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In this course we discuss several results on Infinite Combinatorics, and their applications
to Banach space theory.

In the first chapter we present Ramsey’s theorem for infinite subsets of the natural num-
bers. Assume you color all infinite subsequences of the natural numbers N using finitely
many colors. Then, under some mild topological condition on this coloring, Ramsey’s theo-
rem states that you can find a subsequence N of N, so that all further subsequences M of N
have the same color. In Chapter 2 we will apply Ramsey’s theorem to obtain several results
in Banach space theory, for example Haskell Rosenthal’s celebrated `1 Theorem: Every semi
normalized sequence in a Banach space either contains a weak Cauchy subsequence or it
contains a subsequence which is equivalent to the `1 unit vector basis.
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In view of Ramsey’s theorem one might ask whether or not there exist versions of it for
Banach spaces of the following kind. Assume you color the vectors of the sphere of a sepa-
rable, infinite dimensional space X using finitely many colors. Is it possible, under certain
conditions on the coloring, to conclude that X has an infinite dimensional Banach space
whose sphere is monochromatic? The answer to this question is for most spaces negative,
and we will present several examples which illustrate this in chapter 3. Nevertheless, parts
of Ramsey’s theorem still hold and we will present the following two examples: Gowers’s
dichotomy theorem, and its application to solve the homogenous Banach space problem,
as well as a combinatorial result, recently obtained by the author in collaboration with
E. Odell, and its application to several universality problems.

In chapter 4 we will give a short introduction to ordinal numbers, the arithmetic on them,
and the principle of transfinite induction and recursion. We will use them to introduce in
chapter 5 several Banach indices, which are isomorphic invariances of Banach spaces and
therefore important tools to classify them.



Chapter 1

The Theorem of Ramsey

1.1 Ramsey’s theorem for finite sequences

We begin with Ramsey’s original theorem [Ra]. He was only 27 when he died in 1929 and
this paper appeared the following year.

Notation. For two sets X and S we denote by XS the set of all functions f : S → X,
or equivalently the set of all families (xi)i∈S ⊂ X. The powerset of X, i.e. the set of all
subsets of X, is denoted by P(X).

Assume α is a cardinal number. At the moment we only worry about the cases α = n ∈
N, α = ω (the countable infinite cardinal, which can be identified with the set of all natural
numbers N) , α = ω1 (the smallest uncountable cardinal) and α = ωc (the continuum). We
denote by [X]α the set of all subsets of X of cardinality α. [X]<α and [X]≤α are the set of
all subsets of X whose cardinality is less than, respectively at most α. In the case X = N or
X ⊂ N or any other well ordered set we will identify [X]n and Xω with the set of increasing
sequences X.

Similarly X<α and X≤α is the set of all families indexed over cardinalities smaller than
α, respectively smaller then or equal to α.

In particular

• Xn, and Xω, is the set of all sequences in X of cardinality n or all infinite sequences,
and X<ω the set of all finite sequences in X.

• [X]n and [X]ω, the set of all subsets of cardinality n, respectively ω or the set of all
increasing sequences of cardinality n or ω, respectively.

Theorem 1.1.1. [Ra] Let k ∈ N and A ⊆ [N]k. Then there exists M ∈ [N]ω so that either
[M ]k ⊆ A or [M ]k ∩ A = ∅.

Remark. Note that the case k = 1 is simply the Pigeon hole Principle.

Proof of Theorem 1.1.1. We give first the proof for k = 2. Let n1 = 1. Choose M1 ∈ [N]ω

with 1 < min(M1) so that

a) either (n1, n) ∈ A for all n ∈M1, or
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6 CHAPTER 1. THE THEOREM OF RAMSEY

b) or (n1, n) 6∈ A for all n ∈M1.

Let n2 = minM1 and choose M2 ∈ [M1]ω so that n2 < M2 and either

a) (n2, n) ∈ A for all n ∈M2, or

b) (n2, n) 6∈ A for all n ∈M2.

Let n3 = minM2 and continue in this manner. The alternative a) or b) must occur infinitely
many times. Suppose M = {ni : a) holds for ni} is infinite. Then [M ]2 ⊆ A. Otherwise
M = {ni : b) holds for ni} satisfies [M ]2 ∩ A = ∅.

Assume now the claim of our theorem to be true for k − 1, k > 2, and let A ⊂ [N]k.
Using our induction hypothesis we can choose by induction on ` ∈ N numbers n1 < n2 <

in N and sets N = M0 ⊃M1 ⊃M2 . . ., so that for all ` ∈ N

n` = minM`−1 and n` < minM`

Either(Case 1) : ∀(m1,m2 . . .mk) ∈ [M`]
k−1 (n`,m1,m2, . . .mk−1) ∈ A

Or(Case 2) : ∀(m1,m2 . . .mk) ∈ [M`]
k−1 (n`,m1,m2, . . .mk−1) 6∈ A

Then take infinite subsequence (n`i) so that for all i ∈ N the same case happens and choose
M = {n`i : i ∈ N} i ∈ N.

Definition 1.1.2. By an r-coloring of a set A we mean a partition (Ai)
r
i=1 of A into r

subsets. In that case we call B ⊂ A monochromatic if for some i ≤ r, B ⊂ Ai.

Corollary 1.1.3. For any r ∈ N and any r coloring of [N]k there is an M ∈ [N]ω so that
[M ]k is monochromatic.

Using the Compactness Principle we can deduce the following strengthening of Theorem
1.1.1.

Corollary 1.1.4. Given k and m in N there is an n = n(k,m) ≥ m so that the following
holds. Assume that A ⊂ [{1, 2, 3 . . . , n}]k then there exists M ⊂ {1, 2, 3 . . . , n} with #M =
m so that

Either [M ]k ⊂ A or [M ]k ∩ A = ∅.

Remark. For k = 2 Corollary 1.1.3 means the following: Given any number m there is a
number n ≥ m so that: If ones invites any n people there at at least m of them who either
know each other or who do not know each other.

Proof of Corollary 1.1.4. Assume that for some k and m in N our claim is wrong. Thus,
assume that for any n ∈ N, n ≥ m there is an An ⊂ [{1, 2, . . . n}]k so that

∀M ⊂ [{1, 2 . . . n}]m [M ]k 6⊂ An and [M ]k ∩ An 6= ∅.(∗)

By induction choose n1 < n2 < . . . and infinite sets N = N0 ⊃ N1 ⊃ N2 ⊃ . . . so that for
` ∈ N

n` = minN`−1 < minN`
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∀n, n′ ∈ N` An ∩ [{n1, n2, . . . n`}]k = An′ ∩ [{n1, n2, . . . n`}]k

In order to choose N` we can use the Pigeonhole Principle since for any n ∈ N`−1 the set
An ∩ [{n1, n2, . . . n`}]k is an element of the (finite) set P([{n1, n2, . . . n`}]k).

Then put N = {ni : i ∈ N} and let

A =
∞⋃
`=1

An`
.

Note that for A ∈ [N ]k

A ∈ A ⇐⇒ ∃` ∈ N A ∈ An`
⇐⇒ ∀` ∈ N,maxA ≤ n` A ∈ An`

,

and, thus, for ` ∈ N it follows that A ∩ [n1, . . . n`]
k = An`

.
By Theorem 1.1.1 we can now choose an L ∈ [N ]ω so that [L]k ⊂ A or [L]k ∩ A. Write

L as
L = {n`1 , n`2 , . . .},

then note that either

[{n`1 , n`2 , . . . , n`m}]k ⊂ A ∩ [{1, 2, . . . , . . . , n`m}]k = An`m
,

or

[{n`1 , n`2 , . . . , n`m}]k ∩ A = [{n`1 , n`2 , . . . , n`m}]k ∩ An`m
= ∅

which is a contradiction to our assumption.

Exercise 1.1.5. For m ∈ N let R(m) (sometimes also denoted by R(2,m)) be the min-
imum of all n ∈ N so that the conclusion of Corollary 1.1.3 holds, i.e so that for all
A ⊂ [{1, 2, 3 . . . , n}]k there exists M ⊂ {1, 2, 3 . . . , n} with #M = m so that either [M ]k ⊂
A or [M ]k ∩ A = ∅. Show that R(3) = 6.

Remark. R(4) = 18 (hard, possible only by using computer), R(5) is unknown. It is only
known that R(5) ∈ [43, 49].

Erdös: “If Aliens land on earth and threaten the to eliminate all human beings if they do
not provide R(5), then, probably combining all the avialable computing power, we probably
would be able to compute R(5). If they want to know R(6) we can as well start preying”
(This was about 30 years ago, maybe nowadays we have enough computing power to find
R(6)
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1.2 Infinite Games

Let X be a non empty set and let A ⊂ Xω we consider the following game G(A, X).
Player I: chooses x1 ∈ X
Player II: chooses x2 ∈ X
Player I: chooses x3 ∈ X

...
Player I has won if the resulting sequence (xn) is in A. Otherwise Player II is declared

winner.

Remark. We will use above setup in the case where Player II chooses in his/her moves
certain subsets, say S1, S2 etc. of S (like infinite subsets of N,or closed infinite dimensional
subspaces of a Banach space X) and Player II chooses elements si out of the set Si (for
example N, or a Banach space). Player I has won if he can assure that the resulting sequence
(si) lies in some set A ⊂ Sω.

In order to reduce that game to the above described game we simply put

X = S × P, where P ⊂ P(X) are the allowed choices for Player I

Ã =
{

(si, Si) ∈ Xω : (s2i) ∈ A and ∀i∈N s2i ∈ S2i−1

}
.

Exercise 1.2.1. Assume S is a set and A ⊂ Sω is closed with respect to the product of
the discrete topology. Let P ⊂ P(X)

Then show that Ã, as defined above is closed in the product topology of (S × P)ω.

Let A ⊂ Xω, X some non empty set. For Player I having a winning strategy for G(A, X)
means informally that

∃x1∈X ∀x2∈X ∃x3∈X ∀x4∈X . . . (xi) ∈ A.

Given that this is an infinite phrase one might want to be careful.
This is the formal definition:

Definition 1.2.2. Let A ⊂ [X]ω, X 6= ∅. We say that Player I has a winning strategy for
G(A, X) if

(WI(A, X)) There is a sequence of functions (fn)∞n=0 with fn : Xn → X (f0 ∈ X) so
that for any sequence (zn)∞n=1 the sequence (xn) defined by

x2n−1 = fn−1(z1, z2, . . . zn−1) and x2n = zn whenever n ∈ N

is in A.
We say that Player II has a winning strategy for G(A, X) if

(WII(A, X)) There is a sequence of functions (gn)∞n=1 with gn : Xn → X so that for any
sequence (zn)∞n=1 the sequence (xn) defined by

x2n−1 = zn and x2n = fn(z1, z2, . . . zn) whenever n ∈ N

is not in A.
In the case that (WI(A, X)) or (WII(A, X)) holds we call (fn)∞n=0, respectively (gn)∞n=1

a winning strategy for Player I, respectively Player II.
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Remark. It is easy to see that (WI(A, X)) and (WII(A, X)) cannot both hold. Indeed,
assuming that maps fn : Xn → X, n ∈ N0, and gn : Xn → X, n ∈ N, existed as in
(WI(A, X)) and (WII(A, X)), we could choose by induction a sequence (xn) as follows

x1 = f0 and x2 = g1(x1)

assuming x1, x2, . . . x2n have been chosen for some n ∈ N, we put

x2n+1 = fn(x2, x4, . . . , x2n) and x2n+2 = gn(x1, x3, . . . , x2n+1).

Then (xn) satisfies the conditions in (WI(A, X)) and as well as in (WII(A, X)) which leads
to a contradiction since that would imply that (xn) ∈ A as well as (xn) 6∈ A.

It is not clear whether either (WI(A, X)) or (WII(A, X)) have to hold, i.e. whether or
not the game is determined.

In the case that the game has finitely many steps, i.e. if there is an n ∈ N, say n even,
so that A ⊂ Xn then (WI(A, X)) is equivalent to

∃x1∈X ∀x2∈X ∃x3∈X ∀x4∈X . . . ∃xn−1∈X ∀xn∈X (xi)
n
i=1 ∈ A.

and (WII(A, X)) is equivalent to

∀x1∈X ∃x2∈X ∀x3∈X ∀x2∈X . . . ∀xn−1∈X ∃xn∈X (xi)
n
i=1 6∈ A.

Since the negation can be pulled through finitely many quantifiers (replacing ∃ by ∀ and
vice versa) we deduce that

¬ (WI(A, X))⇒ (WII(A, X)) ¬ (WII(A, X))⇒ (WI(A, X))

and, thus, that games of finite length are determined. In the case of infinite games the
situation is different: one cannot always pull the negation sign through an infinite phrase.
A good analogue to this problem in Logic is the fact known from Calculus that infinite sums
∂
∂ and

∑
do not always commute. The determinacy of infinite games will follow under some

topological assumption on the set A.

Notation. For A ⊂ Xω and x = (x1, x2, . . . , xn) ∈ X<ω we write:

A(x1, x2, . . . xn) =
{

(zi) ∈ Xω : (x1, x2, . . . xn, z1, z2, . . .) ∈ A
}
.

We consider on Xω the product topology of the discrete topology on X.

Proposition 1.2.3. Assume A ⊂ Xω. Then

A is open ⇐⇒ ∃Ã⊂X<ω A =
⋃

(x1,x2,...xn)∈Ã

{(x1, x2, . . . xn)} ×Xω.

A is closed ⇐⇒ ∀(xi)∈Xω
[
∀n∈N A(x1, x2, . . . xn) 6= ∅ ⇒ (xi) ∈ A

]
.

Theorem 1.2.4. [Ma] If A ⊂ Xω is a Borel set then the game G(A, X) is determined,
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Proof. We will show Theorem 1.2.4 only in the case that A is either closed or open. The fol-
lowing observations are intuitively clear and can easily be shown using the formal definitions
of (WI(A, X)) and (WII(A, X)). For A ⊂ Xω

(WI(A, X)) ⇐⇒ ∃x∈ X∀y∈X (WI(A(x, y), X))(1.1)

(WII(A, X)) ⇐⇒ ∀x∈ X∃y∈X (WII(A(x, y), X))(1.2)

Secondly,

¬(WII(A, X)) ⇐⇒ ∃x∈ X∀y∈X ¬(WII(A(x, y), X))(1.3)

=⇒∃x∈X ∀y∈X A(x, y) 6= ∅
¬(WI(A, X)) ⇐⇒ ∀x∈ X∃y∈X ¬(WI(A(x, y), X))(1.4)

=⇒∃x∈X ∀y∈X A(x, y) 6= ∅

Assume that ¬(WII(A, X)) holds. By induction on n ∈ N0 we can choose fn : Xn → X so
that

∀(z1,z2, . . . zn, zn+1)∈Xn+1(1.5)

¬(WII(A(f0, z1, f1(z1), z2, f2(z1, z2), . . . , fn(z1, 2, . . . zn, zn+1), X)))

For n = 0 this follows from the assumption ¬(WII(A, X). Assuming f0, f1, . . . fn−1 have
been chosen, we can apply for a given (z1, z2, . . . zn)∈Xn our induction hypothesis to the
game

G(A(f0, z1, f1(z1), z2, f2(z1, z2), . . . zn), X)

and then apply (1.3) to the set

A(f0, z1, f1(z1), z2, . . . fn−1(z1, z2, . . . zn−1), zn)

in order to get a y, which we define to be fn(z1, . . . zn), so that,

(WII(A(f0, z1, f1(z1), z2, f2(z1, z2), . . . , fn(z1, z2, . . . zn, zn+1), X))) for all zn+1 ∈ X.

This finishes the induction step.
We claim that if A is closed (fn) is a winning strategy for Player I. Indeed, let (zi) ∈

Xω. From (1.3) (second implication) and (1.5) we deduce that for all n ∈ N the set
A(f0, z1, f1(z1), z2, . . . zn+1) is not empty. Proposition (1.2.3) yields that the infinite se-
quence (f0, z1, f1(z1), z2, f2(z1, z2), z3, . . .) is in A.

IfA is open we will assume that ¬(WI(A, X)) and prove in a similar way that (WII(A, X))
(see Exercise 1.2.5)

Exercise 1.2.5. Let A ⊂ Xω be open. Show that ¬(WI(A, X)) implies (WII(A, X)).
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1.3 Ramsey’s theorem for infinite sequences

Proposition 1.3.1. Let X be a Polish space (completely metrizable and separable). For
A ⊂ X the following statements are equivalent.

a) A is the image of a Borel set B ⊂ X × X under the projection onto, say, the first
coordinate.

b) There is a Polish space Y so that A is the image of a Borel set B ⊂ X × Y under the
projection onto the first coordinate.

c) There is a continuous map f : Nω → X (using the product of the discrete topology)
whose image is A.

d) A is the image of a Borel set B ⊂ X×Nω under the projection onto the first coordinate.

e) For every uncountable Polish space Y there is a Gδ-set (intersection of countably many
open sets) B ∈ X × Y so that A is the image of B under the projection onto X.

We call a set which satisfies above conditions analytic and we call the complement of an
analytic set co-analytic.

Remark. The set of analytic subsets of a Polish space is not closed under complementation,
in particular it is not a σ-algebra. Nevertheless it is easy to see that analytic sets are closed
under countable unions.

We identify P(N) with the product {0, 1}ω by

N ∈ [N]ω ←→ (εn), where εn =

{
1 if n ∈ N
0 if n 6∈ N .

Therefore P(N) can be endowed with the product topology of the discrete topology on
{0, 1}, which makes it a compact metric, and thus, Polish space, and we note that

U =
{
{F ∪N : N ∈ P(N),maxF < minN or N = ∅} : F ∈ [N]<ω}

≡
{
{(εi) ⊂ {0, 1} : εi = 1 if i ∈ F and εi = 0 if i ≤ maxF and i 6∈ F}F ∈ [N]<ω

}
is a basis of the topology on P(N).

For Nn, n < ω, and N in P(N),

Nn →n→∞ N ⇐⇒ ∀k∈N ∃n0∈N ∀n≥n0 Nn ∩ {1, 2, 3 . . . k} = N ∩ {1, 2, 3 . . . k}.

On [N]ω we consider the relative topology. [N]ω is actually a dense Gδ set in P(N), and
therefore it is a Polish space itself.

Exercise 1.3.2. For B ∈ [N]<ω and N ∈ P(N) we say that N extends B if

B = N ∩ {1, 2, . . .maxB}.

Show that A ⊂ [N]ω is clopen if and only if there is a k ∈ N and a B ⊂ [N]k so that

A =
{
N ∈ [N]ω : ∃B ∈ B N extends B

}
.
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We can now state the Ramsey theorem for subsets of [N]ω.

Theorem 1.3.3. Assume that A ⊂ [N]ω is analytic (with respect to the product topology on
[N]ω ≡ {0, 1}ω).

Then there is an N ∈ [N]ω so that either [N ]ω ⊂ A or [N ]ω ∩ A = ∅.

Remark. Note that from Exercise 1.3.2 it follows that Ramsey’s theorem for finite sets,
i.e. Theorem 1.1.1, coincides with the statement of Theorem 1.3.3 for clopen sets A ⊂ [N]ω.

Theorem 1.3.3 was shown by Ellentuck in 1974 [El]. For Borel sets it was proved by
Galvin and Prikry in 1973 [GP].

We will prove Theorem 1.3.3 first in the special case that A ⊂ [N]ω is closed and then
for all Borel sets.

Theorem 1.3.4. Assume A ⊂ [N]ω is closed.
If there is an N ∈ [N]ω so that [M ]ω ∩A 6= ∅, for all M ∈ [N ]ω, then there is an N ′ ∈ [N]ω

so that [N ′]ω ⊂ A.

It is clear that Theorem 1.3.4 implies Theorem 1.3.3 in the case that A is closed. For
the proof we will need the following Lemma. Similar to the previous section we define for
F ∈ [N]<ω and A ⊂ [N]ω

A(F ) =
{
N ∈ [N]ω : maxF < minN and F ∪N ∈ A

}
.

Lemma 1.3.5. Let A ⊂ [N]ω and N ∈ [N]ω and assume that for all M ∈ [N ]ω it follows
that A ∩ [M ]ω 6= ∅.

Then for all N ′ ∈ [N ]ω there exists an L ∈ [N ′]ω so that A({`})∩ [M ]ω 6= ∅ for all ` ∈ L
and all M ∈ [L]ω.

Proof. Assume our claim were not true for some N ′ ∈ [N ]ω. Then we could inductively
choose L0 = N ′ ⊃ L1 ⊃ L2 . . . and `1 < `2 < . . . so that `k < minLk, `k ∈ Lk−1

and A({`k}) ∩ [Lk]
ω = ∅ for all k ∈ N. But this would imply that A ∩ [M ]ω = ∅ for

M = {`1, `2, . . .}.

Proof of Theorem 1.3.4. Assume that that there is an N ∈ [N]ω so that for all M ∈ [N ]ω

there is an L ∈ A ∩ [M ]ω. We need to show that there is an N ′ ∈ [N ]ω so that [N ′]ω ⊂ A.
We will chose recursively N0 = N ⊃ N1 ⊃ N2 ⊃ . . . and n1 < n2 < . . . with nk ∈ Nk−1, if
k ≥ 1, and so that for all k ≥ 0, all M ∈ [Nk]

ω and all F ⊂ {n1, . . . nk} (if k = 0 only F = ∅
is posssible)

A(F ) ∩ [M ]ω 6= ∅.

For k = 0, this is exactly our assumption. Assume that we have chosen n1 < n2 < ...nk
and Nk. We order all subsets of {n1, . . . nk} into F1, F2, . . . F2k and apply Lemma 1.3.5
successively to B = A(Fi), i = 1, 2 . . . 2k in order to get L0 = Nk ⊃ L1 ⊃ L2 . . . L2k so that
for all i ≤ 2k and all ` ∈ Li and all M ∈ [Li]

ω the set (A(Fi))({`})∩ [M ]ω = (A(Fi ∪ {`}))∩
[M ]ω is not empty. Finally we choose nk+1 = minL2k and Nk+1 = L2k \ {nk+1}, which
finishes our induction step.

Putting now N ′ = {n1, n2, . . .} it follows that for all finite F ⊂ N ′ the set A(F ) is not
empty. Since A is closed we deduce from Proposition 1.2.3 that [N ′]ω ⊂ A.
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Later we want to extend results similar to Theorems 1.3.3 and 1.3.4 to Banach spaces
and their closed subspaces. Unfortunately only part of the reasonings are transferable. We
want therefor reinterpret the statements of Theorems 1.3.3 and 1.3.4.

We consider the following two person game of infinite length. Let A ⊂ [N]ω be closed.

Player I : chooses N1 ∈ [N]ω

Player II: chooses n1 ∈ N1

Player I : chooses N2 ∈ [N]ω

Player II: chooses n2 ∈ N2
...

Player I wins if {n1, n2, . . .} ∈ A
It follows from Theorem 1.2.4 that if A Borel, then the game is determined i.e. one of

the Players has a winning strategy.

We call above game G(A). If N ∈ [N]ω and we demand that Player I can only choose
subsets of N we call it the restriction of the G(A) to N and denote it by G(A, N)

Write WI(A, N) (WI(A) if N = N) if Player I has a winning strategy for the restriction
of A to N and we write WII(A, N) (WII(A) if N = N) if Player II has a winning strategy
(which means that {n1, n2, . . .} 6∈ A).

Remark. Using the formal definition (or our intuition) of WI(A, N) and WII(A, N) for
N ∈ [N]ω, it is clear that WI(A, N) implies A∩[N ]ω 6= ∅ and WII(A, N) implies Ac∩[N ]ω 6=
∅.

Therefore Theorem yields the following

Corollary 1.3.6. Let A ⊂ [N]ω be closed.

a) Either A satisfies the condition

∃N ∈ [N]ω∀M ∈ [N ]ω WI(A,M),

then it follows

∃N ′∈ [N]ω [N ′]ω ⊂ A.

b) Or A satisfies

∀N ∈ [N]ω∃M ∈ [N ]ω WII(A,M)

which implies

∀N ∈ [N]ω∃M ∈ [N ]ω A ∩ [M ]ω = ∅.

Remark. Note that the first part of Corollary 1.3.6 means the following: If Player I has
a winning strategy he/she has actually a very simple strategy: at step k Player I chooses
N ′ ∩ {nk−1 + 1, nk−1 + 2, . . .}, where nk−1 was the choice of Player II at step k − 1.

The second part can be interpreted as follows. If for all N ∈ [N]ω there is an M so that
Player II has a winning strategy for the (A,M)-game, then for any N ∈ [N]ω Player II can
find an M ∈ [N]ω so that in the (A,M)-game he can each step choose any element out of
the set Player I suggests, and win the game.
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Proof of Corollary 1.3.6. (a) follows immediately from Theorem 1.3.4 and above mentioned
remark.
(b) can be deduced as follows:

∀N ∈ [N]ω ∃M ∈ [N ]ω WII(A,M) =⇒ ∀N ∈ [N]ω ∃M ∈ [N ]ω Ac ∩ [M ]ω 6= ∅
⇐⇒ ¬

(
∃N ∈ [N]ω [N ]ω ⊂ A

)
=⇒ ¬

(
∃N ∈ [N]ω ∀M ∈ [N ]ω [M ]ω ∩ A 6= ∅

)
[Using Theorem 1.3.4]

⇐⇒ ∀N ∈ [N]ω ∃M ∈ [N ]ω [M ]ω ∩ A = ∅.

We now want to show that the conclusion of Theorem 1.3.3 holds for all Borel sets in
[N]ω.

Definition 1.3.7. We call a set A ⊂ [N]ω Ramsey if

(R) ∃M ∈ [N]ω [M ]ω ⊂ A or [M ]ω ∩ A = ∅.

We say that A is hereditary Ramsey

(RH) ∀N ∈ [N]ω ∀F ∈ [N]<ω ∃M ∈ [N ]ω [M ]ω ⊂ A(F ) or [M ]ω ∩ A(F ) = ∅.

Remark. If A is closed, N ∈ [N]ω and F ∈ [N]<ω then it follows that A(F ) ∩ [N ]ω is also
closed in [N]ω and therefore it follows from Theorem 1.3.4 that A is hereditary Ramsey.

Theorem 1.3.8. The set of all subsets of [N]ω which are hereditary Ramsey forms a σ
algebra. In particular, using above remark, all Borel sets on [N]ω are hereditary Ramsey.

Proof of Theorem 1.3.8. Let Rh be the subsets of [N]ω which are hereditary Ramsey. It is
clear that Rh is closed under taking complements. In order to show that it is closed under
finite intersections let A and B be in Rh and let N ∈ [N]ω and F ∈ [N]<ω. Then, by using
(RH) for A, there is an M ′ ∈ [N ]ω so that [M ′]ω ⊂ A(F ) orA(F ) ∩ [M ′]ω = ∅. Secondly
we apply (RH) to B and M ′ instead of N and find and M ∈ [M ′]ω so that [M ]ω ⊂ B(F ) or
B(F )∩[M ]ω = ∅. Note that M still satisfies the same alternative with respect to A(F ) as M ′

did. If M satisfies the first alternative with respect to A(F ) as well as B(F ) then, of course
[M ]ω ⊂ A(F )∩B(F ) = (A∩B)(F ). In all the other cases we deduce [M ]ω∩(A∩B)(F ) = ∅.
This shows that Rh is an algebra and we deduce that in particular all open sets in [N]ω are
hereditary Ramsey.

Therefore it is left to show that Rh is closed under taking countable intersections.
Assume An ∈ Rh, for n ∈ N, and let F ∈ [N]<ω and N ∈ [N]ω. We need to show that

there is an M ∈ [N ]ω so that [M ]ω ⊂
⋂
n∈NAn(F ) or [M ]ω ∩

⋂
n∈NAn(F ) = ∅. We can

assume that A1 ⊃ A2 . . ., otherwise replace Ai by
⋂
j≤iAj . We also can assume that F = ∅,

other wise replace Ai by Ai(F ).
Using our assumption that An ∈ Rh we can choose by induction k1 < k2 < . . . and

infinite sets N = L0 ⊃ L1 ⊃ L2 ⊃ . . . so that for all n ∈ N, kn = minLn−1

∀F ⊂{k1, k2, . . . kn} either [Ln]ω ⊂ An(F ) or [Ln]ω ∩ An(F ) = ∅.
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Define K = {k1, k2, . . .}. Since the An’s are decreasing we deduce that for each
F ∈ [K]<ω, one and only one of the following alternatives can hold (let i ∈ N so that
ki = maxF ):

Either: (A1) ∀n≥ i [Ln]ω ⊂ An(F )

Or: (A2) ∃n(F )≥ i ∀n≥n(F ) [Ln]ω ∩ An(F ) = ∅.

We pass to a further subsequence L = {k`1 , k`2 , . . .} of K so that the following holds:

(1.6) ∀n∈N `n+1 ≥ 1 + max
{
n(F ) : F ⊂ {k`1 , k`2 , . . . , k`n}, F is (A2)

}
We define F to be all F ∈ [L]<ω for which (A1) holds and put

B =
⋃

F∈[L]<ω\F

{F ∪M : M ∈ [N]ω with minN > maxF}.

B is open in [N]ω and therefore we can choose an M ∈ [L]ω so that either [M ]ω ⊂ B or
[M ]ω ∩ B = ∅.

In the first case we can write any M ′ ∈ [M ]ω as

M ′ = {ki(1), ki(2), . . .}, with i(1) < i(2) < i(3) . . . , in {`1, `2, . . .}

and since M ′ ∈ B we find an initial segment F of M ′, i.e. either F = ∅ or F =
{ki(1), ki(2), . . . , ki(n)} for some n ∈ N, so that F 6∈ F and, thus, by (1.6) [Li(n+1)−1]ω ∩
Ai(n+1)−1(F ) = ∅ which implies (recall that M ′ \ F ∈ [Li(n+1)−1]) that M ′ 6∈

⋂
nAn. Since

M ′ ∈ [M ]ω was arbitrary we deduce that [M ]ω ∩
⋂
nAn = ∅.

In the second case, let M ′ ∈ [M ]ω and write again M ′ as

M ′ = {ki(1), ki(2), . . .}, with i(1) < i(2) < i(3) . . . in {`1, `2, . . .}.

Let n ∈ N be arbitrary. We want to show that M ′ ∈ An. In order to do so choose j ∈ N
minimal so that i(j) > n, and let F = {ki(1), ki(2), . . . , ki(j−1)} (F could be empty). Since
M ′ 6∈ B every initial segment of M ′ has to be in F , in particular F ∈ F , which implies that
M ′ \ F ∈ [Ln]ω ⊂ An(F ), and thus M ′ ∈ An. Since M ′ ∈ [M ]ω and n ∈ N were arbitrary
we deduce that [M ]ω ⊂

⋂
An.

Remark. An example by Dan Freeman shows that the set R of subsets of [N]ω which are
Ramsey is not closed under taking finitely many intersections:
Let A ⊂ [N]ω which is not Ramsey (in Example we will show that such an A exists). Then
take: B1 = [2N]ω ∪ A and B2 = [2N + 1]ω ∪ A, then clearly B1 and B2 are Ramsey, but
A = B1 ∩ B2 is not.

The Author of these notes does not no whether or not the set of all A which satisfies
the following weak hereditary Ramsey property (RWH) is a σ-algebra. A is said to be weak
hereditary Ramsey if

(RWH) ∀N ∈ [N]ω ∃M ∈ [M ]ω [M ]ω ⊂ A or [M ]ω ∩ A = ∅.
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The next example shows that some conditions on A ⊂ [N]ω are needed in order to derive
the conclusion in Ramsey’s Theorem for infinite sets. We will need tranfinite recursion to do
so. We denote the cardinal number of the continuum by ωc and we consider on ωc an order
< which has the property that for α ∈ ωc the set {β < α} is of strictly smaller cardinality
than ωc. Often instead of α ∈ ωc we write α < ωc Simply extend the wellorder of ωc to
ωc ∪ {ωc} and put and exten the well order onto ωc ∪ {ωc} by demanding that α < ωc for
all α ∈ ωc.

Remark. Let S be any set and let α be the cardinality of S. Then one can think of a well
ordering of S as being a bijective map α → S, or equivalently as a family (sβ)β<α with
sβ 6= sγ for β < γ < α, and S = {sβ : β < α}.

Example 1.3.9. Let (Mα)α<ωc be a well-ordering of [N]ω. By transfinite induction we will

choose for each α < ωc a partition of Mα into to sets M
(1)
α and M

(2)
α so that

M (1)
α ,M (2)

α 6∈ {M (1)
β ,M

(2)
β : β < α}.

Indeed, assuming we have chosen M
(1)
β and M

(2)
β for all β < α, it follows that the

cardinality of {M (1)
β ,M

(2)
β : β < α} is strictly less than ωc, while the cardinality of all

partitions of Mα is ωc.
Then we let

A := {M (1)
α : α < ωc}.

Let M ∈ [N]ω, say M = Mα, α < ωc. Since, by choice, M
(2)
α 6∈ A it follows that

[M ]ω 6⊂ A. Since M
(1)
α ∈ A it also follows that [M ]ω ∩ A 6= ∅.



Chapter 2

Application of Ramsey’s theorem
to Banach spaces

2.1 Bases of Banach spaces

Convention: All of our Banach spaces are considered to be vector spaces over R.

Notation. If X is a Banach space with norm ‖ · ‖.

BX = {x ∈ X : ‖x‖ ≤ 1}unit ball of X

SX = {x ∈ X : ‖x‖ = 1}sphere of X

X∗ = {f : X → R : f is linear and bounded}dual space of X

For A ⊂ X we denote the linear span of A by span(A) and the closed linear span by span(A).

If Y is a closed linear subspace of a Banach space X we write Y ↪→ X.

Special spaces:

For 1 ≤ p <∞

`p =
{
x = (ξ) ⊂ R :

∞∑
i=1

|ξ|p <∞
}

with ‖x‖p =
( ∞∑
i=1

|ξ|p
)1/p

,

`∞ =
{
x = (ξ) ⊂ R : ‖x‖∞ = sup

n∈N
|ξn|
}
,

c0 =
{
x = (ξ) ∈ `∞ : lim

n→∞
ξn = 0

}
,

For a measure space (ω,Σ, µ)

Lp(µ) =
{
f : Ω→ R measurable |

∫
|f |pdµ <∞

}
with ‖f‖p =

(∫
|f |pdµ

)1/p
,

L∞(µ) =
{
f : Ω→ R mble |||f ||ess sup = sup{r > 0 : µ({|f | ≥ r}) > 0} <∞

}
,

For a compact space K

C(K) =
{
f : K → R continuous

}
, with ||f ||∞ = sup

ξ∈K
|f(ξ)|.

17
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Definition 2.1.1. (Schauder basis)
Let X be a Banach space over . A sequence (xi) is called (Schauder) basis of X if for every
x ∈ X there is a unique sequence (ai) ⊂ R so that x =

∑∞
i=1 aixi.

We call (xi) ⊂ X basic sequence if it is a basis of its closed linear span.

Proposition 2.1.2. For (xi) ⊂ X be a Schauder basis. Define for n ∈ N

x∗n : X → R, x =
∑

aixi 7→ ai

(we call the x∗n the coordinate functionals with respect to (xn)). and define

Pn : X → X, x 7→
( n∑
i=1

xi ⊗ x∗i
)

(x) =
n∑
i=1

xi ⊗ x∗i (x).

Then it follows

a) x∗n ∈ X∗ for all n ∈ N.

b) Cb = supn∈N ‖Pn‖ <∞.

C is called the basis constant of (xi). We call (xn) a monotone basis if C = 1.

Sketch of Proof: For x =
∑

i∈N aixi ∈ X define

|||x||| = sup
n∈N

∥∥∥ n∑
i=1

aixi

∥∥∥.
Using the Principle of Uniform Boundedness it follows that ||| · ||| is an equivalent norm on
X.

We the observe that

sup
n∈N
‖Pn‖ <∞ = sup

x∈BX

|||x||| <∞.

The converse of Proposition 2.1.2:

Proposition 2.1.3. Assume that (xi) ⊂ X is linear independent an let fi the linear (but
not necessarily bounded) coordinate functionals defined on the vector space span(xi : i ∈ N).
For n ∈ N put

Pn =

n∑
i=1

xi ⊗ fi : span(xi : i ∈ N)→ span(xi : i ≤ n), x 7→
n∑
i=1

xi ⊗ fi(x).

If Pn is a bounded operator for every n and C = sup ‖Pn‖ < ∞, then (xi) is a basic
sequence.

Remark. Enflo [En] showed that there are separable infinite dimensional Banach spaces
without a Schauder basis nevertheless we the following result is easy to show



2.1. BASES OF BANACH SPACES 19

Proposition 2.1.4. If X is an infinite dimensional Banach space. Then X contains a basic
sequence (xn) and if (yn) is a given normalized weakly null sequence (xn) can be chosen to
be a subsequence of a given weakly null sequence.

Moreover, in both cases, (xn) can be chosen so that the basis constant is arbitrary close
to 1.

Definition 2.1.5. We denote the vector space of all sequences (ai) ⊂ which eventually
vanish by c00. We denote its usual unit vector space-basis by (ei),i.e.

ei = (0, 0, . . . , 0︸ ︷︷ ︸
(i−1) times

, 1, 0, 0, . . .).

For x =
∑
aiei ∈ c00 we call

supp(x) = {i ∈ N : ai 6= 0}

the support of x.

Remark. Assume that (xi) is a basis of X then it is easy to see that its normalization (ei)
with ei = xi/‖xi‖, for i ∈ N, is also a basis. Let e∗i the coordinate functionals to (ei).

For x =
∑
aiei ∈ X it follows that limi→∞ ai = 0 an thus we can think of X being the

completion of the vector space c00 under some norm ‖ · ‖.

Definition 2.1.6. Let (xn) be a basis of a Banach space X. We call

Cp = sup
m≤n
‖Pn − Pm‖ = sup

m≤n

{∥∥∥ n∑
i=m+1

aixi

∥∥∥ : x =

∞∑
i=1

aixi ∈ BX
}
,

the projection constant, and note that Cp ≤ 2Cb. We call (xn) bimonotone if Cp = 1.
Note that by putting

|||x||| = sup
m≤n
‖(Pn − Pm)(x)‖,

we can always renorm X equivalently so that (xi) becomes a a bimonotone basis.

Definition 2.1.7. Let (xn) and (yn) be two basic sequences and C ≥ 1. We say that (xn)
C-dominates (yn) or that (yn) is C-dominated by (xn) if∥∥∥∑ aiyi

∥∥∥ ≤ C∥∥∥∑ aixi

∥∥∥ for all (ai) ∈ c00.

We say that (xn) and (yn) are C-equivalent if (xn) C-dominates (yn) and (yn) C-
dominates (xn) i.e. if

1

C

∥∥∥∑ aixi

∥∥∥ ≤ ∥∥∥∑ aiyi

∥∥∥ ≤ C∥∥∥∑ aixi

∥∥∥ for all (ai) ∈ c00.

Proposition 2.1.8. For a sequence (zn) in a Banach space Z and z ∈ Z the following are
equivalent:

a) There is a z ∈ Z so that for all ε > 0 there is a finite F ⊂ N so that ‖z−
∑

n∈F ′ zn‖ < ε
whenever F ′ ⊂ N is finite with F ⊂ F ′.
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b) There is a z so that for every bijection π : N → N the series
∑∞

i=1 xπ(i) converges to
z ∈ Z.

c) For every (δi) ∈ {−1, 1}ω the series
∑∞

i=1 δixi converges.

d) For every N ⊂ [N ]ω the series
∑

i∈N δixi converges.

Definition 2.1.9. A basic sequence (xn) is called unconditional basis if for all x =
∑∞

i=1 aixi
the series is unconditionally converging.

Proposition 2.1.10. Let (xn) be a linearly independent sequence in a Banach space X and
(x∗n) its coordinate functionals defined on span(xi). For A ⊂ N finite define:

PA : span(xi : i ∈ N)→ span(xi : i ∈ A) 3
∑
i∈N

aixi 7→
∑
i∈A

aixi.

For σ = (σi)i ∈ N ∈ {−1, 1}ω define:

Tσ : span(xi : i ∈ N)→ span(xi : i ∈ N) 3
∑
i∈N

aixi 7→
∑
i∈N

σiaixi.

The following are equivalent:

a) (xn) is an unconditional basic sequence,

b) Cu = supσ∈=(σi)i∈N∈{−1,1}ω ‖Tσ‖ <∞

c) C̃u = supA∈[N ]<ω ‖PA‖ = supA∈[N ]<ω supx∈span(xi:i∈N)‖x‖≤1 ‖PA(x)‖ <∞

We say that a basic sequence is c-unconditional if Cu ≤ c and suppression c-unconditional
if C̃u ≤ c

Exercise 2.1.11. Show that always C̃u ≤ Cu ≤ 2C̃u.

Definition 2.1.12. Let (xn) be a basic sequence. A Block basis of (xn) is a sequence
(yn) ⊂ X \ {0} of the form:

yn =

kn∑
i=kn−1+1

aixi, with 0 = k0 < k1 < k2 < . . . and ai ∈ R, for i = 1, 2, . . ..

A subspace spanned by a block basis is called block subspace.

Remark. Note that every normalized block basis of the unit vector basis of `p, 1 ≤ p <∞
or c0 is isometrically equivalent to the unit vector basis of `p.

M. Zippin [Z2] proved that a normalized basic sequence (xn) which is equivalent to all
of its normalized block bases must be equivalent to the unit vector basis of `p, for some
1 ≤ p <∞, or c0

Exercise 2.1.13. Show that block bases of bases are basic sequences.
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Proposition 2.1.14. Let X be an infinite dimensional Banach space with a basis (xn) and
Y an infinite dimensional subspace. Given any seqeunce (εn) ⊂ (0, 1) there is a normalized
block sequence (yn) of (xn) and a sequence (ỹn) ⊂ Y of so that ‖yn − ỹn‖ < εn for any
n ∈ N.

Exercise 2.1.15. If (ei) is a basis of X and the sequence of (e∗i ) its coordinate functionals
is also a basic sequence (but not necessarily a basis of X∗ which could for example be non
separable) and (e∗i ) is unconditional if and only if (ei) is.

Definition 2.1.16. A basic sequence (ei) is called shrinking if the sequence of its coordinate
functionals (e∗i ) is a basis of X∗, and (ei) is called boundedly complete if the series

∑
aiei

converges whenever supn∈N ‖
∑n

i=1 ei‖.

The proofs of the following results on shrinking and boundedly complete bases can be
found in [FHHMPZ]

Proposition 2.1.17. For basis (ei) of X the following are equivalent

a) (ei) is shrinking

b) For any x∗ ∈ X∗ it follows that limn→∞ ‖x∗|span(ei:i≥n‖ = 0.

Proposition 2.1.18. For basis (ei) of X and (e∗i ) be the coordinate functionals. Then
following are equivalent

a) (ei) is boundedly complete

b) Let y = span(e∗i : i ∈ N) then the (canonical) map

T : X 7→ Y ∗, x 7→
[
y =

∑
bie
∗
i 7→

∑
bie
∗
i (x)

]
,

is an isometry onto Y ∗. In particular X is a dual space.

Theorem 2.1.19. ( [Ja2], see also [FHHMPZ, Theorem 6.11]) Let X be a Banach space
with basis (ei). Then X is reflexive if and only if (ei) is shrinking and boundedly complete.

Remark. Note that the unit vector basis of c0 is shrinking but not bouncecly complete,
and that the unit vector basis of `1 is boundedly complete but not shrinking.

Definition 2.1.20. Let X be a Banach space. A closed Y ↪→ X is called cimplemented in

X and we write Y
c
↪→ X if there is a bounded projection from X onto Y , i.e. a bounded

map P : X → Y with P (y) = y for all y ∈ Y .

Remark. If (ei) is basis of a Banch space and Y be a subspace which is spanned by a
subsequence of (ei) then Y does not need to be complemented in X (see Exercise 2.1.22
below). Nevertheless, if (ei) unconditional then it is easy to see that all closed subspaces
spanned by subsequences are complemented.

Exercise 2.1.21. Show that every finite dimensional and every cofinite dimensional closed
subspace of a Banach space X is complemented in X.
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Exercise 2.1.22. Let J be James’ space, and (ei) its standard shrinking basis (c.f [FHHMPZ,
Page 185]) Then Y = span(ei : i ∈ N, odd) is not complemented in J .

Exercise 2.1.23. For a closed subspace Y of X the following statements are equivalent.

a) Y
c
↪→ X

b) There is a closed subspace Z of X so that X is linearly isomorphic to the topological
sum

Y ⊕ Z = {(y, z) : y ∈ Y, z ∈ Z}

with the product topology (which is induced by a norm, for example by ‖(y, z)‖ :=
‖y‖+ ‖z‖).
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2.2 Spreading models

The theory of spreading models is due to Brunel and Sucheston in the 70’s [BS]. A conse-
quence is that a normalized weakly null sequence admits a subsequence which is “asymp-
totically unconditional.”

Let us first state a Corollary of Theorem 1.1.1 which is often called the Ramsey Theorem
for Analysts. It shows that Ramsey’s theorem can be seen as a generalization of the fact
that in a compact metrizable space every sequence has a convergent subsequence.

Theorem 2.2.1. Let (M,d) be a compact metric space, k ∈ N,
For any map F : [N]k →M and any sequence (εj) there is an N = {n1, n2, . . .} ∈ [N]ω,

with n1 < n2 < . . ., and an m0 ∈M so that

d(F (ni1 , ni2 , . . . nik),m0) < εj whenever j ≤ i1 < i2 < . . . ik.

In particular,
lim
i1→∞

lim
i2→∞

. . . lim
ik→∞

F (i1, i2, . . . ik) = m0.

Proof. For j ∈ N choose a finite covering (U
(j)
` )

Lj

`=1 of M so that, the diameter of each

U
(j)
` does not exceed εj/2, and so that for any j ∈ N, j ≥ 2, and 1 ≤ ` ≤ Lj there is an

1 ≤ `′ ≤ Lj−1 so that U
(j)
` ⊂ U (j−1)

`′ .
Choose a sequence N = N0 ⊃ N1 ⊃ N2 . . . by induction as follows. If j ∈ N and Nj−1

has been chosen, let (ξj` )
L
`=1 be finite εj-net of M , then apply Corollary 1.1.3 to the sets

A` ⊂ [Nj−1]ω, where

A` = {(n1, n2, . . . nk) ⊂ [Nj−1]k : F (n1, n2, . . . nk) ∈ U
(j)
` , for ` = 1, 2 . . . L,

in order to get an infinite Nj ⊂ Nj−1 and an `j so that [Nj ]
k ⊂ A`j .

It follows that m0 ∈
⋂
j U

(j)
`j

is unique and that the claim follows if we let N be a
diagonal sequence of the Nj ’s.

Theorem 2.2.2. Let (xn) be a normalized basic sequence in X and let εn ↓ 0. There
exists a subsequence (yn) of (xn) and a normalized basis (en) for a Banach space E with
the following property. If n ∈ N and (ai)

n
i=1 ∈ [−1, 1]n then

(2.1)

∣∣∣∣∣∥∥∥
n∑
i=1

aiyki

∥∥∥− ∥∥∥ n∑
i=1

aiei

∥∥∥∣∣∣∣∣ < εn whenever n ≤ k1 < · · · < kn

Exercise 2.2.3. Proof Theorem 2.2.2
Hint: Use the fact that

Mn =
{
‖ · ‖ : Rn → [0,∞) : ‖ · ‖ is a norm on Rn and ‖e1‖ = ‖e2‖ = . . . ‖en‖ = 1

}
,

with the metric
dn(‖ · ‖1, ‖ · ‖2) = sup

ξ∈[−1,1]n

∣∣∣‖ξ‖1 − ‖ξ‖2∣∣∣,
is a compact space.
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Definition 2.2.4. Let (xn) be a basic normalized sequence in Banach space X. A Banach
space E with a basis (ei) and norm denoted by ‖ · ‖E is called the spreading model of (xn)
if for every k ∈ N and every (ai)

k
i=1 ∈ Rk

∥∥∥ k∑
i=1

aiei

∥∥∥
E

= lim
n1→∞

lim
n2→∞

. . . lim
nk→∞

∥∥∥ k∑
i=1

aixni

∥∥∥.
Remark. Note that Theorem 2.2.2 implies that every basic sequence in a Banach space has
a subsequence which has a spreading model, and that, moreover, one can pass to a further
subsequence for which the stronger statement, more quantitative, (2.1) holds.

Theorem 2.2.5. Assume the space E with a normalized basis (ei) is the spreading model
of a normalized weakly null sequence (xn) in the Banach space X.

Then (ei) is suppression-1-unconditional.

We will first prove the following

Lemma 2.2.6. Let (xi) be a weakly null sequence.
Then for any ε > 0, m ∈ N there exists an n ∈ N, n > m so that

(2.2) ∀x∗∈BX∗ ∃i∈ (m,n] |x∗(xi)| < ε.

Proof. Assume our claim were not true then we could choose for any n ∈ N an x∗n ∈ BX∗
so that |x∗n(xi)| ≥ ε for all i ∈ (m,n]. We can pass to a subsequence x∗nk

which converges
in w∗ to some x∗ ∈ BX∗ . This means that for all n ∈ (m,∞)

|x∗(xn)| = lim
k→∞

|x∗nk
(xn)| ≥ ε.

But this contradicts the assumption that (xn) is weakly null.

Iterating Lemma 2.2.6 yields

Corollary 2.2.7. If (xn) is a weakly null sequence in X and (ε`) ⊂ (0, 1) there is an
increasing subsequence (n`) ⊂ N so that for all for all ` (put n0 = 0)

(2.3) ∀x∗∈BX∗ ∃i∈ (n`−1, n`] |x∗(xi)| < ε`.

Proof of Theorem ??. Let (εn) ⊂ (0, 1) decrease to 0. According to Theorem 2.2.2 we can
assume, after passing to an appropriate subsequence of (xn), that

(2.4)

∣∣∣∣∣∥∥∥
k∑
i=1

aixni

∥∥∥− ∥∥∥ k∑
i=1

aiei

∥∥∥∣∣∣∣∣ < εk

whenever k ∈ N, (ai) ⊂ [−1, 1]n and k ≤ n1 < n2 < nk.
Let k ∈ N, (ai)

k
i=1 ∈ [−1, 1], and i0 ∈ {1, 2 . . . n}. It is enough to show that

∥∥∥ k∑
i=1,i 6=i0

aiei

∥∥∥ ≤ ∥∥∥ k∑
i=1

aiei

∥∥∥.
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Choose (ni) like in Corollary 2.2.7, then we deduce for any m ∈ N

∥∥∥ k∑
i=1,i 6=i0

aiei

∥∥∥ ≤ εm +
∥∥∥ k∑
i=1,i 6=i0

aix`i

∥∥∥
[By (2.4)]

where `i ∈ (nm+i−1, nm+i] for all i ∈ {1, 2, . . . k} \ {i0}

= εm +

k∑
i=1,i 6=i0

aix
∗(x`i)

[For appropriate x∗ ∈ SX∗ by Hahn Banach]

≤ 2εm +

k∑
i=1

aix
∗(x`i)

[For appropriate `i0 ∈ (nm+i0−1, nm+i0 ], by Corollary 2.2.7 ]

≤ 2εm +
∥∥∥ k∑
i=1

aix`i

∥∥∥
≤ 3εm +

∥∥∥ k∑
i=1

aiei

∥∥∥
[By (2.4)]

The following example shows that the spreading model can be quite different from the
underlying basis.

Example 2.2.8. The Schreier space
Define first the Schreier sets S1 ⊂ [N]<ω as

S1 =
{
E ∈ [N]ω : #E ≤ minE

}
.

For example {3, 7, 1000} ∈ S1 but {3, 7, 17, 20} 6∈ S1. Then define for x = (xi) ∈ c00:

‖x‖S = max
E∈S1

∑
i∈E
|xi|.

Let S be the completion of c00 under ‖ · ‖S .
It follows for any k ∈ N and any (ai)

k
i=1 that

lim
n1→∞

lim
n2→∞

. . . lim
nk→∞

∥∥∥ k∑
i=1

aieni

∥∥∥
S

=
k∑
i=1

|ai|.

Thus, the spreading model of (ei) in S is the `1 unit vector basis.
On the other hand S is hereditarily c0 (see next exercise).
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Exercise 2.2.9. Show that every block subspace of S has a further block which is equivalent
to the c0 unit vector basis.

Hint: let (xi) be a normalized block in S, say:

xi =

ni∑
j=ni−1+1

a
(i)
j ej , with 0 = n0 < n1 < n2 < . . . .

Then we distinguish between two cases:
If we have

lim inf
i→∞

‖xi‖∞ = lim inf
i→∞

max
j∈(ni−1,ni]

|a(i)
j | = 0.

then one can find a subsequence which is (1 + ε)-equivalent to the c0-unit basis for any
ε > 0.

Other wise one can find a normalized block of xi for which the first case applies.

Remark. Rosenthal’s `1 Theorem (Theorem 2.3.1 below) yields that every X contains
either an isomorph of `1 or a normalized weakly null sequence. Thus every X always
admits an unconditional spreading model. There are a number of known results and open
problems concerning spreading models. They take on one of two forms. Given X, perhaps
with certain properties, what can one say about the class of spreading models S(X) of X.
Or given specific information about S(X) what can one say about X? For example it can be
shown that X is not reflexive if X admits a spreading model that is not unconditional. On
the other hand care must be taken since there exists a reflexive space T (Tsirelson’s space)
all of whose spreading models are isomorphic to `1. Other known results are as follows. If
X ⊆ Lp (1 < p < ∞) and all spreading models of X are isomorphic to `p then X embeds
into `p. There exists a space X so that no spreading model contains an isomorph of c0 or
`p (1 ≤ p < ∞). It is not known if for every X there exists n and a chain of successive
spreading models X̃1, . . . , X̃n with X̃n isomorphic to c0 or `p for some 1 ≤ p < ∞. In
[S2] it was shown that if S(X) admits two quite different spreading models of weakly null
sequences then one can construct a “nontrivial” operator T : W ⊆ X → X (T 6= λI + K,
where K is a compact operator, and I the inclusion operator). Recent results and more
questions on spreading models can be found in [AOST].

Let us meantion some interesting problems. We denote the set of all spreading models
generated by normalized weakly null sequences in X by SPw(X). We identify sequences in
SPw(X) which are equivalent.

We say SPw(X) is stabilized if SPw(Y ) = SPw(X) for all infinite-dimensional subspaces
Y of X.

Question. Does every reflexive Banach space X have an infinite-dimensional subspace Z
for which SPw(Z) is stabilized?

It is easy to see that if SPw(X) is countable, then the answer is positive. It is also
not hard to see that one can always stabilize with respect to cardinality, to wit, there is an
infinite-dimensional subspace Z such that cardSPw(Z) = cardSPw(Y ) for every infinite-
dimensional subspace Y of Z. But very little is known about which values cardSPw(Z) can
assume in this case.
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Question. Assume that SPw(X) is stabilized with respect to cardinality. What are the
possible values for cardSPw(X) ?

In the case in which cardSPw(X) = 1 the following question is open.

Question. Assume that cardSPw(X) = 1, i.e. that all spreading models are equivalent.
Does it follow that the spreading models are equivalent to the `p unit-vector basis for some
p, 1 ≤ p <∞, or to the unit basis in c0 ?

Remark. In [AOST] it shown show that the last question has a positive answer provided
there is a constant C ≥ 1 so that all spreading models are C-equivalent.

Of course cardSPw(`p) = 1. For the space S constructed by the author in [S1] we
find that cardSPw(S) = ωc, the cardinality of the continuum. No other possible values for
cardSPw(X) are known (assuming of course that cardSPw(X) is stabilized). On the other
hand, it is not known if any cardinality between 1 and ωc can be excluded from being the
stabilized cardinality of SPw(X) for some reflexive space X. For example, it is not known if
there is a reflexive space X for which SPw(X) is stabilized and for which cardSPw(X) = 2.

We finish the section with an example by Maurey and Rosenthal [MR] exhibits a weakly
null basic sequence none of whose subsequences are unconditional. It is one of the building
stones towards constructing a Banach space which does not have a subspace with uncondi-
tional basis Gowers and Maurey [GM1].

We start with an exercise

Exercise 2.2.10. In c0 let sn =
∑n

i=1 ei = (1, 1, . . . , 1, 0, 0, . . .). Show that (sn) is a
monotone basis for c0 which is conditional (i.e., not unconditional).

(sn) is called the summing basis for c0.

Example 2.2.11. [MR] We will construct a certain family F ⊂ c0 of real sequences and
define a norm ‖ · ‖F on c00 by setting

‖x‖F = sup{|〈f, x〉| : f ∈ F} whenever x ∈ c00,

where we put for f = (fi) ∈ c0 and x = (xi) ∈ c00

〈f, x〉 =
∑
i

xifi.

We then let XF be the completion of (c00, ‖ · ‖F ). Note, for example, that `p could be
defined this way by taking F = B`q ∩ c00 where 1

p + 1
q = 1.

If E,F ∈ [N]<ω we write “E < F” if maxE < minF . Let (mi) be a certain lacunary
subsequence of N (we will specify what we mean later), with m1 = 1. Let

~F =
{

(Fi)
n
1 : n ∈ N, F1 < F2 < . . . Fn and Fi ∈ [N]<ω for i ∈ N

}
Let φ : ~F → {mi}∞i=1 be one-to-one (φ is called a coding). We define

F =
{
f =

∞∑
i=1

1Ei√
#Ei

: E1 < E2 < . . . ,#E1 = 1 and #Ei+1 = φ(E1, . . . , Ei)
}



28 CHAPTER 2. APPLICATION OF RAMSEY’S THEOREM

Note that if #E = mi, #F = mj and, say i < j, then〈
1E√
#E

,
1F√
#F

〉
≤ mi√

mi
√
mj

=

√
mi√
mj

< εj ,

where εj ↓ 0 rapidly can be chosen in advance, which determines how (mi) is chosen.

Claim 1: (en) is a normalized monotone basis for XF .
(Exercise)

Claim 2: (en) is weakly null.
We think of F being a subset of the compact space [0, 1]ω and can therefore think of X
being (isometrically) a subspace of C(K) where K = F .

Then note that in fact

(2.5) K =
{

1[1,n]f : n ∈ N and f ∈ F
}
∪ F .

Indeed, let fk ∈ F for k ∈ N, say

fk =
∞∑
i=1

1
E

(k)
i√

#E
(k)
i

.

We can assume also that fk 6= fk′ , for k 6= k′ in N.

By passing to a subsequence, we can assume that there is an ` ≥ 1 so that

E
(k)
i = E

(k′)
i =: Ei whenever i < `, and k, k′ ∈ N

E
(k)
` 6= E

(k′)
` whenever k 6= k′ are N

Secondly we can, after passing to a subsequence assume that E
(k)
` an be written as a union

E
(k)
` = A ∪ Ẽ(k)

` , with min Ẽ
(k)
` →∞.

and, thus, fn converges pointwise to

f =
`−1∑
i=1

1Ei√
#Ei

+
1A√

φ(E1, E2, . . . E`−1)
.

which shows (2.5).

In order to finish the proof of claim 1, we simply observe that for any f ∈ K we have
en(f)→ 0 for n→∞ and recall the fact that in a C(K)-space, where K a compact, weak
convergence and point wise convergence of sequences are equivalent.

Claim 3: Every subsequence of (ei) has a block which is equivalent to the summing basis
of c0.

Let M ∈ [N]ω. Then there exists (Ei) so that f =
∑∞

1 (1Ei/
√
|Ei| ) ∈ F for all and

suppf ⊆M .

We claim that (1Ei/
√
|Ei| )∞i=1 ⊆ XF is equivalent to the summing basis.
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Indeed, it suffices to show that for (ai)
m
1 ⊆ R

sup
n≤m

∣∣∣ n∑
1

ai

∣∣∣ ≤ ∥∥∥ m∑
1

ai
1Ei√
|Ei|

∥∥∥ ≤ 3 sup
n≤m

∣∣∣ n∑
1

ai

∣∣∣ .
The left hand estimate is easy. To see the right hand estimate let f =

∑∞
1

1Fi√
|Fi|
∈ F . Let

i0 = max{i : Fi = Ei}. Then

∣∣∣〈f, m∑
i=1

ai
1Ei√
|Ei|

〉∣∣∣ ≤ ∣∣∣ i0∑
i=1

ai

∣∣∣+
∣∣∣〈 1Fi0+1√

|Fi0+1|
,

m∑
i=i0+1

ai
1Ei√
|Ei|

〉∣∣∣
+

∞∑
j=i0+2

m∑
i=i0+1

|ai|

〈
1Fj√
|Fj |

,
1Ei√
|Ei|

〉
.

We estimate the second term as follows.∣∣∣〈 1Fi0+1√
|Fi0+1|

,

m∑
1

ai
1Ei√
|Ei|

〉∣∣∣
≤ |ai0+1|

∣∣∣〈 1Fi0+1√
|Fi0+1|

,
1Ei0+1√
|Ei0+1|

〉∣∣∣+
∣∣∣〈 1Fi0+1√

|Fi0+1|
,

m∑
i=i0+2

ai
1Ei√
|Ei|

〉∣∣∣
≤ |ai0+1|+

∑
i=i0+2

|ai|εi.

The third term can be esitmated as follows

∞∑
j=i0+2

m∑
i=i0+1

|ai|

〈
1Fj√
|Fj |

,
1Ei√
|Ei|

〉

≤
∞∑

j=i0+1

m∑
i=i0+1

|ai|εmax(i,j)

[Note that for i ∈ N #Ei = mi′ for some i′ ≥ i. Similar observation holds for #Fj .

Also note that #Ei 6= #Fj whenever i = i0 + 1, 2, . . . and j = i0 + 2, i0 + 3 . . .]

We deduce the claim, assuming we have chosen εi fast enough decreasing to 0.
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2.3 Rosenthal’s `1 theorem

One of the prettiest theorems in Banach space theory, Rosenthal’s `1 theorem [Ro], can also
be proved using Ramsey theory at a certain point. Let us place the theorem in context.
In the search for a “nice” infinite dimensional subspace of a given Banach space X, one
conjecture was: Every Banach space X contains a subspace Y which is either reflexive or
isomorphic to c0 or to `1. (This was ultimately shown to be false by W.T. Gowers [Go1].)
Now if X is not reflexive then BX is not weakly compact and so by the Eberlein-Smulian
theorem there exists (xn) ⊆ SX with no weakly convergent subsequence. This splits into
two cases:

(I) (xn) has no weak Cauchy subsequence: for all (yn) ⊆ (xn) there exists x∗ ∈ X∗ with
(x∗(yn))n being divergent.

(II) (xn) has a weak Cauchy subsequence (yn) but there is no y ∈ X so that x∗(yn)→ x∗(y)
for all x∗ (X is not weakly sequentially complete).

H. Rosenthal proved that (I) yields `1 ↪→ X.

Theorem 2.3.1. [Ro] Let (xn) be normalized with no weak Cauchy subsequence. Then
there exists (yn) ⊆ (xn) which is equivalent to the unit basis of `1.

Definition 2.3.2. A sequence of pairs of sets (An, Bn) is called Boolean independent if for
any finite and disjoint subsets I1 and I2 of N⋂

n∈I1

An ∩
⋂
n∈I2

Bn 6= ∅

The following Lemma is easy:

Lemma 2.3.3. Let S be a set and let fn : S → [−1, 1] and let An = {fn = 1}, Bn = {fn =
−1} then (An, Bn)∞n=1 are Boolean independent

Then ‖
∑k

1 aifi‖∞ =
∑k

1 |ai| for all k and (ai)
k
1 ⊆ R, i.e. fi) as sequence in `∞(S) is

isometrically equivalent to the `1-unit vector basis.

The following is an isomorphic version of Lemma 2.3.3.

Lemma 2.3.4. Let S be a set, fn : S → [−1, 1], r ∈ R, δ > 0, An = {fn > r + δ} and
Bn = {fn < r}. Assume that (An, Bn)∞n=1 are Boolean independent. Then (fn) ⊂ `∞(S) is
equivalent to the unit vector basis of `1.

Proof. Let (ai)
k
1 ⊆ R. It suffices to show that there exists s ∈ S with

|
k∑
1

aifi(s)| ≥
δ

2

k∑
1

|ai|.

Let I1 = {i : ai ≥ 0} and I2 = {i : ai < 0}. Let s1 ∈
⋂
I1
Ai∩

⋂
I2
Bi and s2 ∈

⋂
I2
Ai∩

⋂
I1
Bi.

then it follows that
k∑
i=1

ai(fi(s1)− fi(s2)) ≥ δ
k∑
i=1

|ai|,
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and, thus,

max
(∣∣∣ k∑

i=1

ai(fi(s1))
∣∣∣, ∣∣∣ k∑

i=1

ai(fi(s2))
∣∣∣) ≥ δ

2

k∑
i=1

|ai|.

[Note that by choice of s1 and s2 it follows that ai(fi(s1)− f(s2)) > |ai|δ]

Definition 2.3.5. A sequence of pairs of disjoint sets (An, Bn) is said to have no convergent
subsequence if for all M ∈ [N]ω there exists s ∈ S so that s belongs to infinitely many An’s,
n ∈M and to infinitely many Bn’s, n ∈M .

Lemma 2.3.6. Let An ∩Bn = ∅ , An, Bn ⊆ S, for n ∈ N and assume that (An, Bn) has no
convergent subsequence.

Then there is a subsequence of (An, Bn) which is Boolean independent.

Proof. Let

A =
{
L = (`i)

∞
i=1 ∈ [N]ω :

k⋂
i=1

A`2i−1
∩

k⋂
i=1

B`2i 6= ∅ for all k ∈ N}
}
.

Since

A =
⋂
k∈N

{
L = (`i)

∞
i=1 ∈ [N]ω

k⋂
i=1

A`2i−1
∩

k⋂
i=1

B`2i 6= ∅ for all k ∈ N with `2k < `
}
,

A is closed in [N]ω and therefore we can apply Ramsey’s Theorem 1.3.3. From the assump-
tion that (An, Bn) has no convergent subsequence it follows that there is an L ∈ [N]ω with
[L]ω ⊆ A. Finally take M = (`2, `4, `6, . . .).

Prove of Theorem 2.3.1. Let (xn) ⊂ BX have no w-convergent subsequence. Let S = BX∗

and regard xn as functions in L∞(S).
For r ∈ [−1, 1] δ > 0 and n ∈ N we put

An(r, δ) = {s ∈ S : xn(s) > r + δ} and Bn(r, δ) = {s ∈ S : xn(s) < r}

and claim that for some choice of r ∈ [−1, 1] and δ > 0 there is an infinite M so that
(Am(r, δ), Bm(r, δ))m∈M has no convergent subsequence. Indeed, if this were not true,
let (ri, δi)

∞
i=1 be dense in [−1, 1] × (0, 1] and inductively choose Mi+1 ∈ [Mi]

ω so that
(An(ri, δi), Bn(ri, δi))n∈Mi “converges” (every s belongs to at most finitely many of the
An’s or of the Bn’s). If M is a diagonal of the Mi’s then (xn)M is point wise convergent on
S.

The claim of the Theorem follows now by applying Lemmas 2.3.3, 2.3.4 and 2.3.6.
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2.4 Partial Unconditionality

Given a weakly null, normalized sequence in a Banach space X, can we pass to a subsequence
that is a a basic sequence and is in some sense close to being unconditional (recall that
Example 2.2.11 shows that not every weakly null sequence may have an unconditional
subsequence)?

There are various ways in which one can make this vague question precise, and in many
situations one has a positive answer. There are important cases, however, for which the
corresponding question is still open. In this section we want to present some of the known
results.

The following result of John Elton uses the idea of preserving the positive `1 mass,∑
I y
∗(yi)

+, on an arbitrary set I to obtain a weakened form of unconditionality.

Theorem 2.4.1. For each δ > 0 there exists K(δ) < ∞ with the following property.
Let (xn) be a normalized weakly null sequence in a Banach space. There exists a subse-
quence (yn) of (xn) such that if (ai)

∞
i=1 ⊆ [−1, 1] and I ⊆ {i : |ai| ≥ δ} then ‖

∑
I aiyi‖ ≤

K(δ)‖
∑

i aiyi‖.

Remark. It is an open problem whether or not K in Theorem 2.4.1 could be chosen
independly of δ > 0. At first sight this might seem like trying to prove that every weakly
null sequence has a subsequence which is unconditional (which is contradicted by Example
2.2.11). But note that we still would have to choose the subsequence (yn) depending on
the given δ. For example in [DKK] it was shown that K ∼ 3 if we assume that (xi) does
not have a spreading model which is equivalent to the c0-unit vector basis. More about this
problem as well as further partial answers can be found in [DOSZ].

Proof. We first note that we are trying to bound

inf
(yi)⊆(xi)

sup

{
‖
∑

I aiyi‖
‖
∑
aiyi‖

: |ai| ≤ 1 for all i and I ⊆ {i : |ai| ≥ δ}
}

independently of the original sequence (xi). Let x∗ ∈ BX∗ with

x∗(
∑
I

aiyi) = ‖
∑
I

aiyi‖

then split I into 4 sets I++, I+−, I−+, I−− where for example

I+− = {i ∈ I : ai > 0 and x∗(yi) ≤ 0}.

We see that for at least one of these sets, say I+−, we have |
∑

I+−
aix
∗(yi)| ≥ ‖

∑
I aiyi‖/4.

It follows (e.g. replace x∗ by −x∗ in this case) that we can find x∗ ∈ BX∗ so that∥∥∥∑
I

aiyi

∥∥∥ ≤ 4
∑
I

a+
i x
∗(yi)

+ = 4
∑
I++

aix
∗(yi)

(where b+ = b ∨ 0 for b ∈ R).
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Let us suppose that, given ε > 0, we can find (yn) ⊆ (xn) so that in this case there
exists y∗ ∈ BX∗ with

(2.6)
∑
I++

y∗(yi)
+ ≥

∑
i∈I++

x∗(yi)− ε and
∑

{i:i/∈I++ or y∗(yi)<0}

|y∗(yi)| ≤ ε
∑
I++

y∗(yi)
+.

Then we can easily derive our claim. Indeed, we then deduce that∥∥∥∑ aiyi

∥∥∥ ≥ y∗(∑ aiyi

)
≥ −ε

∑
I++

y∗(yi)
+ +

∑
I++

aiy
∗(yi)

+

≥ (δ − ε)
∑
I++

y∗(yi)
+

≥ (δ − ε)
∑
I++

x∗(yi)− δε

≥ (δ − ε)
C

∑
I++

aix
∗(yi)− δε

[where C is the projection constant of (yi)]

≥ (δ − ε)
C4

∥∥∥∑
i∈I

a− iyi
∥∥∥.

Since (xn) is weakly null we can assume, after dropping to a subsequence if necessary,
that the basis constant of (xn) is close to 1, and, thus, projection constant is close to
2. We therefore obatin the result is with K(δ) . 8/δ. Thus, it will suffice to prove the
following.

Lemma 2.4.2. Let B > 0 and ε > 0. There exists a subsequence (yi) of (xi) so that for all
A

∃x∗∈BX∗ with
∑
j∈A

x∗(yj)
+ ≥ B

=⇒ ∃y∗∈BX∗ with
∑
j∈A

y∗(yj)
+ ≥ B − ε and

∑
j∈N\J or

j∈A, y∗(yj)<0

|y∗(yj)| < ε.

Proof. Let (εi) ⊂ (0, 1) so that
∑
εi < ε. By induction we choose n1 < n2 < n3 < . . . and

N = N0 ⊃ N1 ⊃ N3 ⊃ . . . so that for k ∈ N

a) nk = min(Nk−1) and nk < minNk

b) For all F ⊂ {n1, n2, . . . nk}, all L = {`0, `1, `2, . . .} ⊂ Nk and all m ∈ N

∃x∗∈BX∗ ∗ with
∑

j∈F∪{`1,`2,...`m}

x∗(xj)
+ > B(∗)
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=⇒ ∃y∗∈BX∗ ∗ with
∑

j∈F∪{`1,`2,...`m}

y∗(yj)
+ > B − ε

|y∗(xj)| < εi for j = ni ∈ {n1, n2, . . . nk} \ F
|y∗(xj)| < εi or j = ni ∈ F with y∗(xj) < 0

and |y∗(x`0 | < εk+1

Assume that n1 < n2 < . . . nk−1 and N = N0 ⊃ N1 ⊃ . . . Nk−1 have been chosen. Let
nk = min(Nk−1) and fix an F ⊂ {n1, n2, . . . nk} and an N ∈ [Nk−1]ω. Define

AF =
{
L = {`0, `1, . . .} ∈ [N ]ω : ∀m ∈ N(∗) holds

}
.

Since
AF =

⋂
m

AF,m, where

AF,m =
{
L = {`0, `1, . . .} ∈ [Nk−1]ω : (∗) holds

}
,

and containance of an L in AF,m only depends on the first m + 1 elements of L it follows
that we can apply the Theorem of Ramsey 1.3.3.

We claim that we are in Case 1 of Theorem 1.3.3 (meaning that we can choose an
LF ∈ [N ]ω so that [L]ω ⊂ A). Indeed, assume that there is an L ∈ [N ]ω so that for all
[L]ω ∩ A = ∅, say L = {`1, `2, `3 . . .}, `1 < `2 < `3 <.

Fix an n ∈ N and define for i = 1, 2, . . .

L(i) = {`i, `n+1, `n+2, `n+3 . . .}.

Since L(i) 6∈ A we can find for i = 1, 2, . . . n, a number mi ∈ N, and an x∗i ∈ BX∗ so that∑
j∈F∪{`n+1,`n+2,...`n+mi}

x∗i (xj)
+ > B(2.7)

∀y∗∈BX∗ with
∑

j∈F∪{`n+1,`n+2,...`n+mi}

y∗(yj)
+ > B − ε(2.8)

one of the following does not hold

|y∗(xj)| < εi for j = ni ∈ {n1, n2, . . . nk} \ F
|y∗(xj)| < εi for j = ni ∈ F with y∗(xj) < 0

and |y∗(x`i)| < εk+1

For each i ∈ {1, . . . n} an y∗i ∈ B∗X we define

j(i) = min{0 ≤ j ≤ k : ∀j′.j nj ∈ F and x∗i (xj′) > 0},

and put y∗i = x∗i if j(i) = 0. Other wise we apply our induction hypothesis to F ′ =
{1, 2, . . . nj(i)−1} ∩ F and to L′ = {nj(i), nj(i)+1, . . . , nk, `n+1, `n+2, . . .} ⊂ Nj(i)−1 to find a
y∗i so that ∑

j∈F∪{`n+1,`n+2,...`n+mi}

y∗i (yj)
+ > B − ε(2.9)
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|y∗i (xj)| < εi for j = ni ∈ {n1, n2, . . . nk} \ F
|y∗i (xj)| < εi for j = ni ∈ F with y∗i (xj) < 0.

Note that (2.9) is also satisfied if j(i) = 0. From (2.8) we deduce therefore for each i =
1, 2 . . . n that

|y∗i (x`i)| ≥ εk+1.

Letting m = maxi≤nmi and choosing i0 ≤ n so that mi0 = m∑
j∈F∪{`n+1,`n+2,...`n+m}

y∗i0(xj)
+ > B − ε(2.10)

|y∗i0(xj)| < εi for j = ni ∈ {n1, n2, . . . nk} \ F
|y∗i0(xj)| < εi for j = ni ∈ F with y∗(xj) < 0.

which implies that for all i ∈ {1, 2 . . . n}

(2.11) |y∗i0(x`i | ≥ εk+1.

We ended up proving the following: for any n ∈ N there is a z∗n ∈ BX∗ (namely z∗n = y∗i0
from (2.11)) so that z∗n(x`i) ≥ εk+1 for all i ≤ n. Let z∗ be an accumulation point of the
sequence (z∗n) then it follows that z∗(xi) ≥ εk for all i ∈ N. But this is a contradiction of
the assumption that (xi) is a weak null sequence, and finishes our claim.

Write P({n1, . . . nk}) as {F1, F2, . . . F2k) we can apply our proven claim to all F = Fi
successively and get Nk−1 ⊃ L1 ⊃ L2 ⊃ . . . L2k so that [Li]

ω ⊂ AFi . Finally we chose
Nk = L2k which finishes our induction step.

The claim of our Lemma now follows if we take the subsequence (yi) = (xni).

A second type of partial unconditionality is the following result due to E. Odell. We
first need the following Definition

Theorem 2.4.3. [O2](Schreier Unconditionality) Let (xi) be a normalized weakly null se-
quence in a Banach space X and let ε > 0.

Then there exists a basic subsequence (yi) of (xi) which is (2+ε) Schreier unconditional,
which means the projections:

PA : span(yi) 3
∑

aiyi 7→
∑
i∈A

aiyi,

are of norm not exceeding 2 + ε provided A ∈ S1. S1 denotes the Schreier sets in [N]<ω

introduced in Example 2.2.8.

The proof is sketched in the following Exercise.

Exercise 2.4.4. Let (xi) be a normalized weakly null sequence in X

a) Let ε > 0 , k ∈ N and I1, I2, . . . Ik be subintervals of [−1, 1]. Show that there is a
subsequence (yi) of (xi) so that
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(∗) If there exists an x∗ ∈ BX∗ so that x∗(ymi) ∈ Ii, for i = 1, 2 . . . k, for some choice
of m1 < m2 < . . .mk in N then there is also a y∗ ∈∈ BX∗ so that y∗(ymi) ∈ Ii,
for i = 1, 2 . . . k, and

∑
j∈N\{m1,m2...mk} |y

∗(ymi)| < ε.

Hint: Let (εm) ⊂ (0, 1), with
∑
εm < ε. By induction choose n1 < n2 < . . . and

N = N0 ⊃ N1 ⊃ N2 so that for all m ∈ N
nm = minNm−1 and
for all L = {`0, `1, `2 . . .} ⊂ Nm, all k′ ≤ k and all F = {f1, f2 . . . fk′} ⊂ {n1, n2, . . . nm}
the following implication holds:

∃x∗ ∈ BX∗(
x∗(xf1), x∗(xf2), . . . x∗(xfk′ ), x

∗(x`1), x∗(x`2) . . . x∗(x`k−k′ )
)
∈ I1 × I2 × . . . Ik

⇒
∃y∗ ∈ BX∗(
y∗(xf1), y∗(xf2), . . . y∗(xfk′ ), y

∗(x`1), y∗(x`2) . . . y∗(x`k−k′ )
)
∈ I1 × I2 × . . . Ik

|y∗(xni)| < εi if ni ∈ {n1, n2, . . . nm} \ F and |y∗(x`0)| < εm+1

b) Let k ∈ N and ε > 0. Show that there is a subsequence (yi) of (xi) so that for all
(ai) ⊂ c00 and all I ⊂ N , with #I ≤ k:∥∥∥∑

i∈I
aiyi

∥∥∥ ≤ (1 + ε)
∥∥∥∑ aiyi

∥∥∥.
c) Prove Theorem 2.4.3.



Chapter 3

Distortion of Banach spaces

3.1 Introduction

We are interested in the following type of problem:

Let X be an infinite dimensional and separable Banach space and let (Ai)
r
i=1 be an

r-coloring of the sphere SX . Can we choose an infinite dimensional subspace Y so
that SY is monochromatic?

As stated above it is easy to find a counterexamplee:

Example 3.1.1. Let X be a space with a normalized basis (xi) and (x∗i ) the corresponding
coordinate functionals. For each x =

∑∞
i=1 x

∗
i (x)xi ∈ SX let i0(x) ∈ N be the minimum of

all i’s in N for which |x∗i (x)| = maxj∈N x
∗
i (x)|.

Then let

A = {x ∈ SX : x∗i0(x)(x) > 0} and B = {x ∈ SX : x∗i0(x)(x) < 0}.

Then X does not contain an infinite dimensional (actually not even a one dimensional)
subspace which is monochromatic with respect to the coloring (A,B).

As usual in Analysis, one has to allow arbitrary small perturbations in order to come to
the right question.

Problem 3.1.2. Let X be Banach space and let (Ai)
r
i=1 be a coloring of SX . Does there

exist for any ε > 0 an infinite dimensional subspace Y and an i ≤ r so that

SY ⊂ (Ai)ε := {x ∈ SX : dist(x,Ai) < ε}?

Definition 3.1.3. Let f : SX → R. We say that f stabilizes on infinite dimensional
subspaces if for all infinite dimensional Y ↪→ X and ε > 0 there exists an infinite dimensional
Z ↪→ Y so that

osc(f, SZ) ≡ sup{f(z1)− f(z2) : z1, z2 ∈ SZ} < ε .

Closely connected to the the notion of stabilization is the notion of distortion of norms.

37
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Definition 3.1.4. Let X be an infinite dimensional and separable Banach space and Let
λ > 1. X is λ-distortable if there exists an equivalent norm | · | on X so that for all Y ⊆ X,

sup

{
|y1|
|y2|

: y1, y2 ∈ S(Y,‖·‖)

}
≥ λ .

In that case we call ||| · ||| a λ-distortion.

X is distortable if X is λ-distortable for some λ > 1. X is arbitrarily distortable if X is
λ-distortable for all λ > 1.

Exercise 3.1.5. Let the Banach space X have a basis (xn) and let f : SX → R be Lipschitz
continuous.

Prove that f stabilizes if and only if for every block subspace Y of X and for every
ε > 0. there is a blocksubspace Z of Y so that osc(f, SZ) < ε.

Hint: Proposition 2.1.14

Exercise 3.1.6. Define for x = (ξi) ∈ `2

|||x||| =
(∑

|ξi|2
)1/2

+ max
i∈N
|ξi|.

Show that ||| · ||| is an equivalent norm on `2, but not a distortion of the usual norm.

Proposition 3.1.7. For a separable Banach space X the following are equivalent.

a) Every Lipschitz function f : SX → R stabilizes.

b) Every symmetric Lipschitz function f : SX → R (f(x) = f(−x) for x ∈ SX) stabilizes.

c) For any r-coloring (Ai)
r
i=1, any infinite dimensional Y ↪→ X and any ε > 0 there is an

infinite dimensional Z ↪→ Y and an i ≤ r so that SY ⊂ (Ai)ε

d) For any covering (Ai)
r
i=1 with symmetric sets of SX any infinite dimensional Y ↪→ X and

any ε > 0 there is an infinite dimensional Z ↪→ Y and an i ≤ r so that SY ⊂ (Ai)ε.

Proof. (a)⇒(b) clear.
(b)⇒(a) Note that a Lipschitz function f : SX → R can be written as

f =
1

2

(
f(x) + f(−x)

)
+

1

2

(
f(x)− f(−x)

)
.

If (b) holds then 1
2(f(x)+f(−x)) as well |12(f(x)−f(−x))| stabilizes. But |12(f(x)−f(−x))|

can only stabilize at 0, i.e. for all infinite dimensional subspaces Y ↪→ X and all ε > 0
there exists an infinite dimensional Z ↪→ Y so that |12(f(x)− f(−x))| < ε and we can find
a further infinite dimensional U ↪→ Z so that osc(1

2(f(x) + f(−x)), SU ) < ε, which yields
that

osc(f, SU ) ≤ osc(
1

2
(f(x) + f(−x)), SU ) + osc(

1

2
(f(x)− f(−x)), SU ) < 2ε.

(a)⇒ (c) Let (Ai)
r
i=1, and apply (a) to the Lipschitz functions fi(x) = dist(Ai, x) and note

that min fi = 0.

(c)⇒(d) clear
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(d)⇒(b) Let f : SX → [0, 1] (range of f is bounded) be symmetric and Lipschitz and ε > 0
and apply (d) to the sets

Ai = [i− 1)ε, iε], for i = 1, 2 . . . d1
ε
e.

Definition 3.1.8. A Banach space is called uniformly convex if for all ε there exists a
δ = δ(ε) so that

∀x, y∈SX ‖x− y‖ ≥ ε⇒
∥∥∥x+ y

2

∥∥∥ ≤ 1− δ.

In that case we call

δX : (0, 1)→ (0, 1), δX(ε) = inf
{

1−
∥∥∥x+ y

2

∥∥∥ : x, y ∈ SX , ‖x− y‖ ≥ ε
}
,

the modulus of uniform convexity of X.

Lemma 3.1.9. Assume that X is uniform convex. Then there exists for every 0 < ε < 1 a
η = η(ε) so that for any x ∈ SX

dist(x, co(BX \Bε(x)) ≥ η(ε),

where co(A) for A ⊂ X denotes the convex hull A, i.e. the set

co(A) =
{ n∑
i=1

αixi : xi ∈ A,αi ≥ 0,
∑

αi = 1
}

=
⋂{

C ⊂ X : C convex and A ⊂ C
}
.

Proof. Assume our claim is not true for some ε > 0. Then we can find sequences (xn) and
(zn) with zn ∈ co(Bε(xn))), for n ∈ N, so that limn→∞ ‖xn − zn‖ = 0. Write each zn as

zn =

kn∑
i=1

α
(n)
i y

(n)
i , with kn ∈ N, α

(n)
i ≥ 0,

kn∑
i=1

α
(n)
i = 1, and y

(n)
i ∈ BX \Bε(z),

and choose for n ∈ N x∗n ∈ SX∗ with x∗n(xn) = 1. It follows that

lim
n→∞

kn∑
i=1

α
(n)
i x∗n(y

(n)
i ) = 1,

and thus we can choose for n ∈ N an in ∈ {1, 2, . . . kn} so that

lim
n→∞

x∗n(y
(n)
in

) = 1.

But this is a contradiction to the assumed uniform convexity since on one hand ‖xn−y(n)
in
‖ ≥

ε for each n ∈ N and on the other hand

lim sup
n∈N

‖xn + y
(n)
in
‖ ≥ lim sup

n∈N
x∗n(xn + y

(n)
in

) = 2.
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Proposition 3.1.10. If there is a Lipschitz function f on SX which does not stabilize, then
there is a distortion on an infinite dimensional subspace Y of X.

Proof. By Proposition 3.1.7. there is a symmetric set A ⊂ SX , an infinite dimensional
subspace Y of X and an 0 < ε < 1/4 so that for every infinite dimensional subspace Z of Y

(3.1) A ∩ SZ 6= ∅ and SZ \Aε 6= ∅.

Now define B to be the closed convex hull of A ∪ 1
4BX,‖·‖ and let ||| · ||| be the Minkowski

functional with respect to ||| · |||, i.e.

|||x||| = inf
{
r : x ∈ rB

}
for x ∈ X .

Since A is symmetric it follows that ||| · ||| is a norm and, since 1
4BX,‖·‖ ⊂ B ⊂ BX,‖·‖ it

follows for any x ∈ X,
‖x‖ ≤ |||x||| ≤ 4‖x‖.

We claim that |||·||| is a distortion on the space Y . Indeed, let Z ↪→ Y be infinite dimensional.
By the first part of (3.1) there is an z1 ∈ SZ ∩A, and thus |||z1||| = ‖z1‖ = 1. By the second
part of (3.1) there is an z2 ∈ SZ \Aε. It follows that (let η(ε) chosen as in Lemma

|||z2||| = inf{r : z2 ∈ rB} for x ∈ X
≥ inf{r : z2 ∈ rco(BX \Bε(z2))} for x ∈ X
[Since A ∪ 1

4
BX ⊂ BX \Bε(z2))]

≥ 1 +
1

2
η(ε)

[Otherwise z2 ∈
(
1 + 3

4
η(ε)

)
co(BX \Bε(z2)|)

and, thus, dist
(
z2, co(BX \Bε(z2))

)
< η(ε)].

It follows that ||| · ||| is a (1 + η(ε)) distortion.

Theorem 3.1.11. [Ja2] `1 and c0 are not distortable.

Proof. We first consider `1 and denote the usual norm on `1 by ‖ · ‖.
Let ||| · ||| be an equivalent norm on `1.

Put

r = lim
n→∞

rn with rn = inf
{
|||x||| : x ∈ span(ei : i ≥ n) : ‖x‖ = 1

}
for n ∈ N,

and let 0 < ε < r/10. Then choose n ∈ N so that r− ε/2 ≤ rn ≤ r and then choose a block
basis (xi) of (ei)i≥n which is normalized with respect to ‖·‖ and so that r−ε ≤ |||xi||| ≤ r+ε,

Then it follows for any (ai) ∈ c00 with
∑
|ai| = 1, by the triangular inequality∣∣∣∣∣∣∣∣∣∑ aixi

∣∣∣∣∣∣∣∣∣ ≤∑ |ai||||xi||| ≤ r + ε.

On the other hand∣∣∣∣∣∣∣∣∣∑ aixi

∣∣∣∣∣∣∣∣∣ ≥ inf
{
|||x||| : x ∈ span(ei : i ≥ n) : ‖x‖ = 1

}
= rn ≥ r − ε/2,
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thus for all y1, y2 ∈ span(xi : i ∈ N), ‖y1‖ = ‖y2‖ = 1 it follows that

|||y1|||
|||y2|||

≤ r + ε

r − ε/2
,

which can be made arbitrary close to 1 providing we choose ε > 0 small enough.
Secondly we consider the space c0 and denote its usual norm by ‖ · ‖.
Let ||| · ||| be an equivalent norm on c0, define

r = lim rn with rn = sup
{
|||x||| : x ∈ span(ei : i ≥ n) : ‖x‖ = 1

}
for n ∈ N,

and let ε > 0.
Choose n ∈ N large enough so that r ≤ rn ≤ r + ε, and choose (xi) to be a block

sequence of (ei)i≥n, which is normalized with respect to ‖ · ‖, so that

r − ε ≤ |||xi||| ≤ rn ≤ r + ε.

Let (ai)c00 with 1 = |ai0 | = max |ai|. Then∣∣∣∣∣∣∣∣∣∑ aixi

∣∣∣∣∣∣∣∣∣ ≤ rn ≤ r + ε = (r + ε)
∥∥∥∑ aixi

∥∥∥.
On the other hand∣∣∣∣∣∣∣∣∣∑ aixi

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣∑

i 6=i0

aixi − ai0xi0
∣∣∣∣∣∣∣∣∣ ≥ 2|||xi0 ||| ≥ 2(r − ε),

and thus∣∣∣∣∣∣∣∣∣∑ aixi

∣∣∣∣∣∣∣∣∣ ≥ 2(r − ε)−
∣∣∣∣∣∣∣∣∣∑

i 6=i0

aixi − ai0xi0
∣∣∣∣∣∣∣∣∣ ≥ r − 3ε = (r − 3)‖

∑
aixi‖.

Since ε > 0 is arbitrary small

Exercise 3.1.12. Show the following finite version of James’ Theorem for `1.
Let n, k ∈ N and C > 1 and assume that (fi)

nk

i=1 is a normalized sequence which is C-

equivalent to the unit vector basis of `n
k

1 . Show that there is a normalized block of (fi)
nk

i=1

of length n which is C1/k-equivalent to the unit vector basis of `n1 .

The following consequence of Dvoretzky’s Theorem is due to Milman and Schechtman.

Theorem 3.1.13. (see [MS, p.6]) For every ε > 0 and any k ∈ N there is an n = n(ε, k)
so that if E is an n dimensional f : SX → R is Lipschitz with constant 1, there is a k
dimensional subspace F ↪→ E so that osc(f, SF ) ≤ ε

Let us finish this section by giving giving a short overview about the history of distortion:

(1964) James [Ja2] showed that `1 and c0 are not distortable.

(1971) At this time it was not yet known whether or not there existed an infinite
dimesnional Banach space which does not contain `p, for some 1 ≤ p <∞,
or c0. Milman [M] showed:
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An infinite dimensional Banach space X which does not contain `p, for
some 1 ≤ p <∞, must have a distortable infinite dimensional subspace.

(1974) Tsirelson [T] constructed the first known space not containing `p for some
1 ≤ p <∞, or c0.

(1974) Figiel and Johnson [FJ] discription of the dual of Tsirelson’s space and
construction of a uniform convex space not containing `p for some 1 < p <
∞.

(1990) Haydon, Odell, Rosenthal and Schlumprecht (see [OS3]) proved the follow-
ing refinement of Milman’s result: If X is a separable space not containing
`p or c0, then there exists a z ∈ Z so that the following norm |||·|||z distorts
an infinite dimensional subspace:

||| · |||z : X → [0,∞), x 7→ |||x|||z :=
∥∥z‖x‖+ x

∥∥+
∥∥z‖x‖ − x∥∥.

(1991) Gowers [Go1] showed that all Lipschitz functions on the sphere of c0 sta-
bilize.

(1991) First arbitrarily distortable Banach space was constructed by author of
these notes [S1]

(1993) Gowers and Maurey: space without any unconditional basic sequence.

(1994) By Odell and the author of these notes [OS1] it was shown that all `p’s,
1 < p <∞ are arbitrarily distortable.

(1995) Maurey [Mau] showed that every asymptotic `p space has an arbitrarily
distortable subspace.

Still Open: Is Tsirelson space arbitrarily distortable? More generally, is every distortable
space arbitrarily distortable?
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3.2 Spaces not containing `p or c0

In 1974 Tsirelson [T] constructed the first known Banach space which did not contain any
subspace isomorphic to `p, 1 ≤ p < ∞, or c0 in this notes we will the dual of Tsirelson’s
original construction, a space which constructed by Figiel and Johnson [FJ], and which does
not contain copies `p, 1 ≤ p <∞, or c0, either.

Notation. For A,B ∈ [N]<ω we will write A < B if maxA < minB. For n ∈ N we write
n ≤ A if n ≤ minA.

We introduce the convention that min ∅ =∞ and max ∅ = 0, which implies that ∅ < A
and A > ∅ for any A ∈ [N]<ω.

For x =
∑∞

i=1 aiei ∈ c00 and E ∈ [N]<ω we write

E(x) =
∑
i∈E

aiei.

Definition 3.2.1. Recall the Schreier sets

S1 :=
{
A ⊂ [N]<ω : #A ≤ minA

}
.

A finite sequence (Ei)
n
i=1 ⊂ [N]<ω is called S1-admissible if E1 < E2 < . . . < En and if

{minEi : i = 1, 2, . . . n} ∈ S1, i.e. if n ≤ minE1.

Definition 3.2.2. For each n ∈ N0 we define by induction a norm | · |n on c00.

|x|0 = ||x||∞ for x ∈ c00

and assuming | · |n−1 has been defined for some n ∈ N

|x|n = max
(
|x|n−1, max

(Ei)ni= S1-admissible

1

2

n∑
i=1

|Ei(x)|n−1

)
.

Note that for any x ∈ c00 the sequence (|x|n) is increaing and must become constant, and
we put

‖x‖ = max
n
|x|n.

T (sometimes also denoted by T1/2) is then the completion of under the norm ‖ · ‖.

First some easy observations.

Proposition 3.2.3. The unit vector basis is a 1-unconditional basis (ei) of T .

Proposition 3.2.4. The norm on T satisfies the following implicit equation. For x =
(ξi) ∈ T

(3.2) ‖x‖ = max
(
‖x‖∞, sup

n∈N,(Ei)ni=1S1-admissible

1

2

n∑
i=1

‖Ei(x)‖
)

(if x ∈ c00 then above “sup” can be replaced by “max”).
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Proof. We only need to show the claim for x ∈ c00 since for general x ∈ T it follows by
density of c00 in T .

Let x ∈ c00. If ‖x‖ = ‖x‖∞ then clearly the right side of (3.2) is at least as large as the
right side. Otherwise there is an k ∈ N, and an S − 1-admissible collection (Ei)

n
i=1 ⊂ [N]<ω

so that

‖x‖ = |x|n =
1

2

n∑
i=1

|Ei(x)|k−1 ≤
1

2

n∑
i=1

‖Ei(x)‖.

To show the converse let (Ei)
n
i=1 be S1 admissible. We can choose appropriate k1, k2, . . . kn

so that

1

2

n∑
i=1

‖Ei(x)‖ =
1

2

n∑
i=1

|Ei(x)|ki ≤
1

2

n∑
i=1

|Ei(x)|maxi≤n(ki) ≤ |x|1+maxi≤n(ki) ≤ ‖x‖.

The following is an alternate way of constructing T , via normalising functionals

Proposition 3.2.5. Define by induction on n = 0, 1 . . . the following sets An ⊂ c00:

A0 = {±ei : i ∈ N},

and assuming An−1 has been defined for some n ∈ N we put

An = An−1 ∪
{1

2

k∑
i=1

fi : k ∈ N, fi ∈ An−1, for i ≤ n, (supp(fi))
k
i=1 is S1-admissible

}
Finally put A =

⋃
Ai. Let ‖ · ‖ be the norm on T then

(3.3) ‖x‖ = sup
f∈A
〈f, x〉.

Proof. First we proof by induction that An ⊂ BT ∗ . For n = 0 this is clear and, assuming
An−1 ⊂ BT ∗ and

f =
1

2

k∑
i=1

fi ∈ An,

then for x ∈ T

|〈f, x〉| = 1

2

k∑
i=1

〈fi, x〉 ≤
1

2

k∑
i=1

‖supp(fi)(x)‖ ≤ ‖x‖.

Thus, we showed for x ∈ c00. that ‖x‖ ≥ supf∈A |〈f, x〉|
The proof of ≤ will be shown by induction on the cardinality of supp(x). For k =

#supp(x) = 1 the claim is trivial.
If our claim is true for k and if x ∈ c00 with supp(x) = k + 1 then either ‖x‖ = ‖x‖∞,

in which case we are done. Other wise we find sets E1, E2, . . . En in [N]<ω with n ≤ E1 <
E2 . . . En so that

‖x‖ =
1

2

n∑
i=1

∥∥∥Ei(x)
∥∥∥
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≤ 1

2

n∑
i=1

fi(x)

[By induction for appropriate f1, . . . fn ∈ A, and, since (ei) is 1-unconditional basis we can
assume that n ≤ supp(f1) < . . . supp(f2)]

≤ f(x)

[with f =
1

2

n∑
i=1

fi].

Proposition 3.2.6. For any normalized block basis (xi) in T it follows that∥∥∥ n∑
i=1

xi

∥∥∥ ≥ n

4
.

In particular, T cannot contain any copy of `p, with 1 < p <∞, or c0.

Theorem 3.2.7. For every λ < 2 the space T is λ-distortable.

Remark. It is not known whether or not T is λ-distortable for some λ > 2.

Proof. For k ∈ N define

‖ · ‖k : T → [0,∞) : x 7→ sup
(Ei)

j
i=1 is S1-admissible, and 1≤j≤k

1

2

j∑
i=1

‖Ei(x)‖.

It is clear that

1

2
‖x‖ ≤ ‖x‖k ≤ ‖x‖ and(3.4)

‖x‖ = max
(
‖x‖∞, sup

k∈N
‖x‖k

)
for all k ∈ N and x ∈ c00.(3.5)

We will show that ‖ · ‖k is a λk-distortion of T , with limk→∞ λk = 2.
Step 1: `1 is finitely block represented in every blocks pace of T . This means that for any
normalized block (xi), any ε > 0 and any n ∈ N there is a normalized block (yi)

n
i=1 of (xi)

so that (yi)
n
i=1 is (1 + ε)-equivalent to the `n1 -unit vector basis.

This follows from the fact that any block sequence (yi)
`
i=1, with ` ≤ supp(y1), is 2-

equivalent to the `n1 - unit vector basis and then we can choose k so that 21/k < 1+ε, ` = nk

and apply exercise 3.1.12.
For ε > 0 and n ∈ N we will call z ∈ T an ε-`n1 -average if

z =
1

n

n∑
i=1

zi

where (zi) is a normalized block in T which is (1 + ε)-equivalent to the `n1 unit vector basis.
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Note that in particular it follows for an ε-`n1 -average z that ‖z‖ ≥ 1
1+ε .

Step 2: For n, k ∈ N and any normalized block (zi)
n
i=1

(3.6)
∥∥∥ 1

n

n∑
i=1

zi

∥∥∥
k
≤ 1

2

n+ k

n

Indeed write z = 1
n

∑n
i=1 zi, let m ≤ k and m ≤ E1 < E2 < . . . Em in [N]<ω so that

‖z‖k =
1

2

m∑
j=1

‖Ej(z)‖.

For j = 1, 2, . . .m put `j = max{1 ≤ i ≤ n : min supp(zi) ≤ maxEj} (putting max ∅ = 0)
and put `0 = 1. Since (zi)

n
i=1 is a block basis it follows{

i ∈ {1, 2 . . . n} : supp(zi) ∩ Ej 6= ∅
}
⊂ [`j−1, `j ],

since the unit vector basis in T is 1-unconditional we deduce that

m∑
j=1

‖Ej(z)‖ ≤
1

n

m∑
j=1

∥∥∥ `j∑
i=`j−1

zi

∥∥∥ ≤ 1

n

m∑
j=1

(`j − `j−1 + 1) =
n+m

n
≤ n+ k

n
,

which implies our claim.
Step 3: Let ε > and `. We call a block (yi)

`
i=1 a ε-rapidly increasing sequence of length `

(RIS) if for each i = 1, . . . ` yi is a ε-`ni
1 average with (ni) ⊂ N satisfying:

` < εn1(3.7)

l ≤ min(supp(y1) and max supp(yi−1) < ni and ni−1 < εni for i = 2, 3, . . . n`(3.8)

Let ε > 0 and let ` ∈ N, ` ≥ 1. If (yi)
`
i=1 is ε-rapidly increasing sequence of length `

then ∥∥∥1

`

∑̀
i=1

yi

∥∥∥ ≤ 2

`
+

1

2
(1 + ε)(3.9)

Indeed let k ∈ N for y = 1
`

∑`
i=1 yi ‖y‖ = ‖y‖k (note that ‖y‖ 6= ‖y‖∞).

If k ≤ εn1 we deduce from (3.6) that

(3.10) ‖y‖k ≤
1

`

∑̀
i=1

‖yi‖k ≤
1

`

∑̀
i=1

1

2

ni + k

ni
≤ 1

2

n1 + k

n1

1

2
(1 + ε)

Choose l ≤ k and l ≤ E1 < E2 < . . . El, so that

‖y‖ = ‖y‖k =
1

2

l∑
j=1

‖Ei(y)‖,

Put n`+1 := ∞ and n0 := bεn1c, n`+1 := +∞ and choose i0 ∈ {0, 1, 2 . . .} so that k ∈
(ni0 , ni0+1]. Then for it follows for i = 1, 2, . . . , i0 − 1 and j = 1, 2 . . . k (note that by (3.8)
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max(supp(xi)) ≤ ni0 < k ≤ E1) Ej(yi) = 0. For i = i0 + 2, , i0 + 3, . . . ` it follows from (3.6)
and (3.8) that

‖yi‖k ≤
1

2

ni + k

ni
<

1

2

ni + ni0+1

ni
≤ 1

2
(1 + ε),

and thus we deduce in this case that

‖y‖k ≤
1

`

∑̀
i=i0

‖yi‖k ≤
1

`

[
2 +

∑̀
i=i0+2

‖yi‖k
]
≤ 2

`
+

1

2
(1 + ε),

which implies our claim of Step 3.
We will show that for k ∈ N the equivalent norm ‖ · ‖ is an 2k

k+20 -distortion, which will
finish the proof of our theorem.

Let Y be an arbitrary block subspace. If n > k2 and if x1 is an 1
n -`n1 average we deduce

for z1 = x1/‖x1‖ that

‖z1‖k =
1

‖x1‖
‖x‖k ≤

1

2

(
1 +

1

n

)n+ k

n
≤ 1

2

(
1 +

1

k

)2

If we let and choose a
x2 = 1

k

∑
yi and (yi) is a 1

k -rapidly increasing sequence of length k and we put

z2 = x2/‖x2‖

Then, obviously,

‖z2‖k ≥
1

‖x2‖
1

2

1

k

k∑
i=1

‖yi‖ ≥
1

2

1

‖x2‖
1

1 + 1
k

,

and (3.9) of Step 3 yields that

‖x2‖ ≤
2

k
+

1

2

(
1 +

1

k

)
=

1

2

(
1 +

5

k

)
.

Thus

‖z2‖k ≥
1

1 + 1
k

1

1 + 5
k

,

and
‖z2‖k
‖z1‖k

≥ 2
1

(1 + 1
k )2

1

1 + 5
k

>
2k

k + 20
.

Since by James’ theorem 3.1.11 `1 is not distortable deduce the following

Corollary 3.2.8. T does not contain a copy of `1.

Remark. In the definition (see Definition 3.2.2) of the norms | · |n one can replace replace 1
2

by some γ ∈ (0, 1), and put ‖ · ‖γ = max | · |n and denote the completion of c00 with respect
to ‖ · ‖γ by Tγ . Using the same arguments as in the proof of Theorem 3.2.7 one shows that
Tγ is 1

γ -distortable. The next construction is a space which is arbitrarily distortable.
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Definition 3.2.9. [S1] For s ∈ [1,∞) define f(s) = log2(s + 1). For n ∈ N0 and x ∈ c00

define by induction as follows.

|x|0 = ‖x‖∞

and, assuming that |x|n−1 has been defined for all x ∈ c00 we put

|x|n = max
(
|x|n−1, max

`∈N,E1<E2<...E`

1

f(`)

∑̀
i=1

|Ei(x)|n−1

)
.

Then put for x ∈ c00

‖x‖ = sup
n∈N0

|x|0.

‖ · ‖ is a norm on c00 and we denote the completion of c00 with respect to ‖ · ‖ by S.

The following observations can be shown easily.

Proposition 3.2.10. a) The unit vector basis is a 1-subsymmetric basis of S

b) The norm ‖ · ‖ on S satisfies the following implicit equation:

(3.11) ‖x‖ = max
(
‖x‖∞, sup

`≥2,E1<E2<...E`

1

f(`)

∑̀
i=1

‖Ei(x)‖

whenever x ∈ S.

c) For every normalized block (yi)
`
i=1 in S and any (ai)

`
i=1 ⊂ R

∥∥∥∑̀
i=1

aiyi

∥∥∥ ≥ 1

`

∑̀
i=1

|ai|

d) `1 is finitely block represented in every block subspace of S.
(Use (c) and the finite version of James’ Theorem, Exercise 3.1.12).

d) The norm on S can also be obtained by discribing its normalizing functionals in the
following way.
Define A0 = {±ei : i ∈ N} and assuming An−1 has been defined for some n ∈ N we put

An =
{ 1

f(`)

∑̀
i=1

fi : `∈N, (fi)`i=1 ⊂ An−1 is block sequence
}
∪An−1.

Let A =
⋃∞
n=1An Then it follows for x ∈ S that

‖x‖ = sup
f∈A
〈f, x〉.
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Similar to the space T we define the following equivalent norms ‖ · ‖` for ` ∈ N. For
x ∈ S define

(3.12) ‖x‖` =
1

f(`)
sup

E1<E2<...E`

∑̀
i=1

‖Ei(x)‖.

Clearly,

1

f(`)
‖x‖ ≤ ‖x‖` ≤ ‖ · ‖ and(3.13)

‖x‖ = max
(
‖x‖∞, sup

`∈N,`≥2
‖x‖`

)
(3.14)

Theorem 3.2.11. For every ` ∈ N the norm ‖ · ‖` is an cf(`)-distortion of S for some
fixed constant c

Proof. For ε > 0 and n ∈ N use definition for ε-`n1 averages introduced in Step 1 of the
proof of Theorem 3.2.7 and note that by Proposition 3.2.10 (d) every block subspace of S
contains for any ε > 0 and n ∈ N an ε-`n1 average.

Following similar arguments one can show that if z is an ε-`n-average in S, and thus
‖z‖ ≥ 1

1+ε , and ` ∈ N it follows that

(3.15) ‖z‖` ≤
1

f(`)

`

n+ `
,

which is close to 1
f(`) if n >> `.

In order to show that for any ` ∈ N there are vectors in each block subspace for which
the ‖ · ‖` and ‖ · ‖ norm are approximately the same we have to redefine what we mean by
a rapidly increasing sequence in S.

We call a sequence (yi)
k
i=1 a a rapidly increasing sequence (RIS) if there are εi > 0 and

n∈N for for i = 1, . . . k so that

k∑
i=1

εi < 1(3.16)

yi is an εi − `ni
1 average(3.17)

n1 > 2k(3.18)

f(ni) ≥ max supp(yi−1) and
ni−1

ni
< εi for i = 2, 3, 4, . . . k(3.19)

and we will show that there is a constant C ≥ 1 so that if (yi)
k
i=1 is a rapidly increasing

sequence it follows that

(3.20)
∥∥∥ k∑
i=1

yi

∥∥∥ ≤ Ck

f(k)
.

Since clearly (use for the second ≤ inequality (3.15) )∥∥∥ k∑
i=1

yi

∥∥∥
k
≥ 1

f(k)

k∑
i=1

‖yi‖ ≥
k

f(k)
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it follows together with (3.15) that ‖ · ‖k is a f(k)
C -distortion.

In order to proof (3.20) we first need a little Calculus lemma

Lemma 3.2.12. For ` ∈ N and D > ` it follows that

max
{∑̀
i=1

ξi
f(ξi)

: ξi ≥ 1 for, i = 1, . . . ` and
∑

ξi = D
}

=
D

f(D`)
.

(i.e. maximum is achieved when ξ1 = ξ2 = . . . = ξ` = D/`)

Proof. [1,∞) 3 ξ 7→ ξ
f(ξ) is convex.

Continuation of Proof of Theorem 3.2.11. We are choosing C > 1 large enough to satisfy
the following conditions

C ≥ 5 and C ≥ 2
f(k)

f(k/2)
if k ≥ 2 (note that lim

k→∞

f(k)

f(k/2)
= 1 )(3.21)

C ≥ 2
f(k/`)f(`)

f(`)f(k/`)− f(k)
whenever `, k ∈ N with 2 ≤ ` ≤ k/2(3.22)

For the fulfilment of (3.22) note that for k ∈ N, k ≥ 4 that the function

gk : [2, k/2]→ R, x 7→ f(k)

f(x)f(k/x)
,

achieves its maximal value at each of the endpoints and note that

sup
k∈N,4≥4

gk(2) = sup
f(k)

f(2)f(k/2)
=

4

f(2)f(2)
< 1,

Thus

sup
k∈N,2≤`≤k/2

f(k/`)f(`)

f(`)f(k/`)− f(k)
= sup

k∈N,2≤`≤k/2

1

1− f(k)
f(`)f(k/`)

<∞.

We will show by induction on k ∈ N that (3.15) hold, or equivalently that for a rapidly
increasing sequence (yi)

k
i=1 of length k and for all ` ≥ 2 we have

(3.23)
∥∥∥ k∑
i=1

yi

∥∥∥
`
≤ kC

f(k)
.

For k = 1 the claim is trivial. Assume that the claim is true for all 1 ≤ k′ < k, let
(yi)

k
i=1 be rapidly increasing sequence of length k, put y =

∑k
i=1 yi and let ` ∈ N.

We consider three different cases.
Case 1: ` ∈ [2, k2 ] (in particular k ≥ 4). Choose E1 < E2 < . . . E` so that

‖y‖` =
1

f(`)

∑̀
j=1

‖Ej(y)‖.
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Using the 1-unconditionality of the unit vector basis of (ei) in S we can assume that (Ej)
`
j=1

is a partition of the the interval [min supp(yi),max supp(yk)] into ` intervals and choose for
j = 1, 2, . . . ` choose i(j) ∈ {1, 2, . . . k} such that

maxEj ∈ (max suppyi(j)−1,max suppyi(j)].

(with y0 = 0 and max supp(0) = 0). We observe that (for the first inequality it is recom-
mended to draw a picture)∥∥∥ k∑

i=1

yi

∥∥∥
`
≤ 1

f(`)

[∑̀
j=1

∥∥∥ i(j)−1∑
i=i(j−1)+1

yi

∥∥∥+
∑̀
j=1

∑̀
s=1

‖Es(yi(j)‖
]

[If ij−1 = i(j)− 1 the first
∑

vanishes, and let i(0) = 0]

≤ 1

f(`)

∑̀
j=1

C
i(j)− i(j − 1)− 1

f(i(j)− i(j − 1)− 1)
+

`

f(`)

n1 + `

n1

[For first part note that subsequences of rapidly increasing sequence are

rapidly increasing and use induction hypothesis, and let
0

0
:= 0]

[For second part use (3.15)]

≤ C k

f(`)f(k/`)
+

2`

f(`)

[By Lemma 3.2.12 and by (3.18)]

= C
[ k

f(`)f(k/`)
+

`

f(`)

f(`)f(k/`)− f(k)

f(k/`)f(`)

]
[Using (3.22)]

= C
[ k

f(`)f(k/`)
+

k

f(k)

f(`)f(k/`)− f(k)

f(k/`)f(`)

]
= C

k

f(k)
.

[The function [1,∞) 3 x 7→ f(x)/x is increasing]

Case 2: k/2 ≤ ` ≤ n1.
In this case we use (3.15) and observe that∥∥∥ k∑

i=1

yi

∥∥∥
`
≤

k∑
i=1

‖yi‖`

≤ 1

f(`)

k∑
i=1

ni + `

ni

≤ 2k

f(`)
≤ 2k

f(k/2)
≤ Ck

f(k)
[By (3.19) and (3.21)]

Case 3: ` > n1 Choose i0 ∈ {1, 2 . . . k} so that ` ∈ (ni0 , ni0+1], with nk+1 :=∞.
Then we deduce that∥∥∥ k∑

i=1

yi

∥∥∥
`
≤
∥∥∥ i0−1∑
i=1

yi

∥∥∥
`

+ 2 +

k∑
i=i0+2

‖yi‖`
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≤ max supp(yi0 − 1)

f(ni0)
+ 2 +

2

f(`)

[By (3.15), (3.16) and (3.19) (part 2)]

≤ 5 ≤ Ck

f(k)
[By (3.19) (part 1) and (3.21)]

which handles the third case and finishes the proof of the induction step.

Remark. With more careful estimation one can actually proof that the constant C in the
proof of Theorem 3.2.11 is 1. It was actually shown in [S1] that if (yi) is a sequence of
increasing `1-averages (i.e. for some ε > yi is an ε − `ni

1 -average for i ∈ N and ni ↗ ∞)
then (yi) has a subsequence (ỹi) whose spreading model is isometrically equivalent to the
unit vector basis (ei) in S.

This implies that

lim
nk>nk−1>...n1→∞

∥∥∥ k∑
i=1

ỹni

∥∥∥ =
∥∥∥ k∑
i=1

ei

∥∥∥ =
k

f(k)
,

where the last equality follows easily from Lemma 3.2.12 by induction on k ∈ N. This
implies, using the arguments of the proof of 3.2.11 that ‖ · ‖` is a f(`)-distortion.

In [AS] a stronger result was shown: Using a strong enough definition of what rapidly
increasing sequences are (but so that nevertheless every block subspace contains such se-
quences) it was shown that rapidly increasing sequences are equivalent to the unit vector
basis. From that it was deduced that S is complementably minimal, every infinite dimen-
sional subspace of S has a further subspace which is isomorphic to S. It is unknown whether
or not S is prime, i.e. whether or not every infinite dimensional complemented subspace of
S is isomorphic to S.

Remark. From our arguments in the proof of Theorem 3.2.11 we can deduce the following
observations which will be important for the constrauction of the space of Gowers and
Maurey.

Let (yi)
k
i=1 be an RIS of length k and ` ∈ N .

If ` ≤ k/2 we have shown (third inequality of handling case 1) that

∥∥∥f(k)

k

k∑
j=1

yj

∥∥∥
`
≤ C f(k)

f(`)f(k/`)
+ 2

`

k

f(k)

f(`)
.

This implies for some constant C1 (using that f is a logarithmic function) that

∥∥∥f(k)

k

k∑
j=1

yj

∥∥∥
`
≤ C1

f(`)
if ` ≤

√
k,

and ∥∥∥f(k)

k

k∑
j=1

yj

∥∥∥
`
≤ C ≤ C1 if

√
k ≤ ` ≤ k2.
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If k2 ≤ ` ≤ n1 we deduce from the computation done in Cases 2 that∥∥∥f(k)

k

k∑
j=1

yj

∥∥∥
`
≤ C f(k)

f(`)
,

and if ` > n1 we deduce from our inequalities in case Case 3 that∥∥∥f(k)

k

k∑
j=1

yj

∥∥∥
`
≤ C f(k)

k
.

So combining all these inequalities we finally get for some universal constant C ′ and all
k, ` ∈ N that

(3.24)
∥∥∥f(k)

k

k∑
j=1

yj

∥∥∥
`
≤ C ′min

(
f(`)

f(k)
,max

(f(k)

f(`)
,
f(k)

k

))
.

From Remark 3.2 we deduce the following:

Corollary 3.2.13. Let ε > 0 For m ∈ N define:

Am =
{f(m)

m

m∑
i=1

yi : (yi)
m
i=1 is an RIS of length m

}
A∗m =

{f(m)

m

m∑
i=1

y∗i : (yi)
m
i=1 is a block in SS∗

}
Note that Am ⊂ CBS and that A∗m ⊂ BS∗ and that for and x ∈ Am there is a x∗ ∈ A∗m so
that x∗(x) ≥ 1/2 (note that ‖yi‖ ≥ 1/2 for all elements of an RIS (yi)). Also note that

‖x‖m = sup
x∗∈A∗m

|x∗(x)| for all x ∈ S.

Let εi ↘ 0. Using Remark 3.2, we can find a lacunary enough sequence M = (mi) ∈ [N]ω

So that

(3.25) ∀i, j∈N∀x ∈ Ami , x
∗ ∈ Amj |〈x∗, x〉| ≤ εmin(i,j).

Definition 3.2.14. A Banach space X is biorthogonally distortable If there is a sequence
of subsets (Bn) of BX and a sequence of subsets (B∗n) of BX∗ so that

a) For all n ∈ N the set Bn is asymptotic, i.e. for all infinite dimensional subspaces
Y ⊂ X, dist(Y,Bn) = 0.

b) There is a c > 0 so that for all n ∈ N and all x ∈ Bn there is an x∗ ∈ B∗n so that
x∗(x) ≥ c.

c) There is a sequence εn ↗ 0 so that for all n 6= m in N

〈B∗m, Bn〉 = sup
x∗∈B∗m,x∈Bn

|x∗(x)| ≤ εmin(m,n).

In this case we call (Bn, B
∗
n) nearly biorthoganl sequences in X.
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Exercise 3.2.15. Assume X separable and has a normalized 1-uncondtional basis (ei)
(so we assume it is the completion of c00 under the norm ‖ · ‖) and assume that X is
biorthogonally distortable. Let (Bn) and (B∗n) be given as in Definition 3.2.14 after passing
to subsequences we can assume that (εn), as given in c), is summable and

∑∞
n=1 εn ≤ 1. We

can also assume that for n ∈ N Bn ⊂ c00 and that B∗n is countable and B∗n ⊂ span(e∗i ) ≡ c00

(pass to a perturbation of a subset for which (b) is still satisfied, with c/2 instead of c). Let
B∗ = ∪B∗n and let σ : B∗<ω → N be injective. For ` ∈ N define

Γ` =
{∑̀
i=1

fi : fi ∈ B∗, for 1 ≤ i ≤ ` and fi ∈ B∗σ(f1,f2,...fi−1)

}
,

and for x ∈ c00

|||x|||` = ‖x‖+ sup
f∈Γ`

|f(x)|.

Show that |||·|||` is an equivalent norm on X, and that there is a sequence (λ`) with λ` ↗∞,
so that (Use the arguments in the construction of Maurey and Rosenthal in Example 2.2.11).

We can also construct a Banach space which does not contain any unconditional basic
sequence

Definition 3.2.16. (The space of Gowers and Maurey, slightly modified)
We first consider a set Q ⊂ c00 ∩ [−1, 1]ω with the following properties:

a) c00 ∩ ([−1, 1] ∩Q)ω ⊂ Q,

b) If (x1, x2, . . . x`) ⊂ Q is a finite block sequence then

1

f(`)

∑̀
i=1

xi,
1√
f(`)

∑̀
i=1

xi ∈ Q

c) Q is countable.

Let (εn) ⊂ (0, 1) summable such that

(3.26)

∞∑
i=1

2εi ≤
√
f(2)− 1

Let M ⊂ N be subset which is lacunary enough satisfying the following condition:

(3.27)
k

f(`)
< εk whenever k, ` ∈M and k < `.

Let σ : Q<ω = {(z∗i )`i=1 : ` ∈ N, z∗i ∈ Q for i ≤ `} →M be injective.
By induction on n ∈ N0 we define a set Fn ⊂ c00 as follows:
For n = 0 we put as usual F0 = {±eii ∈ N} and assume that Fn−1, has been defined for

some n ∈ N. The define for k ∈ N,

U(n, k) =
{ 1

f(k)

k∑
i=1

z∗i : k ∈ N, (z∗i )ki=1 ⊂ Fn−1 finite block
}
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and put Un =
⋃∞ Uk=1(n, k). Then define for ` ∈ N,

C(n, `) =
{ 1√

f(`)

∑̀
i=1

z∗i : (z∗i )`i=1 ⊂ Un block and z∗i ∈ U(n, σ(z∗1 , . . . z
∗
i−1), if i > 1

}
.

Then let

Fn =
{

[m,n](x∗) : x∗ ∈
⋃
`∈N

C(n, `).

For x ∈ c00 we finally define

||x||GM = sup
z∗∈

⋃
Fn

|〈f, x〉|.

And we let GM be the completion of c00 under ‖ · ‖GM .

Theorem 3.2.17. [GM1] GM does not contain any unconditional basis sequence.

Sketch of a proof. An application of the finite version of James’ Theorem, Exercise 3.1.12)
shows that every infinite dimensional blockspace space contains `1 finitely block represented,
this implies every infinite dimensional block space contains Rapidely increasing sequences
defined as in the space S.

For k ∈ N we put U(k) =
⋃
n∈N U(n, k) and C(k) =

⋃
n∈NC(n, k), and define as in S:

||x||k = sup
x∗∈

⋃
Uk

|x∗(x)| for x ∈ c00.

Let (xi)
n
i=1 ⊂ GM be a normalized block in GM and ε > 0. We call (xi)

n
i=1 `

+n
1 average

if ∥∥∥ 1

n

n∑
i=1

xi

∥∥∥ ≥ 1

1 + ε
.

We define RIS as in S, using `+1 averages.

We call a sequence (yi)
k
i=1 a a rapidly increasing sequence (RIS) in GM if there are

εi > 0 and n∈N for for i = 1, . . . k so that

k∑
i=1

εi < 1(3.28)

yi is an εi − `+ni
1 average(3.29)

n1 > 2k(3.30)

f(ni) ≥ max supp(yi−1) and
ni−1

ni
< εi for i = 2, 3, 4, . . . k(3.31)

Step 1: There is a constant C > 0 so that for any (yi) be an RIS and any ` ∈ N

∥∥∥f(`)

`

∑̀
i=1

yi

∥∥∥
k
≤ C min

( f(`)

f(k)
,
f(k)

f(`)

)
(3.32)
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∥∥∥f(`)

`

∑̀
i=1

yi

∥∥∥ ≤ C.(3.33)

We show this claim by induction on ` for the C chosen as in Theorem 3.2.11. For ` = 1 this
is trivial and assuming our claim is true for `− 1 and let

y =
1

f(`)

∑̀
i=1

yi.

By following the same arguments as in the proof of Theorem 3.2.11 we deduce (3.32). In
order to show (3.33) we still need to show that for any ` ≥ 2 and x∗ ∈ C(`) it follows that
|x∗(y)| ≤ C. But this follows from (3.32), the condition (3.27), and from the lacunarity
condition (3.27) on M

Note: If m << k and if (yi)
mk
i=1 is an RIS of length mk. Define for i = 1, 2, . . .m

zi =
f(k)

k

k∑
j=1

yj+(i−1)m.

Then ‖zi‖ ∼ 1, for i = 1, . . . ,m and

∥∥∥ m∑
i=1

zi

∥∥∥ =
f(k)

k

∥∥∥yi∥∥∥ ∼ f(k)

k

km

f(km)
∼ m.

Thus km
f(km)

∑m
i=1 yi is close to an `+m1 average.

Step 2: GM has no unconditional basic sequence.

Let Y be a block subspace let k ∈ N We define by induction on ` ∈ {1, 2, . . . k} the
following elements n` ∈ N, x` ∈ CBY , with supp(x`−1) < supp(x`), if ` > 1, and x∗ ∈ Un`

.
n1 = 1, x1 ∈ BX∩c00 arbitrary, and x∗ ∈ U∗1 with x∗(x) ≥ 1/2 (note that U1 is normalizing).

Assume n`−1, x`−1 and x∗`−1, have been chosen, we put n` = σ(x∗1, . . . x
∗
`−1) and we

choose x`, with supp(x`) > supp(x`−1) to be of the form

x` =
1

f(n`)

n∑̀
i=1

yi,

where (yi) is an RIS with supp(y1) > supp(x`−1). Then we choose x∗` ∈ U∗(n`) with
supp(x∗` ) > supp(x∗`−1) with x∗` (x`) ≥ 1/2.

Also note: At the moment we choose x∗ell we have infinitely many choices (i.e. arbitrary
small perturbations of x∗` ) this means we can, asure that nell+1 = σ(x∗1, x

∗
2, . . . , x

∗
` ) can be

made arbitrarily large, depending on our previous choice. This implies together with the
note after step 1, we can assure that (xi)

k
i=1 can be assumed to be an RIS itself.

From our construction it follows that for

1√
f(`)

∑̀
i=1

x∗i ∈ C` ⊂ BGM∗ .
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and, thus, ∥∥∥∑̀
i=1

xi

∥∥∥ ≥ 1

2

`√
f(`)

.

Using the same arguments as in Example 2.2.11 (Maurey-Rosenthal) we can show that there
is a constant C ′ so that ∥∥∥∑̀

i=1

(−1)ixi

∥∥∥ ≤ C ′ `√
f(`)

.

Since Y was an arbitrary block space this implies that GM cannot contain an uncondtitional
basic sequence.
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3.3 Hilbert space is arbitrarily distortable

The main goal of this section is to show the following

Theorem 3.3.1. [OS1] `p. 1 < p <∞ is biorthogonally distortable.

We will achieve the distortion of `p by “transporting” the nearly biorthogonal sequences
of sets (An) and (A∗n) from the space S and S∗ to sequences of sets (Bn) and (B∗n) in `p
and `∗q . This will be done via the generalized Mazur map which might be of independent
interest.

Exercise 3.3.2. Let 1 < p <∞. Then the mapping

Mp : S`1 → S`p , (ξi)i∈N 7→ (sign(ξi)|ξi|1/p)i∈N.

Is a uniform hoemomorphism from S`p onto S`1 .

Definition 3.3.3. The generalizations is as follows. Let X have a 1-unconditional normal-
ized basis (ei) By the positive cone of X we mean the set

X+ =
{∑

ξiei :∈ X : ξi ≥ 0, for i ∈ N
}
.

We put S+
X = SX ∩X+ and B+

X = BX ∩X+.
If σ = (σi) ⊂ {−1, 1}ω

Xσ =
{∑

ξiei :∈ X : σiξi ≥ 0, for i ∈ N
}
.

is the cone for σ in X.
The entropy function E is defined by

E : `1 ×X → [−∞,∞),
(
(hi), (ξi)

)
7→

∞∑
i=1

|hi| log |ξi|,

with the convention that 0 log log 0 = 0

Remark. If h = (hi) ∈ `+1 with ‖h‖`1 = 1 on can think of (h) being a probability on N,
and for x ∈ X+ E(h, x) would then be the entropy of the random variable x.

Proposition 3.3.4. Let h = (hi) ∈ `1 ∩ c00 and put B = supp(h). Then there exists a
unique x = (ξi) ∈ SX so that

a) E(h, x) = maxy∈SX
E(h, y),

b) supph = suppx = B

c) sign(ξi) = sign(hi) for i ∈ B.

This unique x is then denoted by FX(h) and we call FX : S`1 → SX the generalized Mazur
map from S`1 to SX . Moreover we put EX(h) = E(h, FX(h)) = maxy∈SX

E(h, y).
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Proof. For h ∈ `1 ∩ c00, B = supp(h) we consider the restriction

E(h, ·) :
{
x ∈ S+

X : supp(x) ⊂ B
}
→ [−∞, 0].

Then E(h, ·) is continuous taking real values for x ∈ S+
X with supp(x) = B and taking the

value −∞ if supp(x) ( B , and thus there is an x̃ = (ξ̃i) ∈ S+
X , with supp(x̃) = B for which

E(h, x̃) = max
{
E(h, z) : z ∈ S+

X : supp(z) ⊂ B
}
.

From the strict monotonicity and strict concavity of the log(·) we deduce that for z1, z2 ∈ S+
X

E
(
h,

z1 + z2

‖z1 + z2‖

)
≥ E

(
h,

1

2
(z1 + z2)

)
>
E(h, z1) + E(h, z2)

2
,

and thus that the x̃ is unique. By letting x = (ξi) with ξi = sign(hi)ξ̃i we satisfy (a), (b)
and (c).

Exercise 3.3.5. Justify the name “ generalized Mazur map” and show that FX = Mp if
X = `p.

For the next result we need to define the following mapping Ψ : (0, 1) → (0, 1). First
not that the function

g : (0,∞)→ (0,∞), a 7→ a+
1

a
,

has a minimum at a = 1, is strictly decreasing on (0, 1) and strictly increasing on (1,∞).
Therefore we put

η : (0, 1)→ (0, 1), η(ε) = ε inf
{

log
(1

2

(√
a+

1√
a

))
: |a− 1| > ε

}
,(3.34)

Ψ : (0, 1)→ (0, 1), Ψ(ε) = εη(ε)(3.35)

and note that Ψ(ε) > 0 for ε > 0 and Ψ(ε)↘ 0 if ε↘ 0.

Proposition 3.3.6. Let X have a 1-unconditional basis (ei).

a) Let h ∈ S+
`1
∩ c00, v ∈ B+

X , and ε > 0 so that

E(h, v) ≥ EX(h)−Ψ(ε),

i.e. E(h, v) is close to its maximum E(h, ṽ) of over all v ∈ B+
X , and let u = FX(v).

Then, there is an A ⊂ supp(h) so that

(3.36) ‖Ah‖ ≥ 1− ε and (1− ε)ui ≤ vi ≤ (1 + ε)ui for i ∈ A.

b) Let h1, h2 ∈ S+
`1
c00 with ‖h1 − h2‖ ≤ and let ui = FX(hi), i = 1, 2. Then∥∥∥1

2
(u1 + u2)

∥∥∥ ≥ 1−
√
‖h1 − h2‖

(Recall that if X is uniform convex this means that the closer the value of
‖1

2(u1 + u2)‖ is to 1 the closer u1 and u2 are to each other).
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Proof. We have B := supp(h) = supp(u) and if E(h, v) ≥ FX(h) − Ψ(ε) we must have
supp(v) ⊂ B. After passing to ṽ = B(v) we might assume that supp(v) = B.

We observe that

Ψ(ε) ≥ EX(h)− E(h, v)

≥ E
(1

2
(u+ v)

)
− E(h, v)

[Maximality of EX(h)]

=
∑
i∈B

hi
[

log
(

1
2
(ui + vi)

)
− log vi

]
=
∑
i∈B

hi
[
1
2

log ui + 1
2

log vi + log
(

1
2
(ui + vi)

)
− log

√
uivi − log vi

]
=

1

2

∑
i∈B

hi(log ui − log vi) +
∑
i∈B

log
1

2

(√ vi
ui

+

√
ui
vi

)
≥
∑
i∈B

log
1

2

(√ vi
ui

+

√
ui
vi

)
Define

A =
{
i ∈ B :

∣∣∣ vi
ui
− 1
∣∣∣ ≤ ε}.

First note that i ∈ A ⇐⇒ (1− ε)ui ≤ vi ≤ (1 + ε)ui, and by (3.34) if i 6∈ A then

η(ε) ≤ log
1

2

(√ui
vi

+

√
vi
ui

)
Thus we conclude that∑

i∈B\A

hi ≤
∑
i∈B\A

hi
1

η(ε)
log

1

2

(√ui
vi

+

√
vi
ui

)
≤ Ψ(ε)

η(ε)
= ε.

In order to show (b) let h1, h2 ∈ S+
`1
∩c00 and ui = FX(hi) and define ε ≥ 0 by ‖1

2(u1+u2)‖ =
1 − 2ε. W.l.o.g we assume that ε > 0. Let ũ1 = u1 + εu2 and ũ2 = u2 + εu1. Thus
supp(ũ1) = supp(ũ2) = supph1 ∪ supph2, ‖1

2(ũ1 + ũ2)‖ ≤ 1− ε and, thus,

E(h1, ũ1) ≥ E(h1, u1)

≥ E
(
h1,

ũ1 + ũ2

2(1− ε)

)
[Maximality of E(h1, u1)]

= E
(
h1,

ũ1 + ũ2

2

)
+ | log(1− ε)| ≥ 1

2
E(h1, ũ1) +

1

2
E(h1, ũ2) + | log(1− ε)|

and, thus,

| log(1− ε)| ≤ 1

2
E(h1, ũ1)− 1

2
E(h1, ũ2)

and similarly we can show

| log(1− ε)| ≤ 1

2
E(h2, ũ2)− 1

2
E(h2, ũ1).
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Since for j ∈ supp(x̃1)

| log x̃1,j − log x̃2,j | =
∣∣∣ log

(x1,j + εx2,j

x2,j + εx1,j

)∣∣∣ ≤ | log ε|,

we obtain

ε ≤ | log(1− ε)| ≤ 1

4

(
E(h1, ũ1)− E(h1, ũ2)− E(h2, ũ1) + E(h2, x̃2)

≤ 1

4

∑
j∈supp(x̃1)

(h1,j − h2,j)(log x̃1,j − log x̃2,j)

≤ 1

4
‖h1 − h2‖`1 | log ε| ≤ 1

4
‖h1 − h2‖`1ε−1,

and, thus, ε ≤ 1
2‖h1 − h2‖1/2, hence∥∥∥u1 + u2

2

∥∥∥ = 1− 2ε ≥ ‖h1 − h2‖1/2.

Remark. Proposition 3.3.6 implies that if X is uniform convex the map FX is uniformly
continuous on S+

X and thus on any cone of X. More over the modulus of uniform continuity
only depends on the modulus of uniform convexity.

Indeed, recall that the modulus of uniform convexity:

δX(ε) = inf
{

1−
∥∥∥x+ y

2

∥∥∥ : ‖x− y‖ ≥ ε
}
.

So, if h1, h2 ∈ S+
`1
c00 with ‖h1 − h2‖ < δ2(ε) then it follows from Proposition 3.3.6 that

1−
∥∥FX(h1)+FX(h2)

2

∥∥ < δ(ε) which implies that ‖FX(h1)− FX(h2)‖ < ε.

In our next step we extend that remark to all of SX

Proposition 3.3.7. Let X be a uniform convex Banach space with a 1-unconditional basis.
The map FX : S`1 ∩ c00 → S(X) is uniformly continuous and the modulus of uniform
continuity solely depends on the modulus of uniform convexity of X.

Proof. Let g(ε) be the modulus of uniform continuity of FX |S+
`1

. We first note that if h ∈ S+
`1

and u = FX(h) and I ⊂ supp(h) so that
∑

i∈I hi ≤ ε, then
∥∥∑

i∈I uiei
∥∥ ≤ g(2ε). Indeed,∥∥∥∥∥h− (∑

i 6∈I
hiei

)
/
∥∥∥∑
i 6∈I

hiei

∥∥∥∥∥∥∥∥
`1

≤
∥∥∥∑
i∈I

hiei

∥∥∥
`1

+
∥∥∥∑
i 6∈I

hiei −
(∑
i 6∈I

hiei

)
/
∥∥∥∑
i 6∈I

hiei

∥∥∥
`1

∥∥∥
`1
≤ 2ε

Since the coordinates in I of the vector u = FX(h) and the vector

FX(h)− FX
((∑

i 6∈I
hiei

)
/
∥∥∥∑
i∈I

hiei

∥∥∥
`1

)
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coincide it follows that∥∥∥∑
i∈I

uiei

∥∥∥ =

∥∥∥∥∥FX(h)− FX

((∑
i 6∈I

hiei

)
/
∥∥∥∑
i 6∈I

hiei

∥∥∥)∥∥∥∥∥
`1

≤ g(2ε).

Let h1, h2 ∈ S`1 and ui = FX(hi), for i = 1, 2 and put ε = ‖h1 − h2‖ Then sign(ui,j) =
sign(hi,j) for i = 1, 2 and j ∈ supp(hi). Letting

I = {j ∈ supp(h1) ∪ supp(h1) : sign(x1,j) 6= sign(x2,j)}

and hi = (hi,j)j∈N ∈ `+1 , and, similarly, |ui| = FX(|hi|) = (ui,j)j∈N ∈ X+, for i = 1, 2.

‖u1 − u2‖ ≤
∥∥|u1| − |u2|

∥∥+
∥∥∥∑
j∈I

(|u1,j |+ |u2,j |)ej
∥∥∥

≤ g
(∥∥|h1| − |h2|

∥∥
`−1

)
+
∥∥∥∑
j∈I
|u1,j |ej

∥∥∥+
∥∥∥∑
j∈I
|u2,jej |

∥∥∥ ≤ g(ε) + 2g(2ε).

[Note that
∑
j∈I
|hi,j | ≤ ‖h1 − h2‖ = ε, for i = 1, 2]

Definition 3.3.8. A Banach space X is uniformly smooth If for each x ∈ SX there is a
unique x∗ ∈ SX∗ so that x∗(x) = 1 and if the mapping Φ : SX → SX∗ , x→ x∗ is uniformly
contiunous.

The map Φ is called support map.

Proposition 3.3.9. Let X be uniform smooth. Extend the support homogenuously map
(·)∗ : SX → SX∗ to a map (·)∗X → X∗, i.e for x ∈ X \ {0}, x∗ = ‖x‖ ·

(
x∗

‖x‖
)
.

Then the norm function is differentiable on X \ {0} with

∂

∂x
‖x‖ = ∇‖x‖ = x∗,

Proof. We will show that for x, y ∈ SX , and λ > 0

x∗(y) ≤ ‖x+ λy‖ − ‖x‖
λ

≤ (x+ λy)∗(y)

‖x+ λy‖
,

which implies our claim after letting λ↘ 0.

x∗(y) =
x∗(λy)

λ
=
x∗(x+ λy)− 1

λ

≤ ‖x+ λy‖ − ‖x‖
λ

=
‖x+ λy‖2 − ‖x‖ · ‖x+ λy‖

λ‖x+ λy‖

≤ (x+ λy)∗(x+ λy)− (x+ λy)∗(x)

λ‖x+ λy‖

=
(x+ λy)∗(λy)

λ‖x+ λy‖
=

(x+ λy)∗(y)

‖x+ λy‖
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Theorem 3.3.10. (Pisier) Every uniformly convex Banach space admits an equivalent norm
which is also uniformly smooth and every uniformly smooth Banach space admits an equiv-
alent norm which is also uniform convex.

Proposition 3.3.11. Let X be a unifrom smooth and uniform convex Banach space with
a 1-unconditional basis (ei) Then FX : S`1 → SX is invertible and F−1 is also uniformly
continuous, with the modulus of continuity solely on the modulus of uniform smoothness of
X.

Moreover

F−1
X : SX → `1, x =

∞∑
i=1

xiei 7→
∞∑
i=1

sign(xi)xix
∗
i ei,

where x∗ =
∑∞

i=1 x
∗
i ei normalizes x.

Proof. The biorthogonal functionals (e∗i ) are a 1-unconditional basis for X∗ andthusu we
can express for x ∈ SX , x∗ as

x∗ =
∑

i∈supp(x)

x∗i ei <

with sign(x∗i ) = sign(xi) and x∗ ◦ x := (x∗i · xi) ∈ S
+
`1

.

Let G(x) = |x∗| ◦ x. We claim that G : SX → S`1 is uniform continuous. Indeed, for
x, y ∈ SX and u = G(x) and v = G(y) we deduce that

‖u− v‖`1 =
∥∥|x∗| ◦ x− |y∗| ◦ y∥∥

≤
∥∥|x∗| ◦ (x− y)

∥∥+
∥∥|x∗ − y∗| ◦ (y)

∥∥ ≤ ‖x− y‖+ ‖x∗ − y∗‖,

which proves that G is uniform continuous and that the modulus of uniform continuity
solely depends on the modulus of uniform continuity of the map SX 3 x→ x∗ ∈ SX∗ .

It remains to show that G = F−1X. Since G(x) = sign(x) ◦ G(|x|), and FX(x) =
sign(x) ◦ F (|x|) it is enough to show that for h ∈ S+

`1
∩ c00 and x ∈ S+

X ∩ c00 we have
G(F (h) = h and F (G(x)) = x.

If h ∈ S+
`1
∩ c00 and x = F (h) then, by the Lagrange multiplier method, for some λ > 0

(hi/xi)i∈supph = ∇xE(h, x) = λ∇‖ · ‖(x) = x∗,

Thus h = λx ◦ x∗ = λG(x). It follows (take norm on both sides) that λ = 1 and that
G(F (h) = G(x) = h.

In order to show that F (G(x)) = x, it is enough to show that G injective. So assume
that x, y ∈ S+

X and h = x∗ ◦ |x| = y∗ ◦ |y|. Let U = {u ∈ X+ : supp(u) = supp(h)} and for
u ∈ U put f(u) := ‖u‖ − E(h, u). f is strictly convex on U , and therefore there is at most
one point z ∈ U for which ∇f(z) = 0. But

∇f(z) = 0 ⇐⇒ z∗ −
∑

i∈supp(h)

hi
zi

= 0 ⇐⇒ h = z ◦ z∗.
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Now we will sketch how to show that `2 is biorthogonally distortable. We consider the
nearly biorthogonal sets (Am) and (A∗) in S and S∗, respectively, as constructed in Corollary
3.2.13

Am =
{f(m)

m

m∑
i=1

yi : (yi)
m
i=1 is an RIS of length m

}
A∗m =

{f(m)

m

m∑
i=1

y∗i : (yi)
m
i=1 is a block in SS∗

}
Let εk ↘ 0. As we have shown in Corollary 3.2.13 we can pass to subsequence (Bm, B

∗
m) of

(Am, A
∗
m) so that for some constant C:

∀m∈N ∀x∈Bm ∃x∗∈B∗m |x∗(x)| ≥ (1− εm), 1 ≤ ‖x‖ ≤ C,(3.37)

∀m 6=k, m, k∈N ∀x∈Bm, x∗∈B∗m |x∗(x)| ≤ εmin(m,k(3.38)

∀m∈N ∀Y ↪→ X, dim(Y ) =∞ dist(Bm, Y ) = 0.(3.39)

Since (ei) is an unconditional and subsymmetric basis of S, it follows also that

∀m∈N Bm and B∗m are unconditional and spreading(3.40)

(A ⊂ Xunconditionall and spreading means that if x =
∑
aiei ∈ A then

∑
σiaieni ∈ A, for

and (σi) ⊂ {+1,−1} and increasing (ni) ⊂ N).

Theorem 3.3.12. For m ∈ N define

Cm =
{
x∗ ◦ |x|, with x∗ ∈ B∗m, x ∈ Bm and x∗(x) ≥ 1/2

}
.

and for 1 < p, q <∞ with 1
p + 1

q = 1 we put

C(p)
m = Mp(Cm) = {(sign|xi|1/p) : x ∈ Cm} and C∗(p)m = Mq(Cm) = {(sign|xi|1/q) : x ∈ Cm}

Then (C
(p)
m )andd (C

∗(p)
m ) are nearly biorthogonal in `p.

Lemma 3.3.13. [OS1][Lemma 3.5] Let Y be a block subspace of `1 and ε > 0 and m ∈ N.
Then there is a vector u ∈ S which is an (1 + ε)-`m1 average and a u∗ ∈ SS∗ so that
u∗(u) > 1− ε and dist(u∗ ◦ |u|, Y ) < ε.

We skip the quite technical proof of Lemma 3.3.13 which makes use of Proposition 3.3.6
(a).

Proof of Theorem 3.3.12. We will show our claim for p = 2, and put Dm = C
(2)
m (note

C
∗(2)
m = C

(2)
m ).

Step 1: For m ∈ N Cm is asymptotic in `1. Indeed, let Y be a block subspace of `1. Then
we can use Lemma 3.3.13 to find an RIS (xi)

m
i=1 in S and (x∗i ) ⊂ SS∗ so that x∗i (xi) > 1− ε

and dist(|xi| ◦ x∗i , Y ) then choose

y =
f(m)

m

m∑
i=1

xi ∈ Am and y∗ =
1

f(m)

m∑
i=1

x∗i ∈ A∗m,
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and

dist(y∗ ◦ |y|)Y ) ≤ 1

m

m∑
i=1

dist(x∗i ◦ |xi|) < ε.

Step 2: If A ⊂ `1 is asymptotic then M2(A) is asymptotic in `2. This follows from the fact
that if Y ⊂ `1 is a block subspace then M2(Y ∩ SY ) is also a sphere of a block subspace of
`2.
Step 3: (Cm) is nearly biorthogonal (to itself). Let k 6= `, and v ∈ Ck, and w ∈ C`. We
write

v = (vi), with vi = sign(xi)
√
|xi| · |x∗i | and x ∈ Bk, x∗ ∈ B∗k

w = (wi), with wi = sign(yi)
√
|yi| · |y∗i | and y ∈ Bk, y∗ ∈ B∗k

Then 〈
v, w〉

∣∣ ≤∑
i∈N
|vi| · |wi|

=
∑

(|xi| · |x∗i | · |yi| · |y∗i |)1/2

≤
(∑

|x∗i | · |yi|
)1/2(∑

|y∗i | · |xi|
)1/2

≤ εmin{k,`}.

(Since B` and Bk are unconditional)
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Chapter 4

Versions of Ramsey’s theorem in
Banach spaces

4.1 Gowers’ game on blocks and the dichotomy theorem

In this section we present a special case of Gowers’ Ramsey theorem on block spaces of a
Banach space with a basis. Throughout this section let X be a separable Banach space
with a normalized and bimonotone basis (ei). The assumed bimonotonicity of (ei) is not
really necessary but will simplify the arguments.

As usual we think of X being the completion of c00 under some norm. For x, y ∈ c00 we
write x < y if max supp(x) < min supp(y). We adopt the convention that 0 < x and 0 > x
for any x ∈ c00.

If Y,Z are block subspaces of X we write Y � Z or Z � Y if Y is a block subspace of
Z. For x ∈ c00 and Y � X we write x < Y if x < y for all y ∈ Y . of Z.

We also assume that our space satisfies the following technical condition:

(∗) For all x ∈ c00 there is an ε = ε(supp(x)) so that for all y ∈ c00, with x > y it follows
that

‖x+ y‖ ≥ ‖x|+ ε‖y‖.

Exercise 4.1.1. In order to show that condition (∗) holds for an arbitrary small pertur-
bation of a norm we define the following norm on c00. Let c > 1. For x = (xi) ∈ c00

put

|||x||| = sup
{ ∞∑
i=0

c−ixni : n0 < n1 < n2 < . . .
}
.

Show that ||| · ||| is an equivalent norm on c0 which satisfies (∗)

Let B∞ be the set of all infinite normalized block sequences in X and Bf the set of all
finite normalized block sequences in X. We also consider ∅ to be an element of Bf (block of
length 0). For Y � X we denote the set of all normalized infinite or finite block sequences
in Y (these are exactly the normalized block of the block basis generating Y ) by B∞(Y )
and Bf (Y ).

67
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If x = (x1, x2, . . . xm) ∈ Bf and y = (y1, x2, . . . ym) ∈ Bf or y = (yi) ∈ B∞ we write
x < y if xm < y1 and in this case we denote the concatenation of x and y by (x, y), i.e.

(x, y) =

{
(x1, x2, . . . , xm, y1, y2, . . . yn) if y ∈ Bf

(x1, x2, . . . , xm, y1, y2, . . .) if y ∈ B∞.

We denote the length of x by |x|.

Definition 4.1.2. We consider on B∞ the product topology of the discrete topology on

SX ∩ c00, i.e. if y(n) = (y
(n)
i )∞i=1 ∈ B∞ for n ∈ N and y = (yi)

∞
i=1 ∈ B∞ then y(n) converges

to y if and only if for any m ∈ N there is an n0 ∈ N so that for all n ≥ n0

y
(n)
i = yi whenever n ≥ n0 and i = 1, 2 . . .m.

For A ⊂ B∞ we denote the closure in the product topology of the discrete topology on
SX ∩ c00 by A.

For ε = (εi) ⊂ [0,∞) and A ⊂ B∞ we define the ε fattening of A ⊂ B∞ by

(4.1) Aε =
{

(zi)∈B∞ : ∃(xi)∈A ‖xi−zi‖≤εi for i=1, 2..
}
.

If ε = (εi)
n
i=1 is a finite sequence we understand by Aε the set Aη with

η = (ε1, ε2, . . . εn, 0, 0, 0, . . .).

For A ⊂ B∞ and Y ≺ X we consider now the following infinite game between two
players

Player I : chooses Y1 � Y
Player II: chooses y1 ∈ SY1 ∩ c00

Player I : chooses Y2 � Y
Player II: chooses y2 ∈ SY2 ∩ c00
...

Player I wins if the resulting sequence (y1, y2, . . .) lies in A.

It follows from Theorem 1.2.4 that the game is determined if A is Borel with respect
to the product of the discrete topology on SX , i.e. that one of the Players has a winning
strategy.

Write WI(A, Y ) if Player I has a winning strategy for the (A, Y )-game and we write
WII(A, Y ) if Player II has a winning strategy.

The main result of this section is the following.

Theorem 4.1.3. [Go3]. Assume A ⊂ B∞ is closed. Then the following are equivalent.

1. For all ε = (εi)⊂(0, 1] and for all Y �X it follows WI(Aε, Y )

2. For all ε = (εi)⊂(0, 1] and for all Y �X there exists Z � Y so that every normalized
block sequence (zn) in Z is in Aε.

Remark. In [Go3] above result was proved for coanlytic sets A ⊂ B∞
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Proof. Needs to be rewritten.

Theorem 4.1.3 was a central part for Gowers to prove his dichotmomy result which lead
to the solution of the homogeneous Banch space problem.

The Homogeneous Banach space problem.
Let X be an infinite dimensional separable Banach space which is isomorphic to all of its
infinite dimensional closed subspace (we call such a space homogenuous).

Does it follow that X is isomorphic to Hilbert space?

In order to outline the solution we need Gowers’ dichotomy Theorem.

Definition 4.1.4. Hereditary Indecomposable Spaces.
An infinite dimensional Banach space X is called indecomposable if it is not isomorphic the
complemented sum of two infinite dimnsional Banach spaces Z1 and Z2.

X is called hereditary indecomposable (HI) if no infinite dimensional closed subspace is
decomposable.

Remark. Note that an (HI) space cannot contain an unconditional basic sequence. The
existence of (HI) spaces was shown in [GM1] and [GM2].

Assume that Y and Z are two closed subspaces of a Banach space X in order for

Y + Z = {y + z : y ∈ Y and z ∈ Z}

to be the complemented sum of Y and Z it is necessary and sufficinet that the map

Y × Z → y + Z, (y, z) 7→ (y + z)

is an isomorphism Here Y × Z is the topolical product of Y and Z which can be endowed
for example with the norm ‖(y, z)‖ = ‖y‖+ ‖z‖.

Thus, for Y + Z not being the complemented sum of Y and Z, it is necessary and
equivalent that there are sequences (yn) ⊂ SY and (zn) ⊂ SZ for which limn→∞ ‖yn−zn‖ =
0. Therefore we observed the following proposition.

Proposition 4.1.5. For space X the following are equivalent

a) X is (HI)

b) dist(SY , SZ) = infy∈SY ,z∈SZ
‖y − z‖ = 0 for any two infinite dimensional subspaces

Y, Z ↪→ X.

Theorem 4.1.6. Gowers’ Dichotomy [Go3]
If X is an infinite dimensional Banach space. Then either it contains an unconditional
basic sequence or it has a subspace which is (HI).

Proof. W.l.o.g. X has a normalized basis (ei) and let C > 1.
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Note that a normalized block sequence (xn) is C-unconditional if and only if for all
normalized blocks (yn), all n ∈ N, and all (λi) ∈ [0, 1]n∥∥∥ n∑

i=1

(−1)iλixi

∥∥∥ ≤ C∥∥∥ n∑
i=1

λixi

∥∥∥.
Let X be a Banach space with normalized basis (ei). For a fixed C > 1 we define

A(C) =

{
(xn) :

(xn) normalized block of (ei)

∀n∈ N ∀(λi)ni=1⊂ [0, 1]
∥∥∥∑n

i=1(−1)iλixi

∥∥∥ ≤ C∥∥∥∑n
i=1 λixi

∥∥∥
}

=
⋂

n∈N,(λi)ni=1⊂[0,1]

{
(xn) ⊂ SX block :

n∑
i=1

(−1)iλixi

∥∥∥ ≤ C∥∥∥ n∑
i=1

λixi

∥∥∥}.
Note that A(C) is closed in the product topology of the discrete topology, and that therefore
the A(C)-game is determined and that Theorem 4.1.3 applies.

Let ε > 0. Now, either Player I has a winning strategy for (A(C))(2−nε) ⊂ A(C+ε) on
every closed Y ↪→ X. Then we deduce from Theorem 4.1.3 that there is a normalized
blocksequence (yn) all of its normalized blocks are in A(C+ε) and it follows that (yn) is
(C + ε)-unconditional. Or Player II has a winning strategy on some closed block subspace
Y of X. He in particular has a winning strategy if Player I chooses Z1, Z2, Z1, Z2, . . . for
any given block subspaces Z1 and Z2 of Y . Therefore Player II can choose a normalized
block (zi) in Y so that z2i−1 ∈ Z1 and z2i ∈ Z2 for which there is an n ∈ N and a sequence
(λi)

n
i=1 in [−1, 1] So that

‖
2n∑
i=1

(−1)iλizi

∥∥∥ > C‖
2n∑
i=1

λzi

∥∥∥.
We choose

y1 =
n∑
i=1

λ2i−1z2i−1

y2 =
n∑
i=1

λ2iz2i

and assume w.l.o.g that ‖y1‖ = 1 (otherwise divide y1 and y2 by ‖y1‖) and that ‖y2‖ ≤ ‖y1‖
(otherwise swap the roles of y1 and y2).

It follows that

1 ≥ ‖y2‖ ≥ 1− ‖y1 + y2‖ ≥ 1− 1

C
‖y1 − y2‖ ≥ 1− 2

C
=
C − 2

C

and thus ∥∥∥y1 +
y2

‖y2‖

∥∥∥ ≤ ∥∥∥y1 + y2

∥∥∥+ ‖y2‖
(

1− C − 2

C

)
≤ 4

C
.

It follows that for any two infinite dimensional subspaces Z1 and Z2 of Y dist(SZ1SZ2) ≤
5
C
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It follows that

‖y1 + y2‖ ≤
1

C
‖y1 − y2‖ ≤

2

C

which yields dist(Z1, Z2) ≤ 2
C .

Now we consider the a sequence Cn ↗∞ and apply the argument successively for each
Cn. We will get block spaces X = Y0 � Y1 � Y2 so that either for some n Yn has a Cn + 1-
unconditional subsequence or for all n and all closed subspaces Z1, Z2 ⊂ Yn it follows that
dist(SZ1SZ2) ≤ 5

C n
.

In the second case we take Z to be a diagonal space of the Yn’s (i.e. Z = span(zi) with
z1 < z2 < . . . and zn ∈ Yn for n ∈ N) and deduce that Z is (HI).

Theorem 4.1.7. [GM2] A hereditary indecomposable space is not isomorphic to any proper
subspaces.

In particular Theorems 4.1.6 and 4.1.7 yield that if X is an infinite dimensional Banach
space which is isomorphic to all of its subspaces, it must contain an unconditional basic
sequence and, thus, have an unconditional basis and all its infinite dimensional subspaces
have unconditional bases.

But this only happens in Hilbert space as the following result by Komorowski and
Tomczak-Jaegermann shows.

Theorem 4.1.8. [KT] Let X be a homogenous Banach space not containing `2. Then X
has an infinite dimensional closed subspace without unconditional basis.
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4.2 Trees and Branches in Banach spaces and embedding
theorems

In this section we present a second version of Ramsey like theorems in Banach space and
consider a similar game to the one introduced in Section 4.1. But this time Player I will
only be able to choose cofinite dimensional subspaces of a given space.

We first introduce some notation.

Definition 4.2.1. Let Z be a Banach space and E = (En) be a sequence of finite di-
mensional subspaces of Z. We call (En) a finite dimensional decomposition of Z , and
we abbreviate it by FDD, if for every x ∈ X there is a unique sequence (xn) ⊂ X, with
xn ∈ En, for n ∈ N, so that x =

∑∞
n=1 xn.

Note that FDD’s can be thought of as a generalization of bases. Indeed, if dim(En) = 1,
for all n ∈ N for an FDD (En) then (xn), where xn ∈ En \ {0} for n ∈ N, is a basis. Many
basic observations on bases can be extended to FDDs.

Let Z be a Banach space with an FDD E = (En). For n ∈ N we denote the n- th
coordinate projection by PEn , i.e. PEn : Z → En,

∑
zi 7→ zn. For finite A ⊂ N we put

PEA =
∑

n∈A P
E
n . As in the case of bases one can show that the projection constant of (En)

(in Z)

K = K(E,Z) = sup
m≤n
‖PE[m,n]‖

is finite.

As in the case of bases we call (Ei) bimonotone (in Z) if K = 1. By passing to the
equivalent norm

||| · ||| : Z → R, z 7→ sup
m≤n
‖PE[m,n](z)‖ ,

we can always renorm Z so that K = 1.

(Ei) is called a C-unconditional FDD of Z if for all (xi)
n
i=1 ⊂ Z, with xi ∈ Ei, for i ∈ N,

it follows that ∥∥∥ n∑
i=1

εixi

∥∥∥ ≤ ∥∥∥ n∑
i=1

xi

∥∥∥ for all (εi) ⊂ {+1,−1},

and it is called a suppression C-unconditional FDD of Z if

∥∥∥∑
i∈A

xi

∥∥∥ ≤ ∥∥∥ n∑
i=1

xi

∥∥∥ for all A ⊂ {1, 2, . . . , n}.

As in the case of bases, C-unconditionality implies suppression C-unconditionality, and
suppression C-unconditionality implies C-unconditionality. We call (Ei) unconditional or
suppression unconditional if there is a C ≥ 1 for which (Ei) unconditional or suppression
unconditional, respectively.

In important example are the `p-sums of finite dimesnional spaces (Ei).

(⊕∞i=1Ei)`p =
{

(xi) : xi ∈ Ei, for i ∈ N, and
∑
i

‖xi‖p <∞
}
,
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(⊕∞i=1Ei)c0 =
{

(xi) : xi ∈ Ei, for i ∈ N, and lim
i→∞
‖xi‖ = 0

}
.

For a sequence (Ei) of finite dimensional spaces we define the vector space

c00(⊕∞i=1Ei) =
{

(zi) : zi ∈ Ei, for i ∈ N, and {i ∈ N : zi 6= 0} is finite
}
,

which is dense in each Banach space for which (En) is an FDD. For A ⊂ N we denote by
⊕i∈AEi the linear subspace of c00(⊕Ei) generated by the elements of (Ei)i∈A and we denote
its closure in Z by (⊕Ei)Z . As usual we denote the vector space of sequences in R which
are eventually zero by c00 and its unit vector basis by (ei).

The vector space c00(⊕∞i=1E
∗
i ), where E∗i is the dual space of Ei, for i ∈ N, is a w∗-dense

subspace of Z∗. (More precisely E∗i is the subspace of Z∗ generated by all elements z∗

for which z∗|En = 0 if n 6= i. E∗i is uniformly isomorphic to the dual space of Ei and is
isometric to it if K(E,Z) = 1.) We denote the norm closure of c00(⊕∞i=1E

∗
i ) in Z∗ by Z(∗).

Z(∗) is w∗-dense in Z∗, the unit ball BZ(∗) norms Z and (E∗i ) is an FDD of Z(∗) having a
projection constant not exceeding K(E,Z). If K(E,Z) = 1 then BZ(∗) is 1-norming and
Z(∗)(∗) = Z.

For z ∈ c00(⊕Ei) we define the E-support of z by

suppE(z) =
{
i ∈ N : PEi (z) 6= 0

}
.

A non-zero sequence (finite or infinite) (zj) ⊂ c00(⊕Ei) is called a block sequence of (Ei) if

max suppE(zn) < min suppE(zn+1), whenever n ∈ N (or n< length(zj)),

and it is called a skipped block sequence of (Ei) if 1 < min suppE(z1) and

max suppE(zn) < min suppE(zn+1)− 1, whenever n ∈ N (or n < length(zi)).

Let δ = (δn) ⊂ (0, 1]. A (finite or infinite) sequence (zj) ⊂ SZ = {z ∈ Z : ‖z‖ = 1} is called
a δ-block sequence of (En) or a δ-skipped block sequence of (En) if there are 1 ≤ k1 < `1 <
k2 < `2 < · · · in N so that

‖zn − PE[kn,`n](zn)‖ < δn, or ‖zn − PE(kn,`n](zn)‖ < δn, respectively,

for all n ∈ N (or n ≤ length(zj)). Of course one could generalize the notion of δ-block and
δ-skipped block sequences to more general sequences, but we prefer to introduce this notion
only for normalized sequences. It is important to note that in the definition of δ-skipped
block sequences k1 ≥ 1, and that therefore the E1-coordinate of z1 is small (depending on
δ1).

A sequence of finite-dimensional spaces (Gn) is called a blocking of (En) if there are
0 = k0 < k1 < k2 < · · · in N so that Gn = ⊕kni=kn−1+1Ei, for n = 1, 2, . . ..

Definition 4.2.2. An FDD (Ei) of a Banach space is called shrinking if the sequence of
its coordinate functionals (E∗i ) is an FDD of X∗, and (Ei) is called boundedly complete if
the series

∑
xi, xi ∈ Ei, for i ∈ N converges whenever supn∈N ‖

∑n
i=1 xi‖.

(Fi) is called an unconditional finite dimensional decomposition (UFDD), if for all x ∈ X,
the representation as x =

∑∞
i=1 xi, with xi ∈ Ei, for i ∈ N, converges unconditionally.
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Let A ⊂ SωZ and B =
∏∞
i=1Bi, where Bn ⊂ SZ for n ∈ N.

We consider the following (A,B)-game between two players: Assume that E = (Ei) is
an FDD for Z.

Player I chooses n1 ∈ N ,

Player II chooses z1 ∈ c00

(
⊕∞i=n1+1 Ei

)
∩B1 ,

Player I chooses n2 ∈ N ,

Player II chooses z2 ∈ c00

(
⊕∞i=n2+1 Ei

)
∩B2 ,

...

Player I wins the (A,B)-game if the resulting sequence (zn) lies in A. If Player I has a
winning strategy (forcing the sequence (zi) to be in A) we will write WI(A,B) and if Player
II has a winning strategy (being able to choose (zi) outside of A) we write WII(A,B). If
A is a Borel set with respect to the product of the discrete topology on SωZ (note that B is
always closed in the product of the discrete topology on SωZ), it follows from Theorem 1.2.4
that the game is determined, i.e., either WI(A,B) or WII(A,B).

Let us define WII(A,B) slightly differently from the definition provided in Section 1.1
and use trees in Banach spaces.

We define

T∞ =
⋃
`∈N

{
(n1, n2, . . . , n`) : n1 < n2 < · · ·n` are in N

}
.

If α = (m1,m2, . . . ,m`) ∈ T∞, we call ` the length of α and denote it by |α|, and β =
(n1, n2, . . . , nk) ∈ T∞ is called an extension of α, or α is called a restriction of β, if k ≥ `
and ni = mi, for i = 1, 2, . . . , `. We then write α ≤ β and with this order (T∞,≤) is a tree.

In this section trees in a Banach space X are families in X indexed by T∞, thus they
are countable infinitely branching trees of countably infinite length.

For a tree (xα)α∈T∞ in a Banach space X, and α = (n1, n2, . . . , n`) ∈ T∞ ∪ {∅} we
call the sequences of the form (x(α,n))n>n`

nodes of (xα)α∈T∞ . The sequences (yn), with
yi = x(n1,n2,...,ni), for i ∈ N, for some strictly increasing sequence (ni) ⊂ N, are called
branches of (xα)α∈T∞ . Thus, branches of a tree (xα)α∈T∞ are sequences of the form (xαn)
where (αn) is a maximal linearly ordered (with respect to extension) subset of T∞.

If (xα)α∈T∞ is a tree in X and if T ′ ⊂ T∞ is closed under taking restrictions so that for
each α ∈ T ′ ∪{∅} infinitely many direct successors of α are also in T ′ then we call (xα)α∈T ′

a full subtree of (xα)α∈T∞ . Note that (xα)α∈T ′ could then be relabeled to a family indexed
by T∞ and note that the branches of (xα)α∈T ′ are branches of (xα)α∈T∞ and that the nodes
of (xα)α∈T ′ are subsequences of certain nodes of (xα)α∈T∞ .

We call a tree (xα)α∈T∞ in a Banach space X normalized if ‖xα‖ = 1, for all α ∈ T∞
and weakly null if every node is weakly null. More generally if T is a topology on X and
a tree (xα)α∈T∞ in a Banach space X is called T -null if every node converges to 0 with
respect to T .

If (xα)α∈T∞ is a tree in a Banach space Z which has an FDD (En) we call it a block tree
of (En) if every node is a block sequence of (En).
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We will also need to consider trees of finite length. For ` ∈ N we call a family
(xα)α∈T∞,|α|≤` in X a tree of length `. Note that the notions nodes, branches, T -null
and block trees can be defined analogously for trees of finite length.

Remark. Assume that (xn) is a sequence in X. We can define the associated tree as follows:
For (n1, n2, . . . nk) ∈ T∞ we put x(n1,n2,...nk) := xnk

.
Note that then every subsequence of (xn) is a branch of (xα)α∈T∞ and vice versa, and

that (xα)α∈T∞ is normalized, weakly null or a block tree, if (xn) is a normalized, weakly
null or a block sequence.

Using the formal definition of winningstrategies as introduced in chapter 1 we can easily
derive the following Proposition.

Proposition 4.2.3. Assume that Z is a Banach space with an FDD (Ei), A ⊂ SωZ and
B =

∏∞
i=1Bi, with Bi ⊂ SZ for i ∈ N.

Then Player II has a winning strategy for the (A,B)-game if and onlfy if

(WII(A,B)) There exists a block tree (xα)α∈T∞ of (Ei) in SZ all of whose branches are
in B but none of its branches are in A.

In case that the (A,B)-game is determined WI(A,B) can be therefore stated as follows.

(WI(A,B)) Every block tree (xα)α∈T∞ of (Ei) in SX , all of whose branches are in B,
has a branch in A.

The proof of the following Proposition is easy.

Proposition 4.2.4. Let A, Ã ⊂ SωZ , B =
∏∞
i=1Bi, with Bi ⊂ SZ for i ∈ N. Assume that

the (A,B)-game and the (Ã,B)-game are determined.

a) If A ⊂ Ã, then

WI(A,B)⇒WI(Ã,B) and WII(Ã,B)⇒WII(A,B) .

b) WI(A,B) ⇐⇒ ∃ n∈ N ∀ x∈
(
⊕∞i=n+1 Ei

)
∩B1 WI(A(x),

∏∞
i=2Bi)

c) If ` ∈ N, ε = (εi)
`
i=1 ⊂ [0,∞) and xi, yi ∈ Bi with ‖xi − yi‖ ≤ εi for i = 1, 2, . . . , `

then

WI

(
A(x1, x2, . . . , x`),

∞∏
i=`+1

Bi

)
⇒WI

(
Aε(y1, y2, . . . , y`),

∞∏
i=`+1

Bi

)
.

Here A(x1, x2, . . . , xn), for x1, . . . xn ∈ SZ , and Aε, the ε-fattening of A, was defined
in (4.1) of Section 4.1

Now we can state one of our main combinatorial principles.

Theorem 4.2.5. Let Z have an FDD (Ei) and let Bi ⊂ SZ , for i = 1, 2, . . .. Put B =∏∞
i=1Bi and let A ⊂ SωZ .

Assume that for all ε = (εi) ⊂ (0, 1] we have WI(Aε,B).
Then for all ε = (εi) ⊂ (0, 1] there exists a blocking (Gi) of (Ei) so that every skipped

block sequence (zi) of (Gi), with zi ∈ Bi, for i ∈ N, is in Aε.
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Proof. Let ε = (εi) ⊂ (0, 1] be given. W.l.o.g assume that WI

(
A,B) (otherwise replace A

by Aε/2 and ε by ε/2).

For k = 0, 1, 2, . . . put ε(k) = (ε
(k)
i ) with ε

(k)
i = εi(1− 2−1−k) for i ∈ N.

For ` ∈ N we write B(`) =
∏∞
i=`+1Bi.

By induction we choose for k ∈ N numbers nk ∈ N so that 0 = n0 < n1 < n2 < · · · , and
so that for any k ∈ N, if Gk = ⊕nk

i=nk−1+1Ei,

WI

(
Aε(k)(σ, x),B(`+1)

)
for any 0 ≤ ` < k and any normalized skipped block(4.2)

σ = (x1, x2, . . . , x`) ∈
∏̀
i=1

Bi of (Gi)
k−1
i=1 (σ = ∅ if ` = 0)

and any x ∈ S⊕∞i=nk+1Ei ∩B`+1

WI

(
Aε(k)(σ),B(`)

)
for any 0 ≤ ` < k and any normalized skipped block(4.3)

σ = (x1, x2, . . . , x`) ∈
∏̀
i=1

Bi of (Gi)
k
i=1

For k = 1 we deduce from Proposition 4.2.4 (b), the fact that and the hypothesis that there
is an n1 ∈ N so that WI

(
Aε(1)(x),B(1)

)
for any x ∈ S⊕∞i=n1+1Ei ∩Bi. This implies (4.2) and

(4.3) (note that for k = 1 σ can only be chosen to be ∅ in (4.2) and (4.3)).
Assume n1 < n2 < · · ·nk have been chosen for some k ∈ N. We will first choose nk+1 so

that (4.2) is satisfied. In the case that k = 1 we simply choose n2 = n1+1 and note that (4.2)
for k = 2 follows from (4.2) for k = 1 since in both cases σ = ∅ is the only choice. If k > 1 we
can use the compactness of the sphere of a finite dimensional space and choose a finite set
F of normalized skipped blocks (x1, x2, . . . , x`) ∈

∏`
i=1Bi, of (Gi)

k
i=1 so that for any ` ≤ k

and any normalized skipped block with length `, σ = (x1, x2, . . . , x`) ∈
∏`
i=1Bi of (Gi)

k
i=1,

there is a σ′ = (x′1, x
′
2, . . . , x

′
`) ∈ F with ‖xi − x′i‖ < εi2

−k−2, for i = 1, 2, . . . , `. Then,
using the induction hypothesis (4.3) for k, and Proposition 4.2.4 (b), we choose nk+1 ∈ N
large enough so that WI

(
Aε(k)(σ, x),B(`+1)

)
for any σ ∈ F and x ∈ S⊕∞i=nk+1+1Ei ∩ B`+1.

From Proposition 4.2.4 (c) and our choice of F we deduce WI

(
Aε(k+1)(σ, x),B(`+1)

)
for

any 0 ≤ ` < k, any normalized skipped block σ of (Gi)
k
i=1 of length ` in

∏`
i=1Bi and any

x ∈ S⊕∞i=nk+1+1Ei ∩ B`+1, and, thus, (using the induction hypothesis for σ = ∅) we deduce

(4.2) for k + 1.
In order to verify (4.3) let σ = (x1, x2, . . . , x`) ∈

∏`
i=1Bi be a normalized skipped

block of (Gi)
k+1
i=1 (the case σ = ∅ follows from the induction hypothesis). Then σ′ =

(x1, x2, . . . , x`−1) is empty or a normalized skipped block sequence of (Gi)
k−1
i=1 in

∏`−1
i=1 Bi.

In the second case WI

(
Aε(k+1))(σ),B(`)

)
= WI

(
Aε(k+1))(σ′, x`),B(`)

)
follows from (4.2) for

k and from Proposition 4.2.4 (a). This finishes the recursive definition of the nk’s and Gk’s.
Let (zn) any normalized skipped block sequence of (Gi) which lies in B. For any n ∈ N

it follows from (4.3) for σ = (zi)
n
i=1 that WI(Aε/2(σ),B), and, thus, Aε(σ) 6= ∅, which

means that σ is extendable to a sequence in Aε (note that limn→∞ ε
(n)
i = εi). Thus, any

normalized skipped block sequence which is element of B lies in Aε.

Now let X be a closed subspace of Z having an FDD (Ei) and A ⊂ SωX . We consider
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the following game

Player I chooses n1 ∈ N ,

Player II chooses x1 ∈
(
⊕∞i=n1+1 Ei

)
Z
∩X, ‖x1‖ = 1 ,

Player I chooses n2 ∈ N ,

Player II chooses x2 ∈
(
⊕∞i=n2+1 Ei

)
Z
∩X, ‖x2‖ = 1 ,

...

As before, Player I wins if (xi) ∈ A. Since the game does not only depend on A but on the
superspace Z in which X is embedded and its FDD (Ei) we call this the (A, Z)-game.

Definition 4.2.6. Assume that X is a subspace of a space Z which has an FDD (Ei) and
that A ⊂ SωX . Define for n ∈ N

Xn = X ∩
(
⊕∞i=n+1 Ei

)
Z

= {x ∈ X : ∀ z∗ ∈ ⊕ni=1E
∗
i z∗(x) = 0}

)
,

a closed subspace of finite codimension in X.
We say that Player II has a winning strategy in the (A, Z)-game if

WII(A, Z) there is a tree (xα)α∈T∞ in SX so that for any α = (n1, . . . , n`) ∈ T∞ ∪ ∅
x(α,n) ∈ Xn whenever n > n`, and so that no branch lies in A.

In the case that the (A, Z)-game is determined Player I has a winning strategy in the
(A, Z)-game if the negation of WII(A, Z) is true and thus

WI(A, Z) for any tree (xα)α∈T∞ in SX so that for any α = (n1, . . . , n`) ∈ T∞ ∪ ∅
x(α,n) ∈ Xn whenever n > n`, there is branch in A.

For A ⊂ SωX ⊂ SωZ and a sequence ε = (εi) in [0,∞) we understand by Aε the ε-fattening
of A as a subset of SωZ . In case we want to restrict ourselves to SX we write AXε , i.e.

AXε = Aε ∩ SωX =
{

(xi) ∈ SωX : ∃ (yi)∈A ‖xi − yi‖ ≤ εi for all i ∈ N
}
.

Since SωX is closed in SωZ with respect to the product of the discrete topology, we deduce

that AX = AX for A ⊂ SωX .
The following Proposition reduces the (A, Z)-game to a game we treated before. In

order to be able to do so we need some technical assumption on the embedding of X into
Z (see condition (4.4) below).

Proposition 4.2.7. Let X ⊂ Z, a space with an FDD (Ei). Assume the following condition
on X, Z and the embedding of X into Z is satisfied:

There is a C>0 so that for all m∈N and ε>0 there is an n=n(ε,m)≥m(4.4)

‖x‖X/Xm
≤ C

[
‖PE[1,n](x)‖+ ε

]
whenever x ∈ SX .

Assume that A ⊂ SωX and that for all null sequences ε ⊂ (0, 1] we have WI(AXε , Z).
Then it follows for all null sequences ε = (εi) ⊂ (0, 1] that WI(Aε, (SωX)δ) holds, where

δ = (δi) with δi = εi/28CK for i ∈ N, with C satisfying (4.4) and K being the projection
constant of (Ei) in Z.
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Question. (open) Is the technical condition (4.4) necessary to derive the conclusion of
Proposition 4.2.7

Proof. Let A ⊂ SωX and assume that WI(AXη , Z) is satisfied for all null sequences η =

(ηi) ⊂ (0, 1]. For a null sequence ε = (εi) ⊂ (0, 1] we need to verify WI(Aε, (SωX)δ) (with
δi = εi/28KC for i ∈ N) and so we let (zα)α∈T∞ be a block tree of (Ei) in SZ all of whose
branches lie in (SωX)δ = {(zi) ∈ SωZ : dist(zi, SX) ≤ δi for i = 1, 2, . . .}.

After passing to a full subtree of (zα) we can assume that for any α = (m1, . . . ,m`) in
T∞

(4.5) zα ∈ ⊕∞j=1+n(δ`,m`)
Ej

(where n(ε,m) is chosen as in (4.4)).
For α = (m1,m2, . . . ,m`) ∈ T∞ we choose yα ∈ SX with ‖yα − zα‖ < 2δ` and, thus, by

(4.5)
‖PE[1,n(δ`,m`)]

(yα)‖ = ‖PE[1,n(δ`,m`)]
(yα − zα)‖ ≤ 2Kδ` .

Using (4.4) we can therefore choose an x′α ∈ Xm`
so that

‖x′α − yα‖ ≤ C(2Kδ` + δ`) ≤ 3CKδ` ,

and thus
1− 3CKδ` ≤ ‖x′α‖ ≤ 1 + 3CKδ` .

Letting xα = x′α/‖x′α‖ we deduce that

‖yα − xα‖ ≤ ‖yα − x′α‖+ ‖x′α − xα‖
≤ 3CKδ` + (1 + 3CKδ`)3CKδ`/(1− 3CKδ`) ≤ 12CKδ`

(the last inequality follows from the fact that (1 + 3CKδ`)/(1− 3CKδ`) ≤ 3) and, thus,

‖zα − xα‖ ≤ 14CKδ` = ε`/2 .

Using WI(AXε/2, Z) and noting that xα ∈ Xm`
, for α = (m1,m2, . . . ,m`) ∈ T∞ we can

choose a branch of (xα) which is in AXε/2. Thus, the corresponding branch of (zα) lies in

Aε.

From [OS1, Lemma 3.1] it follows that every separable Banach space X is a subspace
of a space Z with an FDD satisfying the condition (4.4) (with n(m) = m). The following
Proposition exhibits two general situations in which (4.4) is automatically satisfied.

Proposition 4.2.8. Assume X is a subspace of a space Z having an FDD (Ei). In the
following two cases (4.4) holds:

a) If (Ei) is a shrinking FDD for Z. In that case C in (4.4) can be chosen arbitrarily
close to 1.

b) If (Ei) is boundedly complete for Z (i.e., Z is the dual of Z(∗)) and the ball of X is a
w∗-closed subset of Z. In that case C can be chosen to be the projection constant K
of (Ei) in Z.
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Proof. In order to prove (a) we will show that for any m ∈ N and any 0 < ε < 1 there is an
n = n(ε,m) so that

‖x‖X/Xm
≤ (1 + ε)

[
‖PE[1,n](x)‖+ ε

]
, whenever x ∈ SX

(i.e., C in (4.4) can be chosen arbitrarily close to 1).
Since X/Xm is finite dimensional and

(X/Xm)∗ = X⊥m =
{
x∗ ∈ X∗ : x∗|Xm ≡ 0

}
,

we can choose a finite set Am ⊂ SX⊥m ⊂ SX∗ for which

‖x‖X/Xm
≤ (1 + ε) max

f∈Am

|f(x)| whenever x ∈ X .

By the Theorem of Hahn Banach we can extend each f ∈ Am to an element g ∈ SZ∗ . Let
us denote the set of all of these extensions Bm. Since Bm is finite and since (E∗i ) is an FDD
of Z∗ we can choose an n = n(ε,m) so that ‖PE∗[1,n(m)](g) − g‖ < ε for all g ∈ Bm. Since

PE
∗

[1,n(m)] is the adjoint operator of PE[1,n(m)] (consider PE
∗

[1,n(m)] to be an operator from Z∗ to

Z∗ and PE[1,n(m)] to be an operator from Z to Z), it follows for x ∈ SX , that

‖x‖X/Xm
≤ (1 + ε) max

g∈Bm

|g(x)|

≤ (1 + ε) max
g∈Bm

[∣∣PE∗[1,n(m)](g)(x)
∣∣+ ‖PE∗[1,n(m)](g)− g‖

]
≤ (1 + ε)

[
max
g∈Bm

|g
(
PE[1,n(m)](x)

)
|+ ε

]
≤ (1 + ε)

[
‖PE[1,n(m)](x)‖+ ε

]
,

which proves our claim and finishes the proof of part (a).
In order to show (b) we assume that X is a subspace of a space Z which has a boundedly

complete FDD (Ei) and the unit ball of X is a w∗-closed subset of Z, which is the dual of
Z(∗).

For m ∈ N and ε > 0 we will show that the inequality in (4.4) holds for some n and
C = K. Assuming that this was not true we could choose a sequence (xn) ⊂ SX so that for
any n ∈ N

‖xn‖X/Xm
> K

[
‖PE[1,n](xn)‖+ ε

]
.

By the compactness of BX in the w∗ topology we can choose a subsequence xnk
which

converges w∗ to some x ∈ BX . For fixed ` it follows that (PE[1,`](xnk
)) converges in norm to

PE[1,`](x). Secondly, since X/Xm is finite dimensional it follows that limk→∞ ‖xnk
‖X/Xm

=

‖x‖X/Xm
, and, thus, it follows that

‖x‖ = lim
`→∞

‖PE[1,`](x)‖

= lim
`→∞

lim
k→∞

‖PE[1,`](xnk
)‖

≤ K lim sup
k→∞

‖PE[1,nk](xnk
)‖

≤ lim sup
k→∞

‖xnk
‖X/Xm

−Kε = ‖x‖X/Xm
−Kε ,

which is a contradiction since ‖x‖ ≥ ‖x‖X/Xm
.
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By combining Theorem 4.2.5 and Proposition 4.2.7 we deduce

Corollary 4.2.9. Let X be a subspace of a space Z with an FDD (Ei) and assume that
this embedding satisfies condition (4.4). Let K ≥ 1 be the projection constant of (Ei) in Z
and let C ≥ 1 be chosen so that (4.4) holds.

For A ⊂ SωX the following conditions are equivalent

a) For all null sequences ε = (εn) ⊂ (0, 1], WI(AXε , Z) holds.

b) For all null sequences ε = (εn) ⊂ (0, 1] there exists a blocking (Gn) of (Fn) so that
every ε/420CK-skipped block sequence (zn) ⊂ X of (Gn) is in Aε.

In the case that X has a separable dual (a) and (b) are equivalent to the following condition

c) For all null sequences ε = (εn) ⊂ (0, 1] every weakly null tree in SX has a branch in
Aε.

In the case that (Ei) is a boundedly complete FDD of Z and BX is w∗-closed in Z = (Z(∗))∗

the conditions (a) and (b) are equivalent to

d) For all null sequences ε = (εn) ⊂ (0, 1] every w∗-null tree in SX has a branch in Aε

Proof. (a) ⇒ (b) Let ε = (εi) ⊂ (0, 1] be a null sequence, choose η = (ηi) with ηi = εi/3,
for i ∈ N, and δ = (δi) with δi = ηi/140CK = εi/420CK.

We deduce from Proposition 4.2.7 that WI(Aη, (SωX)5δ) holds. Using Theorem 4.2.5 we
can block (Ei) into (Gi) so that every skipped block of (Gi) in (SωX)5δ (as a subset of SZ)
is in A2η (actually we are using the quantified result given by the proof of Theorem 4.2.5).

Assume (xi) ⊂ SX is a δ-skipped block sequence of (Gi) and let 1 ≤ k1 < `1 < k2 <
`2 < · · · in N so that

‖xn − PE(kn,`n](xn)‖ < δn, for all n ∈ N .

The sequence (zn) with zn = PE(kn,`n](xn)/‖PE(kn,`n](xn)‖, for n ∈ N, is a skipped block
sequence of SZ and we deduce that

‖xn − zn‖ ≤ ‖xn − PE(kn,`n](xn)‖+ ‖PE(kn,`n](xn)‖
∣∣∣1− 1

‖PE(kn,`n](xn)‖

∣∣∣
≤ δn + (1 + δn)

δn
1− δn

≤ 5δn .

This implies that (zn) ∈ A2η and thus by our choice of η,

(xi) ∈ (A2η)η ⊂ Aε

which finishes the verification of (b).
(b) ⇒ (a) is clear since for any blocking (Gi) of (Ei) and any null sequence δ = (δi) ⊂ (0, 1]
every tree (xα)α∈T∞ in SX with the property that x(α,n) ∈ Xn, whenever n > n` and

α = (n1, . . . , n`) ∈ T∞ ∪ ∅ has a full subtree all of whose branches are δ-skipped block
sequences of (Gi).
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Now assume that X has a separable dual, or (Ei) is a boundedly complete FDD of Z
and BX in Z w∗-closed.

It is clear that (c) or (d), respectively, imply (a). Secondly, since for any null sequence
δ = (δi) ⊂ (0, 1] and any blocking (Gi) every weakly null tree in SX (in the case that X, has
a separable dual) or every w∗ null tree (in the boundedly complete case) has a full subtree
all of whose branches are δ-skipped block sequences of (Gi) we deduce that (b) implies (c)
or (d) respectively.

Motivated by the asymptotic structure of a Banach space we introduce the following
“coordinate-free” variant of our games. Again let X be a separable Banach space and for
A ⊂ SωX we consider the following coordinate-free A-game.

Player I chooses X1 ∈ cof(X) ,

Player II chooses x1 ∈ X1, ‖x1‖ = 1 ,

Player I chooses X2 ∈ cof(X) ,

Player II chooses x2 ∈ X2, ‖x2‖ = 1 ,

...

As before, Player I wins if (xi) ∈ A. We will show that X can be embedded into a space
Z with an FDD so that for all ε = (εi) ⊂ (0, 1] Player I has a winning strategy in the
coordinate-free Aε-game, which we will denote by WI(Aε, cof(X)), if and only if for all
ε ⊂ (0, 1] he has a winning strategy for the (Aε, Z)-game.

First note that since we only considering fattened sets and their closures, Player II has
a winning strategy if and only if he has a winning strategy choosing his vectors out of a
dense and countable subset of SX determined before the game starts. But this implies that
there is countable set of cofinite dimensional subspaces, say {Yn : n ∈ N} from which player
I can choose if he has a winning strategy. Moreover if we consider a countable set B of
coordinate free games, there is a countable set {Yn : n ∈ N} so that for all A ∈ B

(4.6) ∀ ε ⊂ (0, 1] WI(Aε, cof(X)) ⇐⇒ ∀ ε ⊂ (0, 1) WI(Aε, {Yn : n ∈ N}) ,

where we write WI(Aε, {Yn : n ∈ N}), if player I has a winning strategy for the coordinate-
free A-game, even if he can only choose his spaces out of the set {Yn : n ∈ N}. Note that by
passing to (

⋂n
i=1 Yi) we can always assume that the Yn’s are decreasing in n ∈ N. In case

that X has a separable dual and we let (x∗n) be a dense subset of X∗, we can put for n ∈ N

Yn = {x∗1, x∗2, . . . , x∗n}⊥ = {x ∈ X : ∀ i≤n x∗i (x) = 0} ,

and observe that (4.6). holds for all A ⊂ SωZ .
The following result was shown in [OS1, Lemma 3.1] and its proof was based on tech-

niques and results of W.B. Johnson, H. Rosenthal and M. Zippin [JRZ].

Lemma 4.2.10. Let (Yn) be a decreasing sequence of closed subspaces of X, each having
finite codimension. Then X is isometrically embeddable into a space Z having an FDD (Ei)
so that (we identify X with its isometric image in Z)

a) c00(⊕∞i=1Ei) ∩X is dense in X.
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b) For every n ∈ N the finite codimensional subspace Xn = ⊕∞i=n+1Ei ∩X is contained
in Yn.

c) There is a c > 0, so that for every n ∈ N there is a finite set Dn ⊂ S⊕n
i=1E

∗
i

such that
whenever x ∈ X

(4.7) ‖x‖X/Yn = inf
y∈Yn

‖x− y‖ ≤ c max
w∗∈Dn

w∗(x) .

From (a) it follows that c00(⊕∞i=n+1Ei) ∩X is a dense linear subspace of Xn.
Moreover if X has a separable dual (Ei) can be chosen to be shrinking (every normalized

block sequence in Z with respect to (Ei) converges weakly to 0, or, equivalently, Z∗ =
⊕∞i=1E

∗
i ), and if X is reflexive Z can also be chosen to be reflexive.

So assume that for a countable set B of games that (Yn) is a sequence of decreasing finite
codimensional closed spaces satisfying the equivalences of (4.6).. We then use Lemma 4.2.10
to embed X into a space Z with an FDD (Ei).

Note that b) of Lemma 4.2.10 implies that for all A ∈ B

∀ ε ⊂ (0, 1) WI(Aε, cof(X)) ⇐⇒ ∀ ε ⊂ (0, 1) WI(Aε, Z) .

Using the embedding of X given by Lemma 4.2.10 a result similar to Proposition 4.2.7 can
be shown. The proof is very similar, therefore we will only present a sketch.

Proposition 4.2.11. Assume that X is a Banach space and {Yn : n ∈ N} a decreasing
sequence of cofinite dimensional subspaces. Let Z be a space with an FDD (Ei) which
satisfies the conclusion of Lemma 4.2.10.

Assume that A ⊂ SωX such that we have WI(AXε , {Yn : n ∈ N}) for all null sequences
ε ⊂ (0, 1].

Then for all null sequences ε = (εi) ⊂ (0, 1], WI(Aε, (SωX)δ) holds, where δ = (δi) =
(εi/28cK), with c as in Lemma 4.2.10, K is the projection constant of (Ei) in Z, and where
the fattenings Aε and (SωX)δ are taken in Z.

Sketch of proof. Note that instead of condition (4.4) the following condition is satisfied.

There is a C > 0 so that for all m ∈ N(4.8)

‖x‖X/Ym ≤ C‖P
E
[1,m](x)‖ whenever x ∈ SX .

Also note that WI(Aε, {Yn : n ∈ N}) means that every tree (xα) ⊂ SX , with the property
that for α = (m1,m2, . . . ,m`) ∈ T∞ we have that xα ∈ Ym`

, has a branch in Aε.
We follow the proof of Proposition 4.2.7 until choosing the xα’s which we will not choose

in Xm`
but in Ym`

instead. Then the proof continues as the proof of Proposition 4.2.7.

Using Proposition 4.2.11 and Theorem 4.2.5 we deduce thefollowing.

Corollary 4.2.12. Let A ⊂ SωX and assume that Z is a space with an FDD (Ei) which
contains X and satisfies the conclusion of Lemma 4.2.10.

Then the following conditions are equivalent:
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a) For all null sequences ε = (εn) ⊂ (0, 1], WI(AXε , cof) holds.

b) For all null sequences ε = (εn) ⊂ (0, 1], WI(AXε , Z) holds.

c) For all null sequences ε = (εn) ⊂ (0, 1], there exists a blocking (Gn) of (En) so that
every ε/420CK-skipped block sequence (zn) ⊆ X of (Gn) is in Aε.

In the case that X has a separable dual (a), (b) and (c) are equivalent to the following
condition (which is independent of the choice of Z).

d) For all null sequences ε = (εn) ⊂ (0, 1] every weakly null tree in SX has a branch in
Aε.

Moreover, in the case that X has a separable dual we deduce from the remarks after the
equivalence (4.6), Corollary 4.2.9 and Proposition 4.2.8 that above equivalences hold for
any embedding of X into a space Z having a shrinking FDD.
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4.3 Embedding and Universality Theorems

We will use the main Theorems of section 4.2 to derive results of the following type:

a) Given a Banach space of a certain class, can it be embedded into a Banach space of
the same class, or some closely related class, which has a basis or an FDD?

b) Given a class C of spaces. Does there exist a Banach space X of this class C, or of a
closely related class C̃c, which is universal for C, i.e. contains an isomorphic copy of
every element of C?

The fact that every separable infinite dimensional Banach space X embeds into C[0, 1],
and, thus that C[0, 1] is universal for all separable Banach spaces, dates back to the early
days of Banach space theory [Ba, Théorème 9, page 185]. Pe lczyński [Pe] showed that there
is a Banach space having a basis/unconditional basis, which is complementably universal
for all Banach spaces having basis/unconditional bases.

An example for the second type of question was answered by Zippin.

Theorem 4.3.1. [Z2] Every Banach space with a separable dual is embeddable into a Banach
space with shrinking basis.

Every reflexive Banach space is embeddable into a reflexive space with basis.

In this section we interested in characterizing the property of a Banach space (which or
may not have an FDD) into spaces with an FDD satisfying C-(p, q)-estimates.

Definition 4.3.2. Let 1 ≤ q ≤ p ≤ ∞ and C < ∞. A (finite or infinite) FDD (Ei) for
a Banach space Z is said to satisfy C-(p, q)-estimates if for all n ∈ N and block sequences
(xi)

n
i=1 w.r.t. (Ei),

C−1

( n∑
1

‖xi‖p
)1/p

≤
∥∥∥ n∑

1

xi

∥∥∥ ≤ C( n∑
1

‖xi‖q
)1/q

.

The coordinate free version of the C-(p, q)-estimates is the following

Definition 4.3.3. Let 1 ≤ q ≤ p ≤ ∞ and C < ∞. A space X satisfies C-(p, q)-tree
estimates if for all weakly null trees in SX there exist branches (xi)

∞
i=1 and (yi)

∞
i=1 satisfying

for all (ai) ∈ c00,

(4.9) C−1
(∑

|ai|p
)1/p

≤
∥∥∥∑ aixi

∥∥∥ and
∥∥∥∑ aiyi

∥∥∥ ≤ C(∑ |ai|q
)1/q

.

If X ⊆ Y ∗, a separable dual space, we say that X satisfies C-(p, q)-w∗-tree estimates if
each w∗ null tree in SX admits branches (xi) and (yi) satisfying (4.9).

We will say that X satisfies (p, q)-tree estimates if it satisfies C-(p, q)-tree estimates for
some C <∞ and similarly for (p, q)-w∗ tree estimates.

In the definition of q-upper and p-lower tree estimates it is actually not necessary to
assume that C exists uniformly for all trees as the following proposition shows.
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Proposition 4.3.4. [OSZ, Proposition 1.2] Let 1 ≤ q ≤ p ≤ ∞. Assume that X is a
Banach space with the property that every normalized, weakly null tree in X has a branch
which dominates the `p-unit vector basis and a branch which is dominated by the `qunit
vector basis. Then X satisfies (p, q)-tree estimates.

Proof. For C ≥ 1 define

A(C) =

{
(xn) ⊂ SX :

(xn)is C-basic and for all (ai) ∈ c00(∑
|ai|p

)1/p ≤ ‖∑∞i=1 xi‖ ≤
(∑
|ai|q

)1/q
}
.

We consider the (A(C), cof)-game on X. Assuming that for every weakly null tree there is
a C and a branch which is in A(C), we need to show that there is a uniform C working for
all trees.

Assume that this is not true.
By Corollary 4.2.12 we conclude that for any C > 1 Player II has a winning strategy

for the (A(C), cof)-game (since A(C) is closed under the product of the discrete topology
on SX , this game is determined by Theorem 1.2.4, and also note that for ε > 0 there are

nullsequences δ = (δi) ⊂ (0, 1) and η = (ηi) ⊂ (0, 1) so that A(C)

δ
⊂ A(C+ε) ⊂ A(C)

η ).

Player II could choose a sequence (Cn) in R+ which increases to ∞ and could play
the following strategy: first he follows his strategy for achieving a sequence (xn) outside
of A(2C1) and after finitely many steps s1 he must have chosen a sequence x1, x2, . . . , xs2
which is either not C1-basic or does satisfy one of the two required inequalites for some
a = (ai)

s1
i=1 ∈ Rs1 . Then Player II follows his strategy for getting a sequence outside of

A(2C2), and continues that way using C3, C4 etc. It follows that the infinite sequence (xn),
which is obtained by Player II cannot be in any A(C). Therefore Player II has a winning
strategy for choosing a sequence outside of

⋃
C≥1A(C) which means that there are weakly

null tree (zα) none of whose branches is in
⋃
C≥1A(C) .

The following result is a typical Embedding Theorem on can show using the results of
Section 4.2

Theorem 4.3.5. [OS3] Let X be a reflexive and separable Banach space and let 1 < p <∞.
Asume that every weakly null tree in SX has branch which is equivalent to the unit vector
basis of `p

Then there is a sequence of finite dimensional spaces (Gn) so that X can be isomorphi-
cally embedded into (⊕Gn)`p.

Remark. In [Jo1] it was shown that a subspace X of Lp can be embedded into (⊕Gn)`p
if and only if there is a C ≥ 1 every normalized weakly null sequence has a subsequence
which is C-equivalent the `p-unit vector basis.

This latter condition is in general (i.e. for reflexive spaces which are not subspaces of
Lp) not sufficient to imply embedability into (⊕Gn)`p . For an example see [OS3].

We will show the following generalization of Theorem 4.3.5

Theorem 4.3.6. Let X and Y be Banach spaces, assume that X is reflexive, let V be a
Banach space with a sub-symmetric and normalized basis (vi) and let T : X → Y be linear
and bounded.
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Assume that for some C ≥ 1 every normalized weakly null tree of X has a branch (xn)
so that

(4.10)
∥∥∥ ∞∑
i=1

anxn

∥∥∥
X
∼C

∥∥∥ ∞∑
i=1

anvn

∥∥∥
V
∨
∥∥∥T( ∞∑

i=1

anxn

)∥∥∥
Y

whenever (ai) ∈ c00.

Then there is a sequence of finite dimensional spaces (Gi) so that X is isomorphic to a
subspace of

(
⊕∞i=1 Gi

)
V
⊕ Y .

More precisely, if Z is any reflexive space with an FDD (Ei) which contains a copy of
X (such a space Z always exists [Z2]) and if S : X → Z is an isomorphic embedding, then
there is a blocking (Gi) so that S is a bounded linear operator from X to

(
⊕∞i=1 Gi

)
V

and
the operator

(S, T ) : X →
(
⊕∞i=1 Gi

)
V
⊕ Y, x 7→

(
S(x), T (x)

)
,

is an isomorphic embedding.

We will need the following Lemma which uses a blocking trick of Johnson [Jo1].

Lemma 4.3.7. Let X be a subspace of a space Z having a boundedly complete FDD (Ei)
with projection constant K with BX being a w∗-closed subset of Z. Let δi ↓ 0. Then there
exists a blocking (Fi) of (Ei) given by Fi = ⊕Ni

j=Ni−1+1Ej for some 0 = N0 < N1 < · · · with

the following properties. For all x ∈ SX there exists (xi)
∞
i=1 ⊆ X and for all i ∈ N there

exists ti ∈ (Ni−1, Ni) satisfying (t0 = 1 and t1 > 1)

a) x =
∑∞

j=1 xj,

b) ‖xi‖ < δi or ‖PE(ti−1,ti)
xi − xi‖ < δi‖xi‖,

c) ‖PE(ti−1,ti)
x− xi‖ < δi,

d) ‖xi‖ < K + 1,

e) ‖PEti x‖ < δi.

Moreover, the above hold for any blocking of (Fi) (which would redefine the Ni’s).

Proof. We observe that for all ε > 0 and N ∈ N there exists n > N such that if x ∈ BX ,
x =

∑
yi with yi ∈ Ei for all i, then there exists t ∈ (N,n) with

‖yt‖ < ε and dist

( t−1∑
i=1

yi, X

)
< ε .

Indeed, if this was not true for any n > N we can find y(n) ∈ BX failing the conclusion
for t ∈ (N,n). Choose a subsequence of (y(n)) converging w∗ to y ∈ X and choose t > N
so that ‖PE[t,∞)y‖ < ε/2K. Then choose y(n) from the subsequence so that t < n and

‖PE[1,t](y − y
(n))‖ < ε/2K. Thus

‖PE[1,t)y
(n) − y‖ ≤ ‖PE[1,t)(y

(n) − y)‖+ ‖PE[t,∞)y‖ <
ε

2K
+

ε

2K
< ε .



4.3. EMBEDDING AND UNIVERSALITY THEOREMS 87

Also

‖PEt y(n)‖ ≤ ‖PEt (y(n) − y)‖+ ‖PEt y‖ <
ε

2
+
ε

2
= ε .

This contradicts our choice of y(n).

Let εi ↓ 0 and by the observation choose 0 = N0 < N1 < · · · so that for all x ∈ SX there
exists ti ∈ (Ni−1, Ni) and zi ∈ X with ‖PEti x‖ < εi and ‖PE[1,ti−1)x− zi‖ < εi for all i ∈ N.

Set x1 = z1 and xi = zi − zi−1 for i > 1. Thus
∑n

i=1 xi = zn → x so a) holds. Also

‖PE(ti−1,ti)
x− xi‖ ≤ ‖PE[1,ti)x− zi‖+ ‖PE[1,ti−1]x− zi−1‖ < εi + 2εi−1 ,

and

‖PE(ti−1,ti)
xi − xi‖ = ‖(I − PE(ti−1,ti)

)(xi − PE(ti−1,ti)
x)‖ < (K + 1)(εi + 2εi−1) .

From these inequalities b), c) and d) follow if we take (εi) so that (K+1)(εi+2εi−1) < δ2
i .

Proof of Theorem 4.3.6. By Zippin’s theorem [Z2] we can assume that X is the subspace
of a reflexive space Z with an FDD E = (Ei). After renorming we can assume that the
projection constant K = supm≤n ‖PE[m,n]‖ = 1. We also assume without loss of generality

that ‖T‖ ≤ 1.

For a sequence x = (xi) ∈ SX and a =
∑
aiei ∈ c00 we define∥∥∥∑ aiei

∥∥∥
(V,T,x)

=
∥∥∥∑ aivi

∥∥∥
V
∨
∥∥∥T(∑ aixi

)∥∥∥
Y
.

Then ‖ · ‖(V,T,x) is a norm on c00 and we denote the completion of c00 with respect to
‖ · ‖(V,T,x) by X(V, T, x).

Define

A =

{
x = (xn) ⊂ SX :

x is 3
2 -basic and 3

2C-equivalent
to (ei) in X(V, T, x)

}
.

By Corollary 4.2.12 applied to an appropriate sequence ε = (εi) ⊂ (0, 1) we can find a
blocking F = (Fi) of (Ei) and a sequence (δ) ⊂ (0, 1), so that every δ-skipped block
(xi) ⊂ SX of (Fi) is 2-basic and 2C-equivalent to (ei) in X(V, T, x). Now we apply Lemma
4.3.7 to get a further blocking (Gi), Gi = ⊕Ni

j=Ni−1+1Fj , for i ∈ N and some sequence

0 = N0 < N1 < N2 . . ., so that for every x ∈ SX there is a sequence (ti) ⊂ N , with
ti ∈ (Ni−1, Ni) for i ∈ N, and a sequence (xi) satisfying (a)-(e).

We also may assume that
∑∞

i=1 δi < 1/36C and will show that for every x ∈ X

(4.11) ‖x‖X ∼36C

(∥∥∥ ∞∑
i=1

‖PGi (x)‖vi
∥∥∥
V

)
∨ ‖T (x)‖Y .

This implies that the map X → (⊕Gi)V ⊕ Y, x 7→ ((PGi (x)), T (x)), is an isomorphic
embedding.

Let x ∈ SX and choose (ti) ⊂ N and (xi) ⊂ X as prescript in Lemma 4.3.7. Letting
B =

{
i ≥ 2 : ‖PF(ti−1,ti)

(xi)− xi‖ ≤ δi‖xi‖
}

it follows that (xi)i∈B is a δ-skipped block and
therefore
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(4.12)
∥∥∥∑
i∈B

xi

∥∥∥
X
∼2C

∥∥∥∑
i∈B
‖xi‖vi

∥∥∥
V
∨
∥∥∥T(∑

i∈B
xi

)∥∥∥.
If ‖x1‖ ≥ 1/8C then we deduce that

1

8C
≤ ‖x1‖ ≤

∥∥∥ ∞∑
i=1

‖xi‖vi
∥∥∥
V
∨ ‖T (x)‖V(4.13)

≤
(∥∥∥ ∞∑

i∈B
‖xi‖vi

∥∥∥
V

+ ‖x1‖+
∑
i 6∈B

δi

)
∨ ‖T (x)‖Y

≤ 2C
∥∥∥ ∞∑
i∈B

xi

∥∥∥+ 2 +
∑

δi [By (4.12) and (d) of Lemma 4.3.7]

≤ 2C‖x‖+ 2C‖x1‖+ 3C
∑

δi + 2C ≤ 9C

If ‖x1‖ < 1/8C then

1

4C
≤
∥∥∥∑
i∈B
‖xi‖vi

∥∥∥
V
∨
(∥∥∥T(∑

i∈B
xi

)∥∥∥
Y
− 1

4C

)
[By (4.12)](4.14)

≤
∥∥∥∑
i∈B
‖xi‖vi

∥∥∥
V
∨
∥∥∥T (x)

∥∥∥
Y

[Since ‖T‖ ≤ 1]

≤
∥∥∥ ∞∑
i=1

‖xi‖vi
∥∥∥
V
∨
∥∥∥T (x)

∥∥∥
Y

≤
∥∥∥∑
i∈B
‖xi‖vi

∥∥∥
V
∨
∥∥∥T(∑

i∈B
xi

)∥∥∥
Y

+
1

4C

≤ 2C
∥∥∥∑
i∈B

xi

∥∥∥+
1

4C
[By (4.12)]

≤ 2C‖x‖+ 2C‖x1‖+ 2C
∑

δi +
1

4C
≤ 4C.

(4.13) and (4.14) imply that

(4.15) 1 ∼9C

∥∥∥ ∞∑
i=1

‖xi‖vi
∥∥∥
V
∨
∥∥T (x)

∥∥.
For n ∈ N define yn = PF(tn−1,tn](x). From Lemma 4.3.7 (c) and (e) it follows that ‖yn−xn‖ ≤
‖PF(tn−1,tn)(x)−xn‖+‖PFtn(x)‖ ≤ 2δn and thus

∑
‖yn−xn‖ ≤ 1/18C which implies by (4.15)

that

(4.16) 1 ∼18C

∥∥∥ ∞∑
i=1

‖yi‖vi
∥∥∥
V
∨
∥∥T (x)

∥∥.
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Since for n ∈ N we have (Nn−1, Nn] ⊂ (tn−1, tn+1) and and (tn−1, tn] ⊂ (Nn−2, Nn) (put
N1 = N0 = 0 and PH0 = 0) it follows from the assumed sub-symmetry of (vn) and the
assumed bi-monotonicity of (Ei) in Z that

1

2

∥∥∥∑
n∈N
‖yn‖vn

∥∥∥
V
≤ 1

2

∥∥∥∑
n∈N

(
‖PGn−1(x)‖+ ‖PGn (x)‖)vn

∥∥∥
V

≤
∥∥∥∑
n∈N
‖PGn (x)‖vn

∥∥∥
V

≤
∥∥∥∑
n∈N

∥∥PF(tn−1,tn+1)(x)
∥∥vn∥∥∥

V

≤
∥∥∥∑
n∈N

(
‖yn‖+ ‖yn+1‖

)
vn

∥∥∥
V
≤ 2
∥∥∥∑
n∈N
‖yn‖vn

∥∥∥
V
,

which implies with (4.16) that

1 ∼36C

∥∥∥ ∞∑
i=1

‖xi‖vi
∥∥∥
V
∨
∥∥T (x)

∥∥.
and finishes the proof of our claim.

Example 4.3.8. Let 1 < p < ∞. There exists a reflexive space X with an unconditional
basis so that X satisfies: for all ε > 0 every normalized weakly null sequence in X admits
a subsequence (1 + ε)-equivalent to the unit vector basis of `p. Yet X is not a subspace of
an `p-sum of finite dimensional spaces.

Proof. Fix 1 < q < p. We define X = (
∑
Xn)p where each Xn is given as follows. Xn will

be the completion of c00([N]≤n) under the norm

‖x‖n = sup

{( m∑
i=1

‖x|βi‖
p
q

)1/p

: (βi)
m
1 are disjoint segments in [N]≤n

}
.

By a segment we mean a sequence (Ai)
k
i=1 ∈ [N]≤n with A1 = {n1, n2, . . . n`}, A2 =

{n1, n2, . . . n`, n`+1} . . . Ak = {n1, n2, . . . n`, n`+1 . . . n`+k−1}, for some n1 < n2 < . . . n`+k−1.
Thus a segment can be seen as an interval of a branch (with respect to the usual partial
order in [N]≤n), while a branch is a maximal segment.

Clearly the node basis (e
(n)
A )A∈[N]≤n given by e

(n)
A (B) = δ(A,B) is a 1-unconditional basis

for Xn. Furthermore the unit vector basis of `nq is 1-equivalent to (e
(n)
Ai

)ni=1, if (Ai)
n
i=1 is any

branch of [N]≤n.

Thus no extension of the tree (e
(n)
A )A∈[N]≤n to a weakly null tree of infinite length in SX

has a branch whose basis distance to the `p-unit vector basis is closer than distb(`
(n)
p , `

(n)
q ) =

n
1
q
− 1

p → ∞ for n → ∞. Since it is clear that in every subspace Y of an `p sum of finite
dimensional spaces every weakly null tree in SY must have a branch equivalent (for a fixed
constant) to the unit vector basis of `p it follows that X cannot be embedded into a subspace
of an `p-sum of finite dimensional spaces.



90 CHAPTER 4. VERSIONS OF RAMSEY’S THEOREM IN BANACH SPACES

Also each Xn is isomorphic to `p and thus X is reflexive.
It remains to show that if (xj) is a normalized weakly null sequence in X and ε > 0

then a subsequence is (1 + ε)-equivalent to the unit vector basis of `p. This will essentially
follow from the following lemma.

We say that a Banach space has property (∗) is

(∗) ∀(xn)⊂SX , w − null, and ε>0 ∃(x′n)⊂(xn) (xn) is (1 + ε)-equiv. to `p-u.v.b.

Lemma 4.3.9. If Yn has property (∗) for all n ∈ N then (⊕Yn)`p has property (∗).

Firstly we use Lemma 4.3.9 to reduce our claim that X has property (∗) to the claim
that each Xn has property (∗). Then we show by induction for each n ∈ N that Xn has
property (∗). For n = 1 this is trivial. Assuming we showed that Xn satisfies (∗), we observe
that Xn+1 is the `p-sum of spaces Yn where Yn isometrically isomorphic to a 1-dimensional
extension of Xn, say Yn ≡ R ⊕ Xn. Since every weakly null sequence (zk) in Yn is up to
passing to subsequence and small perturbation in Xn, it follows that each Yn has property
(∗), we apply Lemma 4.3.9 again to conlcude that Xn+1 has property (∗).

Proof of Lemma 4.3.9. Let yn be a normalized sequence in Y = ⊕kYk. For k ∈ N denote by
Pk the canonical projection of Y onto Yk and put y(n, k) = Pk(yn). For A ⊂ N and z ∈ Y
define PA(z) =

∑
k∈A Pk(z)

After passing to a subsequence and an arbitrary perturbation we may assume that
for each k ∈ N ak = limn→∞ ‖y(n, k)‖ exists and and that for some sequence (ki) in N
yn = P[1,kn]](yn) for all n ∈ N.

Note that α =
∑∞

i=1 |ak|p ≤ 1. If α = 0, we can find a subsequence (y′n) which is an
arbitrary perturbation of a sequence (zn) for which the sets An = {k : Pk(zn) 6= 0} are
disjoint. If α > 0 we proceed as follows:

Let εi ↘ 0 fast enough (to be determined later). First choose `1 ∈ N so that
∑

k>`1
αpk <

ε1 and a subsequence N1 ⊂ N so that

( P[1,`1](yn)

‖P[1,`1](yn)‖
: n ∈ N1

)
is (1 + ε1)-equivalent to the unit vector basis in `p and choose some n1 ∈ N1.

Then choose `2 ≥ kn1 so that
∑

k>`2
αpk < ε2 and choose subsequence N2 ⊂ N1 so that

( P[1,`2](yn)

‖P[1,`2](yn)‖
: n ∈ N2

)
,

is (1 + ε2)-equivalent to the unit vector basis in `p and so that ‖P(`2,kn1 ](yn)‖ ≤ ε1 for
n ∈ N2. and choose some n2 ∈ N2.

Continuing this way we deduce that (yni) is 1− ε-equivalent to the unit vector basis in
`p with ε depending on

∑∞
i=1 εi.

Theorem 4.3.10. Let X be a reflexive Banach space and let 1 ≤ q ≤ p ≤ ∞. The following
are equivalent.

a) X satisfies (p, q)-tree estimates.
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b) X is isomorphic to a subspace of a reflexive space Z having an FDD which satisfies
(p, q)-estimates.

c) X is isomorphic to a quotient of a reflexive space Z having an FDD which satisfies
(p, q)-estimates.

Sketch of a proof of (a)⇒(b). .

Step 1: Embed X in a reflexive space Z with FDD (Ei). Using the same proof as in Theorem
4.3.6 we can proof:

There is a blocking F = (Fi) of (Ei) so thatX embeds in Z(F, p), which is the completion
of c(⊕∞i=1Fi) under the following norm:

‖x‖(Z,p) = sup
0=n0<n1<...nk,k∈N

(∑
‖PF(ni−1,ni)

(x)‖pZ
)1/p

.

Step 2: The condition X satisfies upper q-tree estimates dualizes, i.e. X∗ satisfies lower
q′-tree estimates.

Step 3: Consider quotient map Q : Z∗p ↘ X∗.

For i ∈ N let F̃i be the quotient space of F ∗i determined by Q. Thus if z ∈ F ∗i , the norm

on z̃ (the equivalence class of z in Fi) is |||z̃||| = ‖Qz‖. We may assume F̃i 6= {0} for all i.
More generally for z̃ =

∑
z̃i ∈ c00(⊕∞i=1F̃i) with z̃i ∈ F̃i for every i, we set

|||z̃||| = sup
m≤n

∣∣∣ n∑
i=m

Qzi

∥∥∥ = sup
m≤n
‖QPF[m,n]z‖ .

We let Z̃ be the completion of (c00(⊕∞i=1F̃i), |||·|||. Note that if z̃ =
∑
z̃i ∈ c00(⊕∞i=1F̃i)

then setting Q̃z̃ ≡
∑
Q̃z̃i ≡

∑
Qzi, we have ‖Q̃z̃‖ ≤ |||z̃|||. Thus Q̃ extends to a norm one

map from Z̃ into X.

a) (Ẽi) is a bimonotone shrinking FDD for Z̃.

b) Q̃ is a quotient map from Z̃ onto X. More precisely if x ∈ X and z ∈ Z with Qz = x,
‖z‖ = ‖x‖, and z =

∑
zi with zi ∈ F ∗i , then z̃ =

∑
z̃i ∈ Z̃, |||z̃||| = ‖z‖ and Q̃z̃ = x.

c) Let (z̃i) be a block sequence of (F̃i) in BZ̃ and assume that (Q̃z̃i) is a basic sequence

with projection constant K and a = infi ‖Q̃z̃i‖ > 0. Then for all scalars (ai) we have

‖
∑

aiQ̃(z̃i)‖ ≤ |||
∑

aiz̃i||| ≤
3K

a
‖
∑

aiQ̃z̃i‖ .

Step 4: There is a blocking H̃i of F̃i so that Q̃ is still a quotient map from Z̃(q′, H̃) onto
X∗

Step 5: X embeds into Z∗(q′, H̃) and H∗ = (H̃∗i ) is a an FDD of Z∗(q′, H) which satisfies
upper q-estimates.

Step 6: apply Step 1 again to Z∗(q′, H).
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In [Bo] Bourgain asked whether or not there is a reflexive space universal for all super
reflexive spaces.

Definition 4.3.11. Let E and X be two Banach spaces. We say that E is finitely repre-
sented in X if there is a C ≥ 1 for every finite dimensional sub space F of E there is a finite
dimensional subspace F ′ in X, so that the Banach mazur distance between F and F ′ is not
larger than C.

X is called super reflexive if every space E which is finitely represented in X is reflexive.

Remark. Since every Banach space X is finitely represented in it self, every supser reflexive
space must be reflexive. On the other hand Tsireson space is reflexive but not super reflexive.

In order to solve Bourgain’s question we also need the following two results.

Theorem 4.3.12. [Pr](Solution of Bourgain’s problem for spaces with FDD)
There exists a reflexive Banach space X which is universal for all spaces with a finite
dimensional decomposition (FDD) which satisfy (p, q)-estimates for some 1 < q ≤ p <∞.

Theorem 4.3.13. [Ja3]. Let c ≥ 1. For every super reflexive Banach space X there are
1 < q ≤ p < ∞ and C ≥ 1, so that very normalized basic sequence (xn), whose basis
constant does not exceed c, satifies (p, q) esitmates.

Since every weakly null sequence has a subsequence whose basis constant is not larger
than, say, 2. It follows that for every super reflexive Banach space X there are 1 < q ≤ p <
∞ so that X satisfies (p, q)-tree estimates.

Remark. From the arguments in [Ja3] it follows that separable Banach space which stat-
isfies (p, q)-tree estimates for some 1 < p ≤ q is reflexive.

But such a space does not need to be super reflexive as the example
(
⊕∞n=1 `

n
1

)
`2

shows.
There fore the following question is still open

Question. Does a separable super reflexive space embed in a super reflexive space with a
basis, or with an FDD?

We will deduce Theorem 4.3.10 from Corollary 4.2.9 only in the spacial case that p = q.
In this case it was already shown and answerd a problem of Johnson, asking for an intrinsic
characterization of the property of a Banach space being a subspace of an `p-sum of finite
dimensional Banach spaces.



Chapter 5

Ordinal numbers

5.1 Definition of ordinal numbers

Definition 5.1.1. A well order on a set S is a relation < on S which has the following
properties.

(WO1) (A,<) is a linear order, i.e. for any a, b ∈ S, one and only one of the following cases
occur: Either a < b or b < a or a = b.

(WO2) Every nonempty subset A of S has a minimum, i.e. there is an a0 ∈ A so that for all
a ∈ A either a0 < a or a0 = a.

In that case the pair (S,<) is called a well ordering and we introduce the following notations:

For a, b ∈ S we write a ≤ b if a < b or a = b.

For a, b ∈ S, with a ≤ b we introduce the following intervals:

[a, b] = {x ∈ S : a ≤ x ≤ b}
[a, b) = {x ∈ S : a ≤ x < b}
(a, b] = {x ∈ S : a < x ≤ b}
(a, b) = {x ∈ S : a < x < b}

For a none empty A ⊂ S we denote the (by (OW2) existing) minimal element of A by
min(A), and write 0S = minS. If a ∈ S is not a maximal element then the set of successors
of a, namely the set

Succ(a) = {x ∈ S : x > a},

must have a minimal element which we call the direct successor of a and denote it by a+.

The following theorem is an easy consequence of the Hausdorff Maximal Principle.

Theorem 5.1.2. Every set can be well ordered.

Proof. Let S be a set. Define

W =
{

(A,<A) : A ⊂ S and <A well order on A
}
.

93
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For (A,<A) and (Ã, <Ã) in W we write (A,<A) ≺ (Ã, <Ã) if A ⊂ Ã and the restriction
of <Ã to A is <A. Then it is easy to see that for ≺ every linear ordered subset in W has
an upper bound. By the Hausdorff Maximal Principle there is a maximal element (A,<A)
in W, and since one could easily extend <A to one more element if A 6= S, it follows that
A = S.

Definition 5.1.3. Two (S,<) and (S′,≺) are called order isomorphic if there exists a
bijective (1− 1 and onto) map: Φ : S → S′ which is order preserving i.e.

∀a, b ∈ S
(
a < b ⇐⇒ φ(a) < φ(b)

)
.

In that case we call φ an order isomorphism between S and S′.

Proposition 5.1.4. If (S,<) and (S′,≺) are order isomorphic well orderings, then the
order isomorphism between them is unique.

Proof. W.l.o.g. S, S′ 6= ∅. Let Ψ,Φ : S → S′ be two order isomorphism, and assuming that
Ψ 6= Φ we can define:

a = min{x ∈ S : Ψ(x) 6= Φ(x)}.

Since Ψ(a) 6= Φ(a) we may w.l.o.g. assume that Ψ(a) < Φ(a). But now it follows that

Φ(S) ⊂ [0S′ ,Ψ(a)) ∪ {x′ ∈ S′ : x′ � Φ(a)},

(Indeed: x < a ⇒ Ψ(x) = Φ(x) ≺ Φ(a), and x ≥ a ⇒ Ψ(x) � Ψ(a) � Φ(a)), i.e.
Φ(a) 6∈ Ψ(S), which contradicts that Ψ is surjective.

Proposition 5.1.5. If (S,<) is a well ordering and a, b ∈ S. Then [0S , a] and [0S , b] are
order isomorph if and only if a = b.

Proof. Let Φ : [0S , a]→ [0S , b] be an order isomorphism and consider

A = {x ∈ [0S , a] : Φ(x) 6= x}.

If this set was not empty we could choose x0 = min(A), and, using a similar argumentation
as in the proof of Proposition 5.1.4 we would get contradiction to the assumed surjectivity
of Φ. If A is empty, it follows that Φ is the identity on [0S , a], and, since Φ is supposed to
be surjective it follows that a = b.

Corollary 5.1.6. If (S,<) and (S′,≺) are two well orderings and there is an a′ ∈ S so
that (S,<) is order isomorph to [0S′ , a

′). Then such an a′ ∈ S′ is unique.

Theorem 5.1.7. Let (S,<) and (S′,≺) be two well orderings. Then one and only one of
the following cases occurs.

Case 1. (S,<) and (S′,≺) are order isomorphic.

Case 2. There is an a ∈ S so that [0S , a) and S′ are order isomorphic.

Case 3. There is an a′ ∈ S′ so that [0S′ , a
′) and S are order isomorphic.



5.1. DEFINITION OF ORDINAL NUMBERS 95

Proof. Define:

A = {a ∈ S : ∃a′ ∈ S′ [0S , a] and [0S′ , a
′] are order isomorphic}.

Let us first assume that A = S. If S has a maximal element a it follows that there
exists an order isomorphism between S = [0S , a] and some interval [0S′ , b

′] (which might or
might not be all of S′) which is order isomorphic to S. This means that we are either in
Case 1 or in Case 3 (choose a′ = b′+). If S has not a maximal element we choose for a ∈ S,
an a′ ∈ S′ and an order isomorphism Φa : [0S , a]→ [0S′ , a

′] (note that by Proposition 5.1.4
and Corollary 5.1.6 a′ and Φa are unique for every a ∈ S) then choose

Φ : S → S′, a 7→ Φa(a).

From the uniqueness of the Φa’s it follows for a < b in Sthat Φa(a) = Φb(a). Moreover, if
Φ(S) = S′ it follows that Φ is an order isomorphism between S and S′, and if Φ(S) 6= S′

it follows that Φ is an order isomorphism between S and a′, where a′ = min{x′ ∈ S′ : x′ 6∈
Φ(S)}.

If A 6= S and we put a0 = minS \ A. For a < a0 we choose (the uniquely existing)
a′ ∈ S′ and Φa : [0S , a] → [0S′ , a

′], where Φa is an order isomorphism and claim that
S′ = {a′ : a ∈ S}. Indeed if this where not so, we could put a′0 = minS′ \ {a′ : a ∈ S} and
define

Φa0 : [0, a0]→ [0, a′0], a 7→

{
Φa(a) if a < a0

a′0 if a = a0

and deduce from the uniqueness of the a′ and Φa for a ∈ S that Φa0 is an order isomorphism
between [0, a0] and [0, a′0], which contradicts our definition of a0.

Therefore it follows that

A′ = {a′ ∈ S′ : ∃a ∈ S [0S , a] and [0S′ , a
′] are order isomorphic} = S′,

and using our previous arguments we can show that we are either in Case 1 or Case 2.

Moreover, only one of the three cases can happen. Indeed, assume Cases 1 and 2 hold.
This would imply that for some a ∈ S the sets S and [0S , a) where order isomorphic. Thus,
let Φ : S → [0S , a) be an order isomorphism. But this yields that Φ|[0S ,a) : [0S , a)] →
[0, S,Φ(a)) is and order isomorphism, which implies that Φ(a) = a which is a contradiction.
Similarly we can show that Cases 1 and 3, as well as Cases 2 and 3 cannot hold at the same
time.

Our next step will be, roughly speaking, the following: Call two well orderings equivalent
if they are order isomorphic. We choose out of each equivalence class of well orderings one
representant which we will call ordinal number. Since these classes are not sets we will not
be able to use the Axiom of Choice to do so.

We can can proceed as follows. Note that “∈” can be thought of a (non symmetric,
since A ∈ A never holds) relation between sets.

Definition 5.1.8. An ordinal number is a set α which has the following two properties:
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(Or1) α is well ordered by the relation ∈, i.e. the relation < on α defined by

β < γ ⇐⇒ β ∈ γ for β, γ ∈ α

is a well order on α.

(Or2) Every element of α is also a subset of it.

If α is an ordinal we write α ∈ Ord (although Ord is actually not a set but a class.

Example 5.1.9. Let us write down the first “couple of ordinals”:

0 := ∅ (Note that the empty set is always well ordered, no matter how you define <)

1 := {∅}
2 :=

{
∅, {∅}

}
3 :=

{
{∅, {∅}, {∅, {∅}

}} ...

ω :=
{

0, 1, 2, 3, 4, . . .
}

=

∞⋃
n=0

n

ω + 1 := ω
⋃
{ω}

ω + 2 := ω
⋃
{ω}

...

ω · 2 :=

∞⋃
n=1

ω + n

ω · 2 + 1 := ω · 2 ∪ {ω · 2}
...

Proposition 5.1.10. Let α ∈ Ord.

a ] For all γ ∈ α it follows that γ ∈ Ord and γ = [0, γ).

b) If α 6= ∅ then ∅ ∈ α and ∅ = 0α = minα. Therefore we will write instead of 0α from
now on simply 0.

Proof. For γ ∈ α it follows from (Or2) that:

[0, γ) = {β ∈ α : β ∈ γ} = {β : β ∈ γ} = γ.

Since intervals of the form [0A, a), for a well ordering (A,<) and a ∈ A is also a well ordering
it follows that (γ,∈) = [0α, γ),∈) is a well ordering. For β ∈ γ = [0α, γ) ⊂ α it follows that

β = [0α, β) ⊂ [0α, γ) = γ,

thus γ also satisfies (Or2), which finishes the proof of (a). Since

∅ = [0α, 0α) = 0α,

we deduce (b).
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In order to prove that the class of ordinal numbers is well ordered itself, we will need
the following Well Foundedness Principle which is needed to build up Set theory.
The Well Foundedness Principle. Every nonempty set A contains an element a for
which A ∩ a = ∅.

The next Proposition that

Theorem 5.1.11. The class of ordinals itself is well ordered by ∈.

Proof. Let α, β ∈ Ord. We need to show that either α ∈ β or β ∈ α or α = β. By Theorem
5.1.7 we can w.l.o.g assume that there is an injective and order preserving embedding map
Φ : α → β whose image is [0, β̃) for some β̃ ∈ beta or β̃ = β (in the later case we define
[0, β) = β). We need to show that α = β̃ and Φ(γ) = γ for all γ ∈ α. Assuming that this
is not true we could choose

γ0 = min{γ ∈ α : Φ(γ) 6= γ,

and deduce from Proposition

Φ(γ0) = [0,Φ(γ0)) = [0, γ0) = γ0,

which is a contradiction. So we deduce (WO1).
In order to show (WO2), let A ⊂ Ord a non empty subset of the (class) Ord. By the

well foundedness principle there is an α ∈ A which is disjoint from A (as sets). Therefore it
must follow that α ∈ β for all β ∈ A \ {α}. Indeed, otherwise it would follow from (WO1)
that there is a β ∈ α ∩A. Thus, we showed (WO2).

To show our last claim, we let (S,<) be a well ordering and assume that there is no
α ∈ Ord which is order isomorphic to S. We can there for define

Corollary 5.1.12. If α ∈ Ord then α+ = α ∪ α is also an ordinal.
If A is a set of ordinals then,

sup(A) =
⋃
α

α+

is also an ordinal and is the smallest ordinal which contains all elements of A.

Proof. The first claim is clear. The claim that sup(A) is an ordinal follows immediately
from Theorem 5.1.11

Theorem 5.1.13. For any well ordering (S,<) there is a (unique) ordinal α which is order
isomorphic to S.

5.2 Arithmetic of ordinals

5.3 Classification of countable compacts by the Cantor Bendix-
son index

Proposition 5.3.1. Every countable compact space is metrizable.
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Lemma 5.3.2. In a complete separable metric space there is no strictly descending chain
of closed subsets indexed by ω1.

Lemma 5.3.3. Every non empty, countable and complete metric space has isolated points

Proof. Baire category theorem.

Lemma 5.3.4. If X is a compact space and has infinitely many points then it has accu-
mulation points.

Lemma above allows us to define the Cantor Bendixson index for compact
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