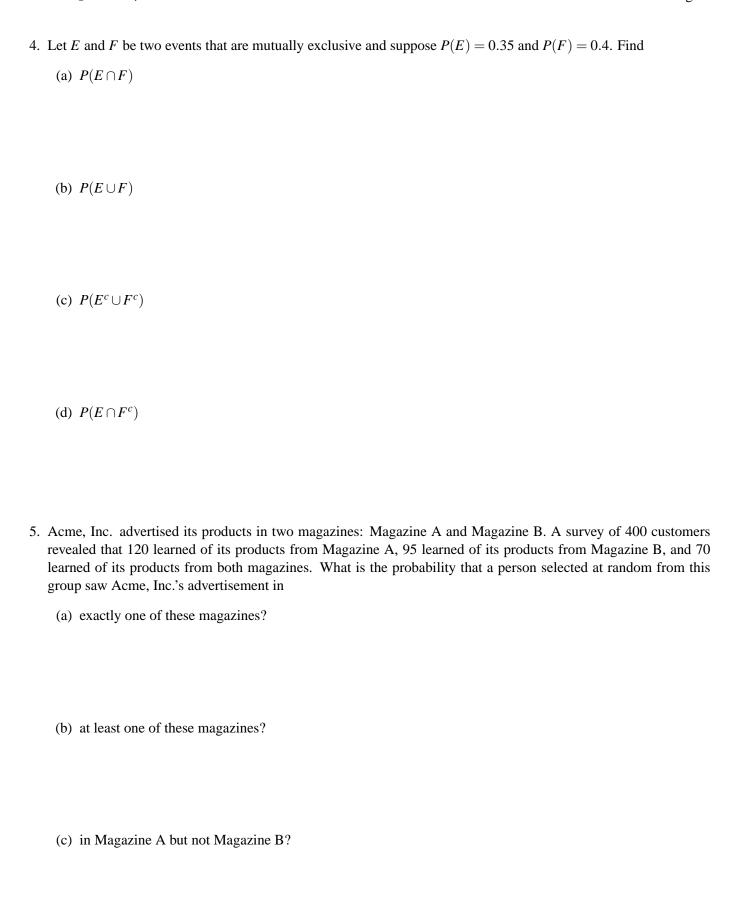
- 1.  $0 \le P(E) \le 1$  for any E.
- 2. P(S) = 1
- 3. If *E* and *F* are mutually exclusive, then  $P(E \cup F) = P(E) + P(F)$ .
- 4. If E and F are any two events of an experiment, then  $P(E \cup F) = P(E) + P(F) P(E \cap F)$ .
- 5.  $P(E^c) = 1 P(E)$  (Rule of Complements)

NOTE: When calculating probabilities, Venn Diagrams can sometimes be useful. De Morgan's Laws may also come in handy from time to time:  $(E \cap F)^c = E^c \cup F^c$  and  $(E \cup F)^c = E^c \cap F^c$ .

#### Section 7.4 - Use of Counting Techniques in Probability

• <u>Computing the Probability of an Event in a Uniform Sample Space</u> - Let *S* be a uniform sample space and let *E* be any event. Then

$$P(E) = \frac{number\ of\ favorable\ outcomes\ in\ E}{number\ of\ possible\ outcomes\ in\ S} = \frac{n(E)}{n(S)}$$

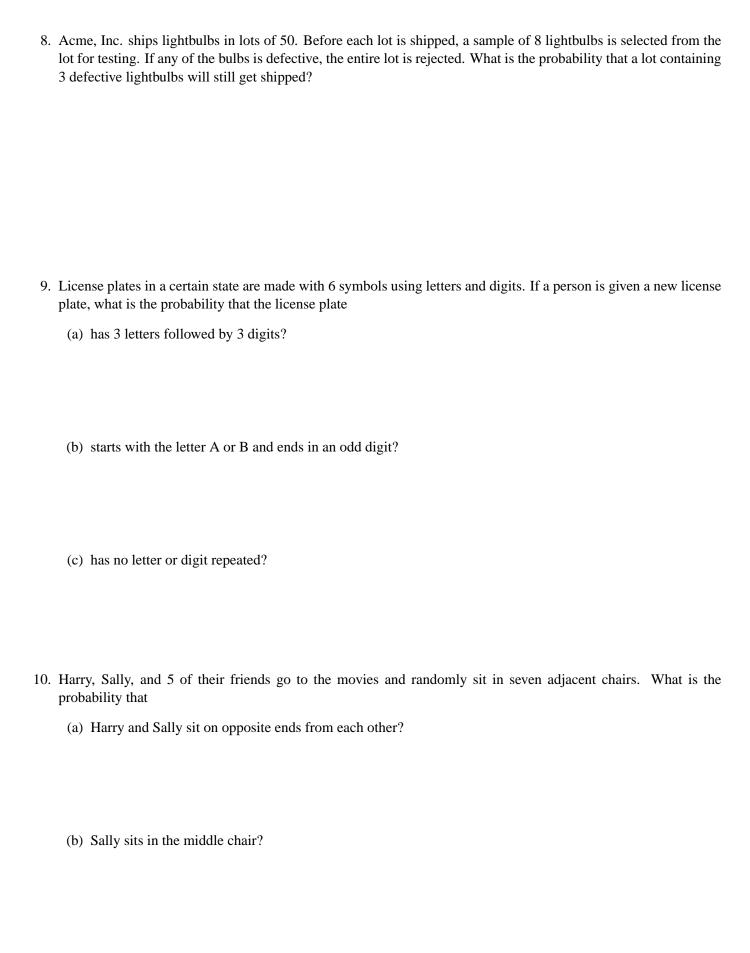

| 1. | Two | fair four-sided dice are cast and the numbers that land up on the first and second dice are recorded.          |
|----|-----|----------------------------------------------------------------------------------------------------------------|
|    | (a) | What is the sample space of this experiment?                                                                   |
|    |     |                                                                                                                |
|    |     |                                                                                                                |
|    |     |                                                                                                                |
|    | (b) | Is this a uniform sample space? Why or why not?                                                                |
|    |     |                                                                                                                |
|    | (c) | Write the event that the sum of the dice is 6.                                                                 |
|    |     |                                                                                                                |
|    | . • |                                                                                                                |
|    | (d) | What is the probability that the first die is a 2 and the second die is even?                                  |
|    |     |                                                                                                                |
|    | (e) | What is the probability that the sum of the numbers shown on the dice is less than 4 or at least one die shows |
|    |     | a 1?                                                                                                           |
|    |     |                                                                                                                |
|    |     |                                                                                                                |
|    | _   |                                                                                                                |
| 2. |     | fair four-sided dice are cast and the sum of the numbers landing up is recorded.                               |
|    | (a) | What is the sample space of this experiment?                                                                   |
|    |     |                                                                                                                |
|    | (b) | Find the probability distribution for this experiment.                                                         |
|    |     |                                                                                                                |
|    |     |                                                                                                                |
|    |     |                                                                                                                |
|    | (c) | Is this a uniform sample space? Why or why not?                                                                |
|    |     |                                                                                                                |
|    | (d) | Write the event that the sum of the dice is 6.                                                                 |
|    |     |                                                                                                                |
|    |     |                                                                                                                |

3. Let  $S = \{s_1, s_2, s_3, s_4, s_5, s_6\}$  be the sample space of an experiment with the following probability distribution:

| Outcome     | $s_1$          | $s_2$          | <i>s</i> <sub>3</sub> | $s_4$           | <b>S</b> 5 | $s_6$ |
|-------------|----------------|----------------|-----------------------|-----------------|------------|-------|
| Probability | $\frac{3}{40}$ | $\frac{4}{40}$ | $\frac{7}{40}$        | $\frac{14}{40}$ |            |       |

Let  $A = \{s_1, s_3, s_5\}$ ,  $B = \{s_3, s_4, s_6\}$ , and  $C = \{s_2, s_4\}$  be events of the experiment and suppose  $P(B) = \frac{24}{40}$ .

- (a) Fill in the missing probabilities in the probability distribution above.
- (b) Is this a uniform sample space? Why or why not?
- (c) Find each of the following:
  - i. P(A)
  - ii. *P*(*C*)
  - iii.  $P(B^c)$
  - iv.  $P(A \cap B)$
  - v.  $P(A \cup B)$
- (d) Are the events A and C mutually exclusive? Why or why not?




Math 166 Fall 2006 ©Heather Ramsey

# Information about a Standard Deck of 52 Cards

- There are 4 suits: hearts, diamonds, clubs, and spades.
- Hearts and diamonds are red; clubs and spades are black.
- There are 13 cards in each suit: Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, and King.
- Jacks, Queens, and Kings are called face cards, so there are 12 face cards in a standard deck of 52 cards.

| 6. | One card is drawn at random from a standard deck of 52 playing cards. What is the probability that the card is (a) a club?                                                                                                                                        |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (b) a face card?                                                                                                                                                                                                                                                  |
|    | (c) a club or a face card?                                                                                                                                                                                                                                        |
|    | (d) neither a club nor a face card?                                                                                                                                                                                                                               |
| 7. | A box contains 2 red marbles, 8 yellow marbles, 6 red gumballs, 5 yellow gumballs, and 3 blue jawbreakers. If a sample of 5 objects is randomly chosen from the box (without replacement), what is the probability that  (a) exactly 3 yellow marbles are chosen? |
|    | (b) exactly 3 red gumballs and exactly 2 yellow objects are chosen?                                                                                                                                                                                               |
|    | (c) exactly 4 yellow marbles or exactly 1 blue jawbreaker is chosen?                                                                                                                                                                                              |
|    | (d) at least 1 yellow marble is chosen?                                                                                                                                                                                                                           |



|     | (c) Harry and Sally sit together?                                                                                                                                                                                                                     |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | (d) Harry and Sally do not sit together?                                                                                                                                                                                                              |
| 11. | Three married couples go to the movies. If these 6 people randomly sit in 6 adjacent chairs, what is the probability that each person sits next to his or her spouse (i.e., married couples sit together)?                                            |
| 12. | A student studying for a vocabulary test knows the meanings of 12 words from a list of 21 words. If the test contains 10 word from the study list, what is the probability that at least 6 of the words on the test are words that the student knows? |
| 13. | Find the probability that in a group of 6 people that at least two of them were born in November. Assume that all months are equally likely.                                                                                                          |
|     |                                                                                                                                                                                                                                                       |