Logistic Regression: From Binary to Multi-Class

Shuiwang Ji
Department of Computer Science & Engineering
Texas A&M University
The binary LR predicts the label $y_i \in \{-1, +1\}$ for a given sample x_i by estimating a probability $P(y|x_i)$ and comparing with a pre-defined threshold.

Recall the sigmoid function is defined as

$$\theta(s) = \frac{e^s}{1 + e^s} = \frac{1}{1 + e^{-s}},$$

(1)

where $s \in \mathbb{R}$ and θ denotes the sigmoid function.

The probability is thus represented by

$$P(y|x) = \begin{cases}
\theta(w^T x) & \text{if } y = 1 \\
1 - \theta(w^T x) & \text{if } y = -1.
\end{cases}$$

This can also be expressed compactly as

$$P(y|x) = \theta(yw^T x),$$

(2)

due to the fact that $\theta(-s) = 1 - \theta(s)$. Note that in the binary case, we only need to estimate one probability, as the probabilities for +1 and -1 sum to one.
Properties of the Sigmoid Function

1. $0 < \theta(s) < 1$, $\forall s$
2. $\theta(-s) = 1 - \theta(s)$
3. $\theta(\cdot)$ is a monotonic function

Why are they important?
Properties of the Sigmoid Function

1. $0 < \theta(s) < 1, \forall s$
2. $\theta(-s) = 1 - \theta(s)$
3. $\theta(\cdot)$ is a monotonic function

Why are they important?

1. Probabilistic interpretation
2. Compact representation
3. Linear model, why?

Is logistic regression a linear model? Why?
In the multi-class cases there are more than two classes, i.e.,

\[y_i \in \{1, 2, \cdots, K\} \ (i = 1, \cdots, N), \]

where \(K \) is the number of classes and \(N \) is the number of samples.

In this case, we need to estimate the probability for each of the \(K \) classes. The hypothesis in binary LR is hence generalized to the multi-class case as

\[
h_w(x) = \begin{bmatrix} P(y = 1|x; w) \\ P(y = 2|x; w) \\ \vdots \\ P(y = K|x; w) \end{bmatrix}
\]

A critical assumption here is that there is no ordinal relationship between the classes. So we will need one linear signal for each of the \(K \) classes, which should be independent conditioned on \(x \).
As a result, in the multi-class LR, we compute K linear signals by the dot product between the input x and K independent weight vectors $w_k, k = 1, \cdots, K$ as

$$
\begin{bmatrix}
 w_1^T x \\
 w_2^T x \\
 \vdots \\
 w_K^T x
\end{bmatrix}.
$$

(4)

We then need to map the K linear outputs (as a vector in \mathbb{R}^K) to the K probabilities (as a probability distribution among the K classes).

In order to accomplish such a mapping, we introduce the softmax function, which is generalized from the sigmoid function and defined as below. Given a K-dimensional vector $v = [v_1, v_2, \cdots, v_K]^T \in \mathbb{R}^K$,

$$
\text{softmax}(v) = \frac{1}{\sum_{k=1}^K e^{v_k}} \begin{bmatrix}
 e^{v_1} \\
 e^{v_2} \\
 \vdots \\
 e^{v_K}
\end{bmatrix}.
$$

(5)
It is easy to verify that the softmax maps a vector in \mathbb{R}^K to $(0, 1)^K$. All elements in the output vector of softmax sum to 1 and their orders are preserved. Thus the hypothesis in (3) can be written as

$$h_w(x) = \begin{bmatrix} P(y = 1|x; w) \\ P(y = 2|x; w) \\ \vdots \\ P(y = K|x; w) \end{bmatrix} = \frac{1}{\sum_{k=1}^{K} e^{w_k^T x}} \begin{bmatrix} e^{w_1^T x} \\ e^{w_2^T x} \\ \vdots \\ e^{w_K^T x} \end{bmatrix}. \tag{6}$$

We will further discuss the connection between the softmax function and the sigmoid function by showing that the sigmoid in binary LR is equivalent to the softmax in multi-class LR when $K = 2$.
Training with Cross Entropy

1. We optimize the multi-class LR by minimizing a loss (cost) function, measuring the error between predictions and the true labels, as we did in the binary LR. Therefore, we introduce the cross-entropy in Equation (7) to measure the distance between two probability distributions.

2. The cross entropy is defined by

\[H(P, Q) = - \sum_{i=1}^{K} p_i \log(q_i), \]

where \(P = (p_1, \ldots, p_K) \) and \(Q = (q_1, \ldots, q_K) \) are two probability distributions. In multi-class LR, the two probability distributions are the true distribution and predicted vector in Equation (3), respectively.

3. Here the true distribution refers to the one-hot encoding of the label. For label \(k \) (\(k \) is the correct class), the one-hot encoding is defined as a vector whose element being 1 at index \(k \), and 0 everywhere else.
Now the loss for a training sample \(x \) in class \(c \) is given by

\[
\text{loss}(x, y; w) = H(y, \hat{y}) = - \sum_k y_k \log \hat{y}_k = - \log \hat{y}_c = - \log \frac{\exp^{w^T_c x}}{\sum_{k=1}^K \exp^{w^T_k x}}
\]

where \(y \) denotes the one-hot vector and \(\hat{y} \) is the predicted distribution \(h(x_i) \). And the loss on all samples \((X_i, Y_i)_{i=1}^N\) is

\[
\text{loss}(X, Y; w) = - \sum_{i=1}^N \sum_{c=1}^K I[y_i = c] \log \frac{\exp^{w^T_c x_i}}{\sum_{k=1}^K \exp^{w^T_k x_i}}
\]

(8)
The softmax function in multi-class LR has an invariance property when shifting the parameters. Given the weights $\mathbf{w} = (\mathbf{w}_1, \cdots, \mathbf{w}_K)$, suppose we subtract the same vector \mathbf{u} from each of the K weight vectors, the outputs of softmax function will remain the same.
Proof

To prove this, let us denote \(w' = \{w'_i\}^K_{i=1} \), where \(w'_i = w_i - u \). We have

\[
P(y = k|x; w') = \frac{e^{(w_k-u)^T x}}{\sum_{i=1}^{K} e^{(w_i-u)^T x}}
\]

\[
= \frac{e^{w_k^T x} e^{-u^T x}}{\sum_{i=1}^{K} e^{w_i^T x} e^{-u^T x}}
\]

\[
= \frac{e^{w_k^T x} e^{-u^T x}}{(\sum_{i=1}^{K} e^{w_i^T x}) e^{-u^T x}}
\]

\[
= \frac{e^{(w_k)^T x}}{\sum_{i=1}^{K} e^{(w_i)^T x}}
\]

\[
= P(y = k|x; w),
\]

which completes the proof.
Once we have proved the shift-invariance, we are able to show that when $K = 2$, the softmax-based multi-class LR is equivalent to the sigmoid-based binary LR. In particular, the hypothesis of both LR are equivalent.
Proof

\[h_w(x) = \frac{1}{e^{w_1^T x} + e^{w_2^T x}} \begin{bmatrix} e^{w_1^T x} \\ e^{w_2^T x} \end{bmatrix} \]

(14)

\[= \frac{1}{e^{(w_1-w_1)^T x} + e^{(w_2-w_1)^T x}} \begin{bmatrix} e^{(w_1-w_1)^T x} \\ e^{(w_2-w_1)^T x} \end{bmatrix} \]

(15)

\[= \begin{bmatrix} \frac{1}{1+e^{(w_2-w_1)^T x}} \\ \frac{e^{(w_2-w_1)^T x}}{1+e^{(w_2-w_1)^T x}} \end{bmatrix} \]

(16)

\[= \begin{bmatrix} \frac{1}{1+e^{-\hat{w}^T x}} \\ \frac{e^{-\hat{w}^T x}}{1+e^{-\hat{w}^T x}} \end{bmatrix} \]

(17)

\[= \begin{bmatrix} \frac{1}{1+e^{-\hat{w}^T x}} \\ \frac{1}{1+e^{-\hat{w}^T x}} \end{bmatrix} = \begin{bmatrix} h_{\hat{w}}(x) \\ 1 - h_{\hat{w}}(x) \end{bmatrix}, \]

(18)

where \(\hat{w} = w_1 - w_2 \). This completes the proof.
Now we show that minimizing the logistic regression loss is equivalent to minimizing the cross-entropy loss with binary outcomes.

The equivalence between logistic regression loss and the cross-entropy loss, as shown below, proves that we always obtain identical weights \mathbf{w} by minimizing the two losses. The equivalence between the losses, together with the equivalence between sigmoid and softmax, leads to the conclusion that the binary logistic regression is a particular case of multi-class logistic regression when $K = 2$.
Proof

\[\arg \min_w E_{in}(w) = \arg \min_w \frac{1}{N} \sum_{n=1}^{N} \ln \left(1 + e^{-y_n w^T x_n} \right) \]

\[= \arg \min_w \frac{1}{N} \sum_{n=1}^{N} \ln \frac{1}{\theta(y_n w^T x_n)} \]

\[= \arg \min_w \frac{1}{N} \sum_{n=1}^{N} \ln \frac{1}{P(y_n | x_n)} \]

\[= \arg \min_w \frac{1}{N} \sum_{n=1}^{N} [y_n = +1] \ln \frac{1}{P(y_n | x_n)} + [y_n = -1] \ln \frac{1}{P(y_n | x_n)} \]

\[= \arg \min_w \frac{1}{N} \sum_{n=1}^{N} [y_n = +1] \ln \frac{1}{h(x_n)} + [y_n = -1] \ln \frac{1}{1 - h(x_n)} \]

\[= \arg \min_p p \log \frac{1}{q} + (1 - p) \log \frac{1}{1 - q} \]

\[= \arg \min_w H(\{p, 1 - p\}, \{q, 1 - q\}) \]

where \(p = I[y_n = +1] \) and \(q = h(x_n) \). This completes the proof.
The notes (Logistic Regression: From Binary to Multi-Class) contain
details on derivative of cross entropy loss function, which is necessary for
your homework. All you need are:

1. Univariate calculus
2. Chain rule
3. \[
\frac{\partial (w^T b)}{\partial w} = b
\]
THANKS!