
A Mechanistic Spectral Primitive Equation Model using Pressure Coordinates

R. Saravanan

Department of Applied Mathematics and Theoretical Physics

University of Cambridge

Silver Street, Cambridge CB3 9EW

United Kingdom

E-mail: svn@amtp.cam.ac.uk

June 1992

This document and the software described in it are distributed free for research purposes. The

software comes with absolutely no warranties whatsoever. This software may be freely copied, and

may also be modified, provided the modified software continues to be freely available under the

same terms. This software may not be used for any commercial purpose.

1

1. Introduction

2. Primitive equations in pressure coordinates

3. Vertical discretization

a. Vertical grid

b. Boundary conditions

c. Conservation properties

d. Linearization about reference vertical stratification

e. Vorticity/divergence form

4. Time integration

a. Semi-implicit leap-frog scheme

b. Time-filtering

5. Horizontal discretization

6. Miscellaneous details

a. Passive tracers

b. Choice of reference stratification

c. Forcing/damping terms

7. Fortran implementation

a. Overview

b. Module splib

c. Module prognos

d. Module diagnos

e. Compilation and customization

f. Initialization and time-marching

Appendices

A. Symbols and notation

B. Fortran to Symbols “dictionary”

C. Modifications to allow forcing at bottom boundary

2

References

1. Introduction

This document describes the implementation of a very simple 3-dimensional primitive equation

model, using pressure coordinates as described by Lorenz (1960). The advantage of using pressure

coordinates is that the equations of motion take on a particularly simple form. The main disadvan-

tage is that we cannot easily apply a realistic boundary condition at the lower boundary, i.e., it is

not really possible to include the effects of surface topography. The model we are about to describe

assumes that the planetary surface is essentially smooth, and that there is sufficient drag acting

near the lower boundary to make the details of the lower boundary condition quite unimportant.

This model would not be suitable for “realistic” simulation of the Earth’s climate (especially in

the troposphere), but could be quite useful for mechanistic models of isolated phenomena, and for

studying idealized planetary atmospheres.

The model is very flexible in terms of the number of pressure levels, level thicknesses, and zonal

versus meridional resolution. The number of levels can be any integer ≥ 2. The levels can have any

combination of thicknesses. The horizontal discretization uses spectral truncation, which is usually

triangular. For simplicity, the spectral transforms are carried out all the latitudes simultaneously.

Any order of triangular truncation is allowed, but very high orders may be impractical in terms of

memory requirements, because of the way the spectral transforms are carried out. The range of

zonal wavenumbers may be further restricted within the range of triangular truncation, allowing

anisotropic integrations with only very few zonal wavenumbers being resolved. The extreme case of

axially symmetric horizontal representation can also be handled, although not too efficiently. The

model can also handle an arbitrary number of passive tracers, using simple spectral advection.

The model incorporates virtually no physical parameterizations of any kind. But simple forms

of scale-selective damping, and Newtonian/Rayleigh friction are provided to facilitate mechanistic

simulations.

One of the unusual features of this model is that the vertically integrated divergence over

the whole atmosphere is constrained to be identically zero. In other words, divergent shallow

water modes with barotropic vertical structure are excluded. This leads to increased computational

stability of the model. This also means that the model needs virtually no other boundary conditions,

and only interior forcing/damping parameters need to be specified. But this constraint can easily be

relaxed to allow “geopotential forcing” at the lower boundary, as would be necessary for models of

the middle atmosphere alone. (The necessary modifications are described in Appendix C, although

they have not been implemented as yet.)

3

2. Primitive equations in pressure coordinates

The primitive equations for a dry rotating spherical shallow compressible hydrostatic atmo-

sphere in Lagrangian form may be written in pressure coordinates as (e.g. see Holton, 1979)

du

dt
= −fk× u−∇H Φ+ Fu (1a)

dΘ

dt
= FT (1b)

0 = ∇H ·u+
∂ω

∂p
(1c)

∂Φ

∂ζ
= −CpΘ (1d)

where ζ = (p/ps)
κ
denotes an auxiliary vertical coordinate, Θ denotes potential temperature,

Fu denotes mechanical forcing/damping terms, and FT denotes thermal forcing/damping terms.

Otherwise the notation is fairly standard, and the reader is referred to Appendix A for a complete

definition of all symbols.

Defining the operators

curlz() ≡ (k×∇H) · (); div() ≡ ∇H ·()

we define the relative vorticity ξ and divergence D as

D ≡ divu; ξ ≡ curlz u

Then we can write the primitive equations in Eulerian form as follows:

∂u

∂t
= −∇H Φ−∇H(

1

2
u2)− (f + ξ)k× u−Du− ∂(ωu)

∂p
(2a)

∂Θ

∂t
= − div(Θu)− ∂(ωΘ)

∂p
(2b)

∂ω

∂p
= −D (2c)

∂Φ

∂ζ
= −CpΘ (2d)

Note that we have omitted the forcing/damping terms. We shall continue to ignore these terms

in our discussion of spatial discretization. We will re-introduce some of the damping terms later

when we discuss the time-marching scheme.

4

3. Vertical discretization

a. Vertical grid

We assume that the domain of the model atmosphere extends upward from a reference pressure

level p = ps (“surface”) to the level p = 0 (“top” of the atmosphere). Following Lorenz (1960), we

divide the pressure-interval [0, ps] into L (possibly unequal) sub-intervals, each of extent ∆pl.

ps =
∑

l

∆pl, l = 1, . . . , L

We may then think of various quantities as being defined in the middle of these L sub-intervals,

which we refer to as levels (or full-levels). The levels are numbered, starting from the uppermost-

level, as 1, . . . , L. The pressure pl at the full-levels is defined by

pl =
1

2
∆pl +

l−1∑

l′=1

∆pl′

It is then convenient to introduce the concept of half-levels which lie at the boundaries of the

L pressure sub-intervals. There would be L − 1 half-levels which lie in between the L full-levels.

These we will refer to as the interior half-levels. There would also be two more half-levels, one

at the top of the atmosphere, and another at the surface. These we will refer to as the boundary

half-levels. The half-levels are numbered, starting from the top, as 1
2 , 1 +

1
2 , . . . , L− 1

2 , L+ 1
2 .

pl+ 1
2
=

l∑

l′=1

∆pl′ ; p 1
2
= 0, pL+ 1

2
= ps.

We take the prognostic quantities to be the horizontal velocity ul and potential temperature

Θl defined at each of the L full-levels. The continuity equation (2c) then suggests that it would

be natural to define “pressure velocity” ωl+ 1
2
at the half-levels. Next we introduce the bar and cap

operators:

ql+ 1
2
≡ ql+1 + ql

2

q̂l+ 1
2
≡ ql+1 − ql

2

where q is some quantity defined at full-levels. (Note that the above operators are not defined at

the boundary half-levels)

5

We then define the vertical flux of prognostic quantities at the interior half-levels as

Vu,l+ 1
2
≡ ωl+ 1

2
ul+ 1

2

VT,l+ 1
2
≡ ωl+ 1

2
Θl+ 1

2

For any vertical flux Vq,l+ 1
2
, we define the vertical divergence of this flux at the full-levels as

(
∂Vq
∂p

)

l

≡
Vq,l+ 1

2
− Vq,l− 1

2

∆pl

We define the vertical integral of a quantity q as being
∑L

l=1 ∆pl ql, which is essentially a

mass-weighted integral. In particular, we note that

L∑

l=1

∆pl

(
∂Vq
∂p

)

l

= Vq,L+ 1
2
− Vq, 1

2

We assume that the geopotential Φl is also defined at the full-levels. Defining ζl ≡ (pl/ps)
κ,

we choose to discretise the hydrostatic equation (2d) as follows:

Φl+1 − Φl

ζl+1 − ζl
≡ −CpΘl+ 1

2

We can then write the vertically discretized version of (2) as

∂ul

∂t
= −∇H Φl −∇H El −Hu,l (3a)

∂Θl

∂t
= −HT,l (3b)

Dl = −
ωl+ 1

2
− ωl− 1

2

∆pl
(3c)

Φ̂l+ 1
2
= −Cpζ̂l+ 1

2
Θl+ 1

2
(3d)

where

Hu,l ≡ (f + ξl)k× ul +Dlul +

(
∂Vu

∂p

)

l

(4a)

HT,l ≡ div(Θlul) +

(
∂VT
∂p

)

l

(4b)

El ≡
1

2
u2
l (4c)

6

The auxiliary quantity Hu represents a part of the momentum flux divergence, HT represents

the heat flux divergence, and E represents the kinetic energy.

b. Boundary conditions

We choose to set the pressure-velocity ω to zero at the upper and lower boundaries of the

atmosphere:

ω 1
2
= ωL+ 1

2
= 0

This choice then leads to the constraint that the vertically integrated divergence is zero. i.e.

L∑

l=1

∆plDl = ω 1
2
− ωL+ 1

2
= 0

This choice also allows us to set the vertical fluxes at the boundaries to zero. i.e

Vu, 1
2
= Vu,L+ 1

2
= VT, 1

2
= VT,L+ 1

2
= 0

c. Conservation properties

It should be obvious from inspecting (3) that the vertical discretization preserves the global

conservation properties of absolute angular momentum (Ωa cosφ + u) cosφ and potential temper-

ature Θ. Now we proceed to show that the global integral of total energy is also conserved (in the

absence of forcing/damping). Taking the dot-product of u with (3a), we obtain

∂El

∂t
= −ul · ∇H Φl − ul · ∇H El −Dul

2 − ul ·
(
∂Vu

∂p

)

l

After some rearranging, this can be written as

∂El

∂t
= − div(Elul)− div(Φlul)−

(
∂VE
∂p

)

l

+ΦlDl (5)

where VE,l+ 1
2
≡ ωl+ 1

2

1
2 (ul+1 · ul)

If we further define VΦ,l+ 1
2
≡ ωl+ 1

2
Φl+ 1

2
then we get

7

(
∂VΦ
∂p

)

l

= −ΦlDl +
ωl+ 1

2
Φ̂l+ 1

2
+ ωl− 1

2
Φ̂l− 1

2

∆pl

If we also define V
ζ̄ Θ,l+ 1

2

≡ ωl+ 1
2
ζ̄l+ 1

2
Θl+ 1

2
then we get

Cp

(
∂V

ζ̄ Θ

∂p

)

l

= Cpζl

(
∂VT
∂p

)

l

−
ωl+ 1

2
Φ̂l+ 1

2
+ ωl− 1

2
Φ̂l− 1

2

∆pl

This allows us to write the kinetic energy tendency equation (5) as

∂El

∂t
= − div{(El +Φl)ul} −

(
∂VE
∂p

)

l

−
(
∂VΦ
∂p

)

l

− Cp

(
∂V

ζ̄ Θ

∂p

)

l

+ Cpζl

(
∂VT
∂p

)

l

(6)

If we multiply the potential temperature tendency equation (3b) by Cpζ, we obtain

∂CpζlΘl

∂t
= − div(CpζlΘlul)− Cpζl

(
∂VT
∂p

)

l

(7)

From (6) and (7) it is clear that the vertical truncation preserves the global conservation

property of the total energy (E + CpζΘ).

Another quantity conserved by this vertical truncation is Θ2. If we multiply (3b) by Θ, we

obtain

∂ 1
2Θ

2
l

∂t
= − div(

1

2
Θ2

l ul)−
(
∂V 1

2
Θ2

∂p

)

l

(8)

where V 1
2
Θ2,l+ 1

2
≡ ωl+ 1

2

1
2Θl+1Θl

d. Linearization about reference vertical stratification

For the purposes of the semi-implicit time-stepping scheme that we will be using, it is necessary

to express the Θ distribution in terms of deviations from some reference vertical profile ΘR(p). We

express Θ(λ, φ, p, t) as

Θ = ΘR(p) + Θ′(λ, φ, p, t)

8

Then we also decompose the heat fluxes as follows:

HT = HTR +HT ′

HT ′,l = div(Θ′

lul) +

(
∂VT ′

∂p

)

l

HTR,l = ΘR
l Dl +

(
∂VTR

∂p

)

l

VT ′,l+ 1
2
= ωl+ 1

2
Θ

′

l+ 1
2

We can re-express HTR as

HTR,l =
Θ̂R

l+ 1
2

ωl+ 1
2
+ Θ̂R

l− 1
2

ωl− 1
2

∆pl

=
L−1∑

l′=1

(δl′,l + δl′,l−1)Θ̂
R
l′+ 1

2

ωl′+ 1
2

(Here we have used the fact that ω 1
2
= ωL+ 1

2
= 0.)

Defining a column vector of length L − 1: ~ω = (ω1+ 1
2
, . . . , ωL−

1
2
), and a column vector of

length L: ~HTR = (HTR,1, . . . , HTR,L), we can write the above equation in matrix form as

~HTR =Mω→H ~ω

where Mω→H is an L× (L− 1) matrix defined by

[Mω→H]l,l′ =

{
Θ̂R

l′+1
2

∆p
l

if l′ = l or l′ = l − 1;

0 otherwise.

Mω→H =




Θ̂R

1+ 1
2

∆p1

0 0 · · · 0 0

Θ̂R

1+ 1
2

∆p2

Θ̂R

2+ 1
2

∆p2

0 · · · 0 0

0
Θ̂R

2+ 1
2

∆p3

Θ̂R

3+ 1
2

∆p3

· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · ·
Θ̂R

L−1− 1
2

∆p
L−1

Θ̂R

L−
1
2

∆p
L−1

0 0 0 · · · 0
Θ̂R

L−
1
2

∆p
L




9

Next we note that

ωl′+ 1
2
= −Dl′∆pl′ + ωl′− 1

2
= −

l′∑

l′′=1

∆pl′′Dl′′

Defining a column vector of length L: ~D = (D1, . . . , DL), we can rewrite the above equation

in matrix form as follows:

~ω =MD→ω
~D

where MD→ω is an (L− 1)× L matrix defined by

[MD→ω]l′,l′′ =
{−∆pl′′ if l′′ ≤ l′;
0 otherwise.

MD→ω =




−∆p1 0 0 · · · 0 0
−∆p1 −∆p2 0 · · · 0 0
−∆p1 −∆p2 −∆p3 · · · 0 0

...
...

...
. . .

...
...

−∆p1 −∆p2 −∆p3 · · · −∆pL−1 0




This allows us to define the compound matrix MD→H =Mω→H MD→ω.

e. Vorticity/divergence form

Rather than work with the discretised momentum equations, we prefer to work with the

time-tendency equations for vorticity and divergence. This is motivated by the fact that when

representing the horizontal variation of quantities using spherical harmonics, it is much easier to

deal with scalars (such as vorticity) than with components of vectors. We apply the div and curlz

operators to (3a) to obtain the following prognostic equations

∂ξl
∂t

= − curlz Hu,l (9a)

∂Dl

∂t
= − divHu,l −∇2

H El −∇2
H Φl (9b)

Since the quantities Dl are not all independent, it is convenient to work with the L − 1

independent quantities D̂l+ 1
2
at the interior half-levels. We can express D in terms of D̂ as follows:

10

Dl = 2D̂l− 1
2
+Dl−1 =

l−1∑

l′=1

2D̂l′+ 1
2
+D1

Now we compute the vertically integrated divergence

L∑

l′=1

Dl′∆pl′ =
L−1∑

l′=1

2D̂l′+ 1
2
(pL+ 1

2
− pl′+ 1

2
) +D1 pL+ 1

2
= 0

This gives the following expression for D1 in terms of D̂

D1 =
L−1∑

l′=1

2D̂l′+ 1
2

(
pl′+ 1

2

pL+ 1
2

− 1

)

Substituting back in the expression for Dl, we obtain

Dl =
l−1∑

l′=1

2D̂l′+ 1
2
+

L−1∑

l′=1

2D̂l′+ 1
2

(
pl′+ 1

2

pL+ 1
2

− 1

)

or

Dl =
L−1∑

l′=1

2

(
pl′+ 1

2

pL+ 1
2

)
D̂l′+ 1

2
−

L−1∑

l′=l

2D̂l′+ 1
2

Defining a column vector of length L − 1:
~̂
D = (D̂1+ 1

2
, . . . , D̂L−

1
2
), we can write the above

relation in matrix form as

~D =M
D̂→D

~̂
D

where M
D̂→D

is an L× (L− 1) matrix defined by

[
M

D̂→D

]
l,l′

=





2

(
p
l′+1

2

p
L+1

2

)
if l′ < l;

2

(
p
l′+1

2

p
L+1

2

− 1

)
if l′ ≥ l.

11

M
D̂→D

=




2
(p

1+ 1
2

p
L+1

2

− 1
)

2
(p

2+ 1
2

p
L+1

2

− 1
)
· · · 2

(p
L−

1
2

p
L+1

2

− 1
)

2
(p

1+ 1
2

p
L+1

2

)
2
(p

2+ 1
2

p
L+1

2

− 1
)
· · · 2

(p
L−

1
2

p
L+1

2

− 1
)

2
(p

1+ 1
2

p
L+1

2

)
2
(p

2+ 1
2

p
L+1

2

)
· · · 2

(p
L−

1
2

p
L+1

2

− 1
)

...
...

. . .
...

2
(p

1+ 1
2

p
L+1

2

)
2
(p

2+ 1
2

p
L+1

2

)
· · · 2

(p
L−

1
2

p
L+1

2

)




The above L× (L− 1) matrix has a generalized left inverse which may be obtained as follows:

D̂l′+ 1
2
=

1

2
Dl′+1 −

1

2
Dl′ =

L∑

l′′=1

1

2
(δl′′,l′+1 − δl′′,l′)Dl′′

In matrix form, this may be written as

~̂
D =M

D→D̂
~D

where M
D→D̂

is an (L− 1)× L matrix defined by

[
M

D→D̂

]
l′,l′′

=

{− 1
2 if l′′ = l′;

+ 1
2 if l′′ = l′ + 1;

0 otherwise.

M
D→D̂

=




− 1
2 + 1

2 0 · · · 0 0

0 − 1
2 + 1

2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · − 1

2 + 1
2




M
D→D̂

has the following property: M
D→D̂

M
D̂→D

= 1.

Next we write the hydrostatic relation (3d) as

Φ̂l′+ 1
2
= −Cpζ̂l′+ 1

2
Θl′+ 1

2
= −Cp

L∑

l′′=1

1

2
ζ̂l′+ 1

2
(δl′′,l′+1 + δl′′,l′)Θl′′

Defining a column vector of length L − 1:
~̂
Φ = (Φ̂1+ 1

2
, . . . , Φ̂L−

1
2
), and a column vector ~Θ of

length L, we can write the above equation in matrix form as

12

~̂
Φ =M

Θ→Φ̂
~Θ

where M
Θ→Φ̂

is an (L− 1)× L matrix defined by

[
M

Θ→Φ̂

]
l′,l′′

=

{
− 1

2Cpζ̂l′+ 1
2

if l′′ = l′ + 1 or l′′ = l′;
0 otherwise.

M
Θ→Φ̂

=




− 1
2Cpζ̂1+ 1

2
− 1

2Cpζ̂1+ 1
2

0 · · · 0 0

0 − 1
2Cpζ̂2+ 1

2
− 1

2Cpζ̂2+ 1
2
· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · − 1
2Cpζ̂L−

1
2
− 1

2Cpζ̂L−
1
2




4. Time integration

a. Semi-implicit leap-frog scheme

We will use a leap-frog time-stepping scheme, but the terms associated with gravity waves will

be treated implicitly. Using superscripts to denote the time-step, we write (for a generic prognostic

quantity q)

qn+1 = qn−1 + 2∆t

(
∂q

∂t

)n

(10)

where ∆t denotes the time-step, and (∂q/∂t)n denotes an appropriately defined time-tendency

for q.

Let α (such that 0 ≤ α ≤ 1) denote the “implicitness” of the time-stepping scheme. We add

scale-selective (∇8
H) damping terms to (3), and define the time-tendencies as follows

(
∂~ξ

∂t

)n

= −γu∇8
H

(
α~ξn+1 + (1− α)~ξn−1

)
− curlz ~H

n
u (11a)


∂

~̂
D

∂t




n

= −∇2
H M

Θ→Φ̂

(
α~Θn+1 + (1− α)~Θn−1

)
− γu∇8

H

(
α
~̂
D

n+1

+ (1− α) ~̂D
n−1
)

+M
D→D̂

(− div ~Hn
u −∇2

H
~En) (11b)

(
∂~Θ

∂t

)n

= −M
D̂→H

(
α
~̂
D

n+1

+ (1− α) ~̂D
n−1
)
− γT ∇8

H

(
α~Θn+1 + (1− α)~Θn−1

)
− ~Hn

T ′

(11c)

13

where ~ξ, ~Hu, ~E, and ~HT ′ are vectors of length L, and M
D̂→H

=MD→H M
D̂→D

.

It is convenient to define the “explicit time-tendencies”

~Xn
ξ = − curlz ~H

n
u − γu∇8

H
~ξn−1

~Xn
D = − div ~Hn

u −∇2
H
~En −∇2

H MΘ→Φ
~Θn−1 − γu∇8

H
~Dn−1

~Xn
T = − ~Hn

T ′ −MD→H
~Dn−1 − γT ∇8

H
~Θn−1

where MΘ→Φ =M
D̂→D

M
Θ→Φ̂

.

This allows us to rewrite the time-tendency equations (11) as

(
∂~ξ

∂t

)n

= −γu∇8
H α(~ξn+1 − ~ξn−1) + ~Xn

ξ (12a)


∂

~̂
D

∂t




n

= −∇2
H M

Θ→Φ̂
α(~Θn+1 − ~Θn−1)− γu∇8

H α(
~̂
D

n+1

− ~̂
D

n−1

) +M
D→D̂

~Xn
D

(12b)
(
∂~Θ

∂t

)n

= −M
D̂→H

α(
~̂
D

n+1

− ~̂
D

n−1

)− γT ∇8
H α(~Θn+1 − ~Θn−1) + ~Xn

T (12c)

Assuming that we expand our variables in terms of eigenfunctions of the ∇2
H operator, we can

define the following “implicit correction factors”

γcorru ≡ 1

1 + α2∆tγu∇8
H

γcorrT ≡ 1

1 + α2∆tγT ∇8
H

We then use (10) to rewrite (12) as

(
∂~ξ

∂t

)n

= γcorru
~Xn
ξ (13a)


∂

~̂
D

∂t




n

= −γcorru ∇2
H M

Θ→Φ̂
(α2∆t)

(
∂~Θ

∂t

)n

+ γcorru M
D→D̂

~Xn
D (13b)

(
∂~Θ

∂t

)n

= −γcorrT M
D̂→H

(α2∆t)


∂

~̂
D

∂t




n

+ γcorrT
~Xn
T (13c)

14

We can now solve (13b,c) for the D̂ tendency


∂

~̂
D

∂t




n

= (α2∆t)2γcorru γcorrT ∇2
H M

Θ→Φ̂
M

D̂→H


∂

~̂
D

∂t




n

− γcorru γcorrT ∇2
H M

Θ→Φ̂
(α2∆t) ~Xn

T + γcorru M
D→D̂

~Xn
D

or


∂

~̂
D

∂t




n

=
[
1− (α2∆t)2γcorru γcorrT ∇2

H M
Θ→Φ̂

M
D̂→H

]
−1

(
−γcorru γcorrT ∇2

H M
Θ→Φ̂

(α2∆t) ~Xn
T + γcorru M

D→D̂
~Xn
D

)
(14)

Using the identity M
D→D̂

M
D̂→D

= 1, we can write

M
Θ→Φ̂

=M
D→D̂

M
D̂→D

M
Θ→Φ̂

=M
D→D̂

MΘ→Φ

which allows us to rewrite (14) as

(
∂ ~D

∂t

)n

=M
D̂→D

[
1− (α2∆t)2γcorru γcorrT ∇2

H M
Θ→Φ̂

M
D̂→H

]
−1

M
D→D̂

(
−γcorru γcorrT ∇2

H MΘ→Φ(α2∆t) ~X
n
T + γcorru

~Xn
D

)
(15)

Equations (13a,c), along with (15) constitute the prognostic equations of the time-stepping

scheme.

b. Time-filtering

Since the leap-frog scheme produces a computational mode, a Robert time-filter (e.g. see

Haltiner and Williams, p. 147) is used to damp it out. The leap-frog scheme as described in the

previous section is modified as follows (for a generic prognostic quantity q):

qn+1 = qn−1
∗

+ 2∆t

(
∂q

∂t

)n

(16)

15

where q∗ denotes the filtered value of q obtained as follows

qn
∗
= (1− 2ǫ)qn + ǫ(qn+1 + qn−1)

Here ǫ is a small positive fraction, typically of O(0.01) for meteorological applications.

5. Horizontal discretization

The model uses a truncated series of spherical harmonics to represent the horizontal variation

of a quantity q(λ, φ, p, t). The spherical harmonics Ym,n are defined as

Ym,n(λ, µ) = Pm,n(µ)e
imλ

where µ ≡ sinφ, and Pm,n are the associated Legendre polynomials. The normalization

conditions are

1

2

∫ 1

−1

dµ Pm,nPm,n′ = δn,n′

1

4π

∫ 1

−1

dµ

∫ 2π

0

dλ Y ∗

m,nYm′,n′ = δm,m′δn,n′

Some useful expression for Pm,n are

P0,0 = 1; P0,1 =
√
3µ; P0,2 =

√
5

2
(3µ2 − 1)

We expand q in terms of the spherical harmonics as

q(λ, µ, p, t) =

N∑

n=0

+min(n,M)∑

m=−min(n,M)

qm,n(p, t) Ym,n(λ, µ) (17a)

qm,n =
1

4π

∫ 1

−1

dµ

∫ 2π

0

dλ Y ∗

m,n q(λ, µ, p, t) (17b)

where M and N determine the order of the zonal and the meridional truncation respectively.

The choice M = N corresponds to triangular spectral truncation of order N . Note that for real q,

16

we have the property that q−m,n = (−1)mq∗m,n. Therefore, we only need to store the values of qm,n

for m ≥ 0.

For all the linear terms in the prognostic equations discussed in the previous section, it is quite

straightforward to obtain a separate time-tendency equation for each spectral coefficient qm,n.

Since Ym,n are eigenfunctions of the ∇2
H operator, with eigenvalues (−n(n+1)/a2), it is very easy

to compute the horizontal velocity u from ξ and D, by using the streamfunction ψ and velocity

potential χ defined as follows:

ξ = ∇2
H ψ; D = ∇2

H χ; u = k×∇H ψ +∇H χ

The quadratic nonlinear products that occur in the prognostic equations are evaluated using

the transform method (e.g., see Haltiner and Williams, pp. 193–201). To summarize this method—

consider a quadratic product of the form (qr). Given the spectral coefficients qm,n and rm,n, we wish

to evaluate the spectral coefficients of the product (qr)m,n. We choose a (λj , µk) longitude/sine-

latitude grid in physical space, where j = 1, . . . ,K1, and k = 1, . . . ,K2. We choose the K1

longitudes to be equally spaced. The K2 latitudes (referred to as “gaussian” latitudes) are chosen

to be gaussian quadrature points for the associated Legendre polynomials. i.e.

1

2

∫ 1

−1

dµ Pm,n Pm′,n′ =
1

2

K2∑

k=1

Gk Pm,n(µk)Pm′,n′(µk), for all n, n′ ≤ N ;

where Gk are the weights associated with each quadrature point µk (cf. Press et al, pp. 121–

126). To avoid aliasing, K1 and K2 must satisfy the following constraints:

K1 ≥ 3M + 1; K2 ≥
3N + 1

2

The physical space values qj,k and rj,k at the grid-points (λj , µk) are computed using (17a).

Then the quadratic term (qr) is transformed to spectral space as follows:

(qr)m,n =
1

2K1

K2∑

k=1

Gk

K1∑

j=1

Y ∗

m,n(λj , µk) qj,k rj,k

Thus the transforms between spectral and physical representations essentially involve a discrete

Legendre transform combined with a discrete Fourier transform.

17

6. Miscellaneous details

a. Passive tracers

A conserved passive tracer q is assumed to be governed by the equation

∂q

∂t
= − div(qu)− ∂(ωq)

∂p

It is discretised in a manner very similar to the Θ equation, and the prognostic equation is

written as

(
∂ql
∂t

)n

= γcorrT

[
− div(qnl u

n
l)−

(
∂V n

q

∂p

)

l

− γT ∇8
H qn−1

l

]

b. Choice of reference stratification

For numerical stability, ΘR(p) should preferably be chosen such that the reference values

of static stability {−(∂ΘR/∂p)} are typically larger than the values of static stability likely to

be encountered during time-integrations with the model (Simmons et al, 1978). In addition to

ΘR(p), it is useful define a “standard” vertical profile ΘS(p). This “standard” profile may be some

representation of the globally averaged vertical stratification such as the U.S. Standard Atmosphere.

The standard profile ΘS is then used to define a standard height zS as follows:

gzSL = Cp(1− ζL)ΘS
l ; gzSl = 2Cpζ̂l+ 1

2
Θ

S

l+ 1
2
+ gzl+1

The standard height values are used in the formulation of viscous damping terms.

c. Forcing/damping terms

We had previously introduced the scale-selective ∇8
H damping term during our discussion of

the semi-implicit scheme. Now we discuss that and other damping terms in some more detail. We

redefine the “explicit time-tendencies” as follows:

Xn
ξ,l = · · · − γ(∇2

H +
2

a2
)4ξn−1

l − ηu,lξn−1
l + curlz

(
∂Vn−1

νu

∂p

)

l

Xn
D,l = · · · − γ(∇2

H +
2

a2
)4Dn−1

l − ηu,lDn−1
l + div

(
∂Vn−1

νu

∂p

)

l

18

Xn
T,l = · · · − γ(∇2

H)4Θn−1
l − ηT,l(Θ

n−1
l −ΘM

l) +
1

ζl

(
∂V n−1

νT

∂p

)

l

where (· · ·) denotes the adiabatic explicit tendencies, i.e., without any damping at all; γ is

the scale-selective ∇8
H damping coefficient (usually expressed in units of a8/sec), ηu is a pressure-

dependent Rayleigh friction coefficient, ηT is a pressure-dependent Newtonian cooling coefficient.

ΘM is a specified “mean” potential temperature distribution that the Newtonian cooling relaxes Θ

back to.

Note that there is a subtle difference in the way that the ∇8
H damping acts on ξ or D as

compared to Θ, i.e., we have made the following substitutions: γu∇8
H → γ(∇2

H +2a−2)4 and

γT ∇8
H → γ(∇2

H)4. The above scheme, which is motivated by the properties of horizontal viscous

mixing on a sphere, ensures that a state of solid-body rotation is not affected by the horizontal

scale-selective damping. Also note that all the damping terms involve values of the prognostic

quantity at time step n− 1. The damping terms are not treated using a leap-frog scheme because

it would lead to numerical instabilities.

Vνu is the vertical viscous stress, defined as follows:

Vνu, 1
2
= 0

Vνu,L+ 1
2
= −

(1
2∆pL
zSL

)2

νL
uL

1
2∆pL

Vνu,l+ 1
2
=

(
1
2∆pl+1 +

1
2∆pl

zSl+1 − zSl

)2

νl
ul+1 − ul

1
2∆pl+1 +

1
2∆pl

where νl is the value of “vertical” kinematic viscosity at level l + 1
2 , expressed in m2/s. Since

our vertical discretization is in terms of pressure, we multiply the kinematic viscosity by (∂p/∂z)2

when computing the viscous stresses in terms of vertical “shears”. Note that νL effectively acts

like a surface drag coefficient, and ν0 does not need to be specified because the viscous stress is

assumed to vanish at the top of the model.

VνT is the vertical diffusive heat “flux”, defined as follows:

VνT, 1
2
= VνT,1+ 1

2

VνT,L+ 1
2
= VνT,L−

1
2

VνT,l+ 1
2
=

(
1
2∆pl+1 +

1
2∆pl

zSl+1 − zSl

)2

σ−1 νl
Tl+1 − Tl

1
2∆pl+1 +

1
2∆pl

19

σ−1 is the inverse of the Prandtl number, which is defined as σ ≡ ν/κ, where κ is the thermal

diffusivity (expressed in m2/s). Thermal diffusion acts on temperature T , not on potential temper-

ature Θ. Note that the temperatures in the uppermost and the lowermost levels are not affected

by thermal diffusion, and that σ is assumed to be independent of height.

7. Fortran implementation

a. Overview

The model described so far has been implemented as set of Fortran77 subroutines. The code

has been written with simplicity, rather than efficiency, in mind. A simple storage scheme is

used for the spectral coefficients, which leads to about 50% redundancy in memory usage. The

execution speed should not be too bad, because an effort has been made to ensure that the major

“innermost” loops of the spectral transform routines automatically vectorize on vector-processors.

One important feature of the time-marching routines in module prognos is that they carry out

spectral transforms over all the latitudes at the same time. This keeps the code simple and efficient,

but the table of Legendre polynomials needed for this procedure becomes rather large at high orders

of spectral truncation.

The fortran source code is spread out over the following files:

splib.F, prognos.F, diagnos.F, spcons.h, spgrid.h, sppoly.h, spfftb.h, mcons.h, mgrid.h, tmarch.h,

and diacom.h

The three “.F” files contain Fortran source code interspersed with C preprocessor directives.

(On UNIX systems, the f77 command automatically invokes the C preprocessor on such files). There

are three source modules: splib, prognos, and diagnos. The module splib deals exclusively with

spectral transforms, and is self-contained (except for the NCAR-FFT routines, which are supplied

separately with this distribution). The module prognos implements the time-stepping scheme for

the model. Prognos uses several routines from module splib, and a single routine from the NAG

library. (In case the NAG routine is not available, a substitute routine is supplied separately with

this distribution.) The module diagnos computes run-time diagnostics, and uses several routines

from module splib.

The “.h” files are “include” files used by the “.F” modules. There are two types of include

files— C-parameter include files and Fortran declarative include files. The former contain definitions

of C preprocessor parameters, and need to be included only once in the whole file, preferably at the

very beginning of the file. The latter type of include files usually contain declarations of Fortran

COMMON variables, and would need need to be included in the declarative part of every Fortran

function/subroutine that needs to use them.

20

There are two C-parameter include files: spcons.h and mcons.h. The file mcons.h contains

important C preprocessor definitions for module prognos. Therefore, any program that uses routines

from module prognos should begin with the following line—

#include ”mcons.h”

Similarly, any program using routines from module splib should “include” the file spcons.h at

the very beginning, unless mcons.h has already been included. (Including mcons.h automatically

causes spcons.h to be included.)

The remaining include files contain Fortran declarations. The include file mgrid.h contains

several useful COMMON variables of the primitive equation model, which are described in the

preface to module prognos. Similarly, the include file spgrid.h contains several useful variables

related to the horizontal truncation and the spectral transforms, which are described in the preface

to module splib. (Including mgrid.h automatically causes spgrid.h to be included.)

The declarative include file tmarch.h contains COMMON variables dealing with the time-

stepping scheme, but they would rarely be needed by other programs. The declarative include

file diacom.h contains COMMON variables dealing with run-time diagnostics. The include files

sppoly.h, and spfftb.h are meant primarily for internal use by module splib.

Appendix B contains a Fortran to Symbols “dictionary,” which lists the symbolic equivalents

of most Fortran variable names.

b. Module splib

Module splib contains numerous routines dealing with spectral transforms. Only the most

commonly used routines, viz., the ones used by module prognos, are described below. To use these

routines, the following conventions must be used:

i) A spectral space variable qm,n should be declared as

COMPLEX QSP(0:M1MAX, 0:N1MAX)

ii) A physical space variable qj,k should be declared as

REAL QPH(K1MAX, K2MAX)

The major subroutines of module splib may be described as follows (where the variables in

parantheses denote arguments to the subroutine, q, r denote generic scalars, u = ui+ vj denotes a

generic vector field, and “←” denotes the assignment operator):

SPINI(M,N, a) : Initializes the spectral truncation order to (M,N) and the planetary radius to a

ZEROSP(qm,n, N) : qm,n ← 0

21

SPCOPY(rm,n, qm,n, N) : rm,n ← qm,n

DELSQ(rm,n, qm,n, N) : rm,n ← ∇2
H qm,n

IDELSQ(rm,n, qm,n, N) : rm,n ← ∇H
−2 qm,n

PHYSIC(rj,k, qm,n) : rj,k ← (q)j,k

HVELOC(uj,k, vj,k, ψm,n, χm,n) : uj,k ← (k×∇H ψ +∇H χ)j,k

SPECTR(rm,n, qj,k) : rm,n ← rm,n + (q)m,n

DIVERG(rm,n, uj,k, vj,k) : rm,n ← rm,n + (divu)m,n

CURLZ(rm,n, uj,k, vj,k) : rm,n ← rm,n + (curlz u)m,n

In short, SPINI initializes all spectral transform operations, SPCOPY copies spectral repre-

sentations, and DELSQ/IDELSQ apply the Laplacian/inverse-Laplacian operators respectively to

spectral representations. PHYSIC converts spectral representations to physical representations,

and HVELOC computes the physical velocity, given the spectral streamfunction and velocity po-

tential. The last three routines (SPECTR, DIVERG, CURLZ) convert from physical to spectral

representation, and accumulate. ZEROSP should be used to set the spectral representation to

zero before accumulation, if necessary. SPECTR converts from physical to spectral representation,

DIVERG converts the divergence of a physical space vector field to spectral space, and CURLZ

does the same for the curlz of a physical space vector field. The divergence and curlz are computed

through integration by parts (cf. Haltiner and Williams, p. 194).

Module splib also provides an error exit routine, SPERR, which takes two string arguments—

the name of the calling subroutine and an error message. SPERR simply displays the two strings

and then aborts the program.

(In case you are wondering as to why some of the subroutines take N as an argument, when

its value has already been specified through a call to SPINI— those subroutines can also take

N + 1 as an argument, to handle the exceptional case of the spectral representation of a vector

component, which is of one meridional order higher than the spectral representation of a scalar.

But for ordinary usage, N can simply be thought of as being a redundant argument)

c. Module prognos

Module prognos contains subroutines for initializing the planetary parameters and the vertical

resolution. It also contains the time-marching and time-filtering routines. Before we describe these

routines, it is useful to define the composite level variable Pl = (P1,l, P2,l, P3,l, . . .) ≡ (ξl, Dl,Θl, . . .),

where (. . .) denotes the concentrations of passive traces (if any). We then use the notation ~P to

22

denote the spectral representation of P at all the levels taken together. To use these routines, the

following conventions must be used:

i) A spectral space variable qm,n,l should be declared as

COMPLEX QSP(0:M1MAX, 0:N1MAX, L1MAX)

ii) A physical space variable qj,k,l should be declared as

REAL QPH(K1MAX, K2MAX, L1MAX)

iii) A spectral composite level variable Pm,n,i,l should be declared as

COMPLEX PSP(0:M1MAX, 0:N1MAX, NPGQ, L1MAX)

where i = 1 denotes ξ, i = 2 denotes D, i = 3 denotes Θ, and values of i > 3 denote passive

tracers (if any); NPGQ ≡ 3+ NTRACE, where NTRACE is the number of passive tracers.

The major subroutines of module prognos may be described as follows (where the variables in

parantheses denote arguments to the subroutine, ~P, ~Q, ~R denote generic composite level variables):

PLINI(Ω, R, Cp, g) : Initializes the planetary parameters

VERINI(L, pl, pl+ 1
2
,ΘS

l ,Θ
R
l , γ,Θ

M
l , ηT,l, ηu,l, σ

−1, νl) : Initializes the number of levels, level thick-

nesses, standard temperature profile, and forcing/damping details

DDTINI(∆t, α) : Initializes the semi-implicit time-stepping scheme

DDTPGQ(~Q, ~Pn−1, ~Pn) : ~Q←
(

∂~P
∂t

)n
ad.

. i.e., DDTPGQ computes the “adiabatic” time-tendency

(We put “” around adiabatic because the effects of scale-selective damping, which is the only

damping term that is treated semi-implicitly, are also included.)

DDTFRC(~R, ~P) : ~R ← (forcing terms). i.e. DDTFRC computes ~R, the time-tendency due to

mechanistic forcing/damping effects, given the spectral representation of prognostic quantities

~P at some approprite model time.

DDTIMP(~Q) : ~Q ← (implicitly corrected ~Q). i.e. DDTIMP makes implicit corrections to the

explicit time-tendency ~Q.

ROBFIL(qn−1
m,n , q

n
m,n, q

n+1
m,n , ǫ) : qnm,n ← (1 − 2ǫ)qnm,n + ǫ(qn+1

m,n + qn−1
m,n). i.e., ROBFIL applies the

Robert time-filter.

d. Module diagnos

Module diagnos contains subroutines for computing several standard run-time diagnostics,

and for writing out history files (in direct-access format). The diagnostics are initialized by calling

subroutine DIAINI at the beginning of the sampling period. After that, subroutine DIASTP should

23

be called once between every time-step in the sampling period (including once before the first time-

step, and once after the last time step) to compute the diagnostics. Subroutine DIAEND should

be called at the end of the sampling period to write out the diagnostics to a file. Since computing

run-time diagnostics is a non-standard operation, the reader is referred to the source code itself for

documentation.

e. Compilation and customization

Both prognos and splib contain Fortran subroutines/functions, but no MAIN programs. They

may be concatenated together with a main program to form an executable model. The concatenated

source code may be compiled with an f77 command on UNIX systems (or cf77 on UNICOS). To

customize the model for different resolutions etc., many of the important C preprocessor parameters

may be re-defined in the compilation command line itself. The important customization parameters

are defined below:

DPRECISION: This parameter, if defined, indicates that the default floating point precision on

the machine for REAL variables is equivalent to REAL*8. This parameter is needed because

some of the initializations need to be carried out at double precision on 32-bit machines. This

could be avoided on 64-bit machines (such as the Cray) by defining this parameter.

UDEF: The modules splib, prognos, and diagnos can be compiled with the f77 -u option on UNIX

systems, because all variables and functions are declared explicitly before being used. If the

MAIN program also follows this convention, the -u option could be used to detect bugs arising

from the use of undefined variables. But a small number of “dummy” declarations had to be

introduced to be able to do this on some UNIX f77 compilers, perhaps because of a bug in

the f77 compiler. These dummy declarations generate errors without the -u option. The C

preprocessor parameter UDEF is provided so that these these “dummy” declarations may be

enabled only when needed. Therefore, the UDEF option should be defined if and only if the

f77 -u option is used to compile the program.

N1MAX: This is the maximum order of triangular truncation (i.e. order of Legendre polynomials).

The default value is 21.

M1MAX: This is the maximum value of zonal wavenumber resolved by the truncation. The default

value is N1MAX.

K1MAX: This is the number of equally spaced longitudes in the transform grid [should be the

lowest integral power of 2 ≥ (3*N1MAX+1)]. The default value is 64.

K2MAX: This is the number of gaussian latitudes in the transform grid [should be the lowest odd

integer ≥ (3*N1MAX+1)/2]. The default value is 33. (Note: If K2MAX is an odd number,

then K2 is always chosen to be an odd number, so that the equator is one of the gaussian

latitudes)

24

[Other typical choices of (N1MAX, M1MAX, K1MAX, K2MAX) could be (10, 10, 32, 17) or (21,

21, 64, 33) or (42, 42, 128, 65) or (85, 85, 256, 129)]

L1MAX: This is the maximum number of pressure-levels (≥ 2). The default value is 20.

KL0MAX: No. of vector elements for FFT operations. The default value is K2MAX. Defining this

parameter to be the maximum of either K2MAX or L1MAX allows transforms to be optionally

vectorized over levels, rather than latitudes, using subroutines VPHYS and VSPEC of module

splib.

NTRACE: This is the number of passive tracers (≥ 0). The default value is 0.

FIXTRUNC: This option, if defined, fixes the horizontal/vertical resolution of the model. i.e. The

number of levels and the spectral truncation are fixed. By default, this option is not defined,

and the resolution is allowed to vary within the limits of available storage. But by defining

FIXTRUNC, one can force the counts of many DO loops to become constants, and this may

help improve speed of execution (but there are no guarantees).

The next two C-preprocessor parameters, COMPLEXOP and COMPACTPOLY, affect module

splib only. They control the details of the arithmetic operations involved in carrying out the

Legendre transforms. Depending on the machine, and the compiler, defining COMPLEXOP, or

COMPACTPOLY, may speed up the transforms. Defining COMPACTPOLY will certainly save a

lot on table storage space.

COMPLEXOP: This option, if defined, indicates that complex arithmetic operations may be used

during the Legendre transform operations. The default is to use real arithmetic operations

only.

COMPACTPOLY: This option, if defined, indicates that the Legendre polynomial tables should

be stored in a compact form, to minimize memory requirements. By default, the polynomial

tables are stored in a ”twinned” form, for efficient real arithmetic operations.

Notes:

1. Defining COMPLEXOP automatically causes COMPACTPOLY to be defined.

2. Defining COMPACTPOLY without defining COMPLEXOP causes polynomial tables to be

stored with the n-index, rather than the m-index, varying most rapidly. The order of the two

innermost loops in the Legendre transform is also reversed. This may be more efficient for

non-triangular truncations with very few zonal wavenumbers.

e.g. One may use the commands

cat main.F prognos.F splib.F > model.F

f77 -O -DL1MAX=5 -DN1MAX=42 -DK1MAX=128 -DK2MAX=65 model.F vfftpk.f -lnag

25

to compile a version of the model with upto 5 pressure levels and horizontal truncation upto

T42, on a Sun workstation. The first line of the main program main.F should be #include

”mcons.h”. The file “vfftpk.f” contains the vectorizable NCAR-FFT routines, and the “-lnag”

option invokes the NAG library. If the NAG library is not available, it may be substituted with

routines from the LINPACK library. A module called linpack.F, containing selected LINPACK

routines, is provided to simulate the NAG routines used by module prognos. This module may be

compiled separately to form linpack.o, and the -lnag option on the above compile command line

replaced with linpack.o.

One may use the commands

cat main.F prognos.F splib.F > model.F

cf77 -DDPRECISION -DCOMPACTPOLY -DFIXTRUNC -DM1MAX=0 -DK1MAX=1 -DL1MAX=20

model.F vfftpk.f -lnag

to compile a N = 21 axisymmetric version of the model, with the Legendre polynomials stored

in a compact form, with 20 pressure levels and fixed truncation, on a Cray running UNICOS.

f. Initialization and time-marching

First, the horizontal truncation should be initialized through a call to routine SPINI. Then

the planetary parameters should be initialized by calling PLINI. This should be followed by a call

to VERINI to initialize the vertical resolution, and the forcing/damping parameters.

The time-marching sequence is initialized by a call to DDTINI. If one already has available

the values of prognostic variables (~Pn−1, ~Pn) at two consecutive time-steps, one may use the call

DDTINI(∆t, α) to initialize the semi-implicit leap-frog time-marching, with time-step ∆t. Then

for each time-step, one would need to execute the following sequence of instructions:

CALL DDTPGQ(~Q, ~Pn−1, ~Pn)

CALL DDTFRC(~R, ~Pn−1)

~Q← ~Q+ ~R

〈 Other explicit forcing terms may also be added to ~Q at this point 〉

CALL DDTIMP(~Q)

~Pn+1 ← ~Pn−1 + 2∆t ~Q

CALL ROBFIL(qn−1
m,n , q

n
m,n, q

n+1
m,n , ǫ) for each constituent q in ~P

But at the very beginning of model integrations, one may have only the initial condition ~P0

available. In that case, one may “cheat” the time-marching routines by initializing with the call

26

DDTINI(12∆t, α). Then, for the first time-step only, one may execute the following sequence of

instructions:

CALL DDTPGQ(~Q, ~P0, ~P0)

CALL DDTFRC(~R, ~P0)

~Q← ~Q+ ~R

〈 Other explicit forcing terms may also be added to ~Q at this point 〉

CALL DDTIMP(~Q)

~P1 ← ~P0 +∆t ~Q

27

Appendix A. Symbols and notation

a. Symbols

(Note: The word “horizontal” is used here to denote motions along isobaric surfaces, which

are assumed to deviate only very little from the true horizontal)

i, j, k are the local eastward, northward, and upward unit vectors. S.I. units are used to

express almost all the quantities, except for γ, and except where otherwise noted.

t : time (in s)

λ : longitude (in rad)

φ : latitude (in rad)

µ = sinφ : sine-latitude

z : height (in m)

p : pressure (in Pa)

u = ui+ vj : horizontal velocity (in m/s)

u : zonal velocity (in m/s)

v : meridional velocity (in m/s)

ω = dp/dt : “pressure velocity” (in Pa/s)

T : temperature (in K)

a : planetary radius (in m)

Ω : angular velocity of planetary rotation (in 1/s)

f = 2Ω sinφ : the coriolis parameter (in 1/s)

g : gravitational acceleration at planetary surface (in m2/s)

Φ = gz : geopotential height (in m2/s2)

R : gas constant (per unit mass) for dry air (in J/{kgK})
Cp : specific heat (per unit mass) at constant pressure (in J/{kgK})
Cv : specific heat (per unit mass) at constant volume (in J/{kgK})
κ = Cp/Cv : a ratio of specific heats

ps : the (constant) reference surface pressure (in Pa)

ζ = (p/ps)
κ

: an auxiliary vertical coordinate

Θ = T (ps/p)
κ

: potential temperature (in K)

ΘR : reference potential temperature profile (in K)

ΘS : standard potential temperature profile (in K)

zS : standard height values at pressure levels (in m)

ΘM : “mean” potential temperature profile (in K)

ξ = curlz u : relative vorticity (in 1/s)

D = divu : divergence (in 1/s)

P = (ξ,D,Θ, . . .) : composite level variable

ψ = ∇−2
H ξ : streamfunction (in m2/s)

28

χ = ∇−2
H D : velocity potential (in m2/s)

E = 1
2u

2 : kinetic energy (per unit mass, in m2/s2)

α : “implicitness” factor (0 ≤ α ≤ 1)

ǫ : Robert filter factor

m : zonal wavenumber

n : meridional index of spherical harmonic (| m |≤ n)
M : zonal wavenumber truncation order (| m |≤M)

N : meridional truncation order (n ≤ N)

Pm,n(φ) : associated Legendre polynomial

Ym,n(λ, φ) = Pm,ne
imλ : spherical harmonic

K1 : number of longitudes in the transform grid

K2 : number of gaussian-latitudes in the transform grid

Gk : gaussian quadrature weight at φ = φk

γ : ∇8
H damping coefficient (in units of a8/s)

ηu : pressure-dependent Rayleigh friction coefficient (in 1/s)

ηT : pressure-dependent Newtonian cooling coefficient (in 1/s)

ν : pressure-dependent “vertical” kinematic viscosity (in m2/s)

σ : Prandtl number (viscosity/thermal conductivity)

b. Operators

Vector quantities are shown in boldface. e.g. V = (Vλ, Vφ)

∇H = i
1

a cosφ

∂

∂λ
+ j

1

a

∂

∂φ

∇2
H =

1

a2 cos2 φ

∂2

∂λ2
+

1

a2 cosφ

∂

∂φ
cosφ

∂

∂φ

divV =
1

a cosφ

∂Vλ
∂λ

+
1

a cosφ

∂

∂φ
cosφVφ

curlz V = (k×∇H) ·V =
1

a cosφ

∂Vφ
∂λ
− 1

a cosφ

∂

∂φ
cosφVλ

29

Appendix B. Fortran to Symbols dictionary

A0 → a

A0INV → a−1

A0Q → a2

A0QINV → a−2

CIM → im

COSINV → 1/ cosφk

COSPHI → cosφk

CP → Cp

D2DCAP → M
D→D̂

D2TT → −MD→H = −Mω→H MD→ω

D2W → MD→ω

DCAP2D → M
D̂→D

DEL8DF → γ

DP → ∆pl

DPGQSP → ∂~P/∂t

DT → ∆t

DTFAC → α2∆t

F0 → 2Ω

FSP01 → 2Ω/
√
3

G → 1
2Gk 〈note factor of 1

2 〉
G0 → g

IMPCOR → implicit correction matrix

IMPFAC → α

IMPLCT → α

INVPNO → σ−1

J → j

JDIV → i = 2 (D)

JPOT → i = 3 (Θ)

JVOR → i = 1 (ξ)

30

K → k

K1 → K1

K1MAX → maximum value of K1

K2 → K2

K2MAX → maximum value of K2

KAPPA → κ

L → l

L1 → L

L1MAX → maximum value of L

LAMBDA → λj

M → m

M1 → M

M1MAX → maximum value of M

MU → µk

N → n

N1 → N

N1MAX → maximum value of N

N2 → N + 1

NLEV → L

NNT2DT → M
D̂→D

M
Θ→Φ̂

OMEGA0 → Ω

PGQSP0 → ~Pn−1

PGQSP1 → ~Pn

PHI → φk

PHLV → pl+ 1
2

PKCHLV → ζ̂l+ 1
2

PKLV → ζl

PLV → pl

PSURF → ps

PTHICK → ∆pl

QHDAMP → γ

RGAS → R

31

ROBFAC → ǫ

T2GPCP → M
Θ→Φ̂

TD8COR → 1/
{
1 + γ(∇2

H)4
}

TD8FAC → γ(∇2
H)4

TDAMP → ηT,l

TMNLV → ΘM
0,n,l

TRADEQ → ΘM
k,l

TREFLV → ΘR
l

TRLXLV → ηT,l

TSTDLV → ΘS
l

TZSTD → ΘS
l

UD8COR → 1/
{
1 + γ(∇2

H +2a−2)4
}

UD8FAC → γ(∇2
H +2a−2)4

UDAMP → ηu,l

URLXLV → ηu,l

VERVIS → νl

VVISC → νl

W2TT → −Mω→H

ZSTDLV → zSl

32

Appendix C. Modifications to allow forcing at bottom boundary

Instead of setting the vertically integrated divergence to zero, one could choose to specify the

geopotential Φ near the bottom boundary. This boundary condition may be appropriate for, say,

a model of the middle atmosphere, where the lower boundary forcing due to the troposphere is

specified. We choose to set the pressure-velocity ω to zero at the upper boundary, but at the lower

boundary we specify the following conditions:

uL+ 1
2
= uL, Θ

′

L+ 1
2
= Θ′

L, ΦL = Cpζ̂L+ 1
2
ΘL +Φs(λ, φ, t)

where ζ̂L+ 1
2
≡ (1− ζL), and Φs is some specified function.

We also assume that Θ̂R
L+ 1

2

has some specified value. For convenience, one may even choose

to set Θ̂R
L+ 1

2

= Θ̂S
L−

1
2

. We re-define ~ω to be vector of length L, i.e., ~ω = (ω1+ 1
2
, . . . , ωL+ 1

2
). This

allows us to express ~HTR as

~HTR =Mω→H ~ω

where Mω→H is re-defined to be an L× L matrix with the following structure:

Mω→H =




Θ̂R

1+ 1
2

∆p1

0 · · · 0 0 0

Θ̂R

1+ 1
2

∆p2

Θ̂R

2+ 1
2

∆p2

· · · 0 0 0

...
...

. . .
...

...
...

0 0 · · ·
Θ̂R

L−1− 1
2

∆p
L−1

Θ̂R

L−
1
2

∆p
L−1

0

0 0 · · · 0
Θ̂R

L−
1
2

∆p
L

Θ̂R

L+1
2

∆p
L




We also re-define MD→ω to be an L× L matrix. (The extension is straightforward.) We then

define the compound matrix

MD→H =Mω→H MD→ω

We also define a new quantity Φ̃l ≡ Φl − Φs. We then write

33

Φ̃l = −2Φ̂l+ 1
2
+ Φ̃l+1 = −

L−1∑

l′=l

2Φ̂l′+ 1
2
+ Cpζ̂L+ 1

2
ΘL

=

L−1∑

l′=l

2Cpζ̂l′+ 1
2
Θl′+ 1

2
+ Cpζ̂L+ 1

2
ΘL = Cpζ̂l+ 1

2
Θl +

L∑

l′=l+1

Cp(ζ̂l′− 1
2
+ ζ̂l′+ 1

2
)Θl′

Defining a column vector of length L: ~̃Φ = (Φ̃1, . . . , Φ̃L), we can write the above equation in

matrix form as

~̃Φ =MΘ→Φ̃
~Θ

where MΘ→Φ̃ is an L× L matrix defined by

[MΘ→Φ̃]l,l′ =




Cp(ζ̂l′− 1

2
+ ζ̂l′+ 1

2
) if l′ > l;

Cpζ̂l′+ 1
2

if l′ = l;
0 otherwise.

MΘ→Φ̃ =




Cpζ̂1+ 1
2

Cp(ζ̂1+ 1
2
+ ζ̂2+ 1

2
) · · · Cp(ζ̂L−

1
2
+ ζ̂L+ 1

2
)

0 Cpζ̂2+ 1
2

· · · Cp(ζ̂L−
1
2
+ ζ̂L+ 1

2
)

...
...

. . .
...

0 0 · · · Cpζ̂L+ 1
2




We define the following “explicit time-tendencies”:

~Xn
D = − div ~Hn

u −∇2
H
~En −∇2

H MΘ→Φ̃
~Θn−1 − γu∇8

H
~Dn−1 −∇2

H Φn
s

~Xn
T = − ~Hn

T ′ −MD→H
~Dn−1 − γT ∇8

H
~Θn−1

Note that the explicit D tendency for each of the L levels has a (−∇2
H Φn

s) term in it, and

that is the only form in which Φs enters the prognostic equations. So the lower boundary condition

on Φ is equivalent to a vertically uniform explicit forcing term in D tendency equation. So it may

be convenient to assume that Φs ≡ 0, and specify a vertically uniform explicit forcing to simulate

the lower boundary condition on Φ.

Proceeding along similar lines as in the case with vertically integrated divergence set to zero,

we obtain the following prognostic equations for D and Θ:

34

(
∂ ~D

∂t

)n

=
[
1− (α2∆t)2γcorru γcorrT ∇2

H MΘ→Φ̃ MD→H

]−1

(
−γcorru γcorrT ∇2

H MΘ→Φ̃(α2∆t)
~Xn
T + γcorru

~Xn
D

)

(
∂~Θ

∂t

)n

= −γcorrT MD→H(α2∆t)

(
∂ ~D

∂t

)n

+ γcorrT
~Xn
T

The treatment of ξ is the same as for the case with vertically integrated divergence set to zero.

35

References

Haltiner, G.J., and R.T. Williams, 1980: Numerical Prediction and Dynamic Meteorology, second

edition. John Wiley & Sons, 477pp.

Holton, J.R., 1979: An Introduction to Dynamic Meteorology, second edition. Academic Press,

391pp.

Lorenz, E.N., 1960: Energy and numerical weather prediction. Tellus, 12, 364-373.

Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, 1986: Numerical Recipes: the

art of scientific computing. Cambridge University Press, 818pp.

Simmons, A.J., B.J.Hoskins, and D.M.Burridge, 1978: Stability of the semi-implicit method of time

integration. Mon. Wea. Rev., 106, 405-412.

36

