14.3 and 14.4 Divisor Methods and Which Method is Best

We have used the standard divisor, *s*, to represent the average district population. We will use *s* for all apportionment methods to calculate the quota.

The divisor methods will also use an adjusted divisor, *d*, to calculate an adjusted quota. The adjusted quota combined with the appropriate rounding rules for each method will give the final apportionment for divisor methods.

Jefferson Method

- **Step 1** Compute the standard divisor.
- Step 2 Compute the quota for each "state" (group).
- **Step 3** Round each quota *down*.
- **Step 4** If the total number of seats is not correct, call the current apportionment N, and find new divisors, $d_i = \frac{p_i}{N_i + 1}$, that correspond to giving each state one more seat.
- Step 5 Assign a seat to the state with the *largest d*. (Notice that divisor methods look at the entire number of *d* rather than the fractional part of the number.)
- Repeat Steps 4 and 5 until the total number of seats is correct. The last d_i used is the adjusted divisor, d.

Let's return to the splitting of the 36 silver coins. Use the Jefferson method to distribute the coins.

$s = \frac{14900}{36} \approx$	× 413.888	38889	\mathcal{N}	incluse pick largest di=Pi Nitl	
Person	Cont.	q	Rounded quota	d_i	Jefferson App.
Doris	\$5900	5900/413.89 14.2550	14	5900 = 393.3	14
Mildred	\$7600	18.3624	18	7600 18+1 = 400 H	19
Henrietta	\$1400	3.3826	3	1400 = 350	3
TOTAL	\$14,900		35		36

36-35=1 coin left to apportion

$$d = 400$$

When the ladies opened the bag of coins, they discovered that there were 37 coins. Use the Jefferson method to apportion the coins.

14900 = 402.7027) inc/spick largest

D	C 1		Rounded	704 102.	Next	27	Jefferson
Person	Cont.	/q	quota	d_i	App.	Next d_i	App.
D	\$5900	5900 7402.7027 14.6510	14	5900 = 14+1 393.33	14	393.33	15
M	\$7600	18.8725		7600 18+1 A 400	19	7600 - 1941 - 380	19
Н	\$1400	3.4765		3+1 350	3	350	3
TOTAL	\$14,900		35		36		37

			37-35= 2 0 108	coins t to apportion	/
d = ρ Μ	393.33 5900 7600	Pi 15.000 19.32	15 19		
H	1400	3.56	3		

Webster Method

- **Step 1** Compute the standard divisor.
- **Step 2** Compute the quota for each "state" (group).
- **Step 3** Round each quota to the nearest integer.
- **Step 4** If the total number of seats is not correct, call the current apportionment N, and find new divisors.

If the number of seats needs to increase, use $d_i^+ = \frac{p_i}{N_i + 0.5}$. If the number of seats needs to decrease, use $d_i^- = \frac{p_i}{N_i - 0.5}$.

Step 5 Adjust the seats according to d.

If the number of seats needs to increase, assign a seat to the state with the largest d_i^+ .

If the number of seats needs to decrease, remove a seat from the state with the smallest d_i^- .

Repeat Steps 4 and 5 until the total number of seats is correct. The last d_i used is the adjusted divisor, d.

Let's return to the splitting of the 36 silver coins. Use the Webster method to distribute the coins.

$$s = \frac{14900}{36} \approx 413.8888889$$

[nc, so pick | argest $[2] d_{i}^{\dagger} = P_{i}$ $N_{i} + 0.5$

Person	Cont.	a	Rounded	d_i	Webster
1 CISOII	Cont.	q	quota	u_i	App.
Doris	\$5900	14.2550	14	5900 14+0.5 = 406.896	14
Mildred	\$7600	18.3624	18	7600 18+0.5 = 410.811	19
Henrietta	\$1400	3.3826	/3	1400 3+0.5 = 400	3
TOTAL	\$14,900	1	35		36

Apportion the regions below using the Webster method for a house size of

$$s = \frac{45,173}{16} = 2823.3125 \qquad \frac{\text{decrease, so}}{\text{pick smallest}}$$

$$\frac{1}{16} = \frac{1}{16} = \frac{1}$$

	_	+3	Rounded		Webster
Region	Pop.	q	quota	d_i	App.
Beach	28,204	28204 = 2823.3125 9.990	10	28204 10-0.5 2968,842	10
Forest	11,267	3.991	4	11267 4-0.5 3219.143	4
Plains	4,240	1.502	2	4240 2-0.5 2826,6	
Swamp	1,462	0,518		1462 1-0.5 = 2924	
TOTAL	45,173		17		16

16-17= - | Seats to apportion

Hill-Huntington Method

The Hill-Huntington method does a great job of keeping the relative differences of representative share (i.e., $\frac{\text{apportionment}}{\text{population}}$) and district population (i.e., $\frac{\text{population}}{\text{apportionment}}$) stable between states. It also ensures that every group gets at least one representative, so it favors small states. Since 1941, the Hill-Huntington method with a house size of 435 has been used to apportion the House of Representatives.

- **Step 1** Compute the standard divisor.
- **Step 2** Compute the quota for each "state" (group).
- Step 3 Round each quota according to the geometric mean of [q] and [q], $q^* = \sqrt{[q][q]}$.
- Step 4 If the total number of seats is not correct, call the current apportionment N, and find new divisors. If the number of seats needs to increase, use $d_i^+ = \frac{p_i}{\sqrt{N_i(N_i+1)}}$. If the number of seats needs to decrease, use $d_i^- = \frac{p_i}{\sqrt{N_i(N_i-1)}}$.
- Step 5 Adjust the seats according to d. If the number of seats needs to increase, assign a seat to the state with the largest d_i^+ .

If the number of seats needs to decrease, remove a seat from the state with the smallest d_i^- .

Repeat Steps 4 and 5 until the total number of seats is correct. The last d_i used is the adjusted divisor, d.

Let's return to the splitting of the 36 silver coins. Use the Hill-Huntington method to distribute the coins.

$$s = \frac{14900}{36} \approx 413.8888889$$

inc, so largest

 $\sqrt{22|S|} di = \sqrt{N_i(N_i + 1)}$

					V .	
Person	Cont.	q	q^*	Rounded	d_i	HH
		•		quota	·	App.
Doris	\$5900	14.2550	V14-15=	14	\frac{5900}{\sqrt{14.15}} =	14
			14.4914	11.	407.139	7 1
Mildred	\$7600	18.3624	18-19	18	7600 = H	19
Milatea	\$7000	10.3024	18.4932	10	410.961	1/
	\$1.400	2 2026	V3.4 =	(3	1400 =	3
Henrietta	\$1400	3.3826	3.4641		404,145	
TOTAL	\$14,900			35		36

36-35= 1 coin left to apportion

$$d = 410,96/$$

Apportion the regions below using the Hill-Huntington method for a house size of 16.

$$s = \frac{45,173}{16} = 2823.3125$$

Region	Pop.	q	q^*	Rounded quota	d_i	HH App.
Beach	28,204	9.990	79.10 =	10	28204 X V10(9) 2972.963	-1 9
Forest	11,267	3.991	3.464/	(4	$\frac{11267}{\sqrt{4(3)}}$ 3252.503	4
Plains	4,240	1.502	1.4142	2	4240 = \[\sqrt{2(1)} = \lambda 978.133	2
Swamp	1,462	0.518	VO·1 =		1462 \$1(0) = Underind	
TOTAL	45,173			17		16

$$d = 2972,963$$

A *paradox* is a statement that is seemingly contradictory or opposed to common sense and yet is perhaps true.

Possible Issues - Alabama Paradox (Section 14.2)

The Alabama paradox occurs when a state loses a seat as the result of an increase in the house size.

Example

When you used the Hamilton method to apportion 36 silver coins to the ladies, Doris received 14, Mildred received 18, and Henrietta received 4 coins. Assume that they found an extra coin and use the Hamilton method to apportion 37 silver coins to the ladies.

$$s = \frac{14,900}{37} \approx 402.703$$

Hamilton

Person	Contribution	q	quota	Apportionment	J
Doris	\$5900	14. <u>65</u> 10	14 +1	15 · Ga	14
Mildred	\$7600	18. <u>8725</u>	18 11	19 ca	18 red 1
Henrietta	\$1400	3.4765	3	3	7/
TOTAL	\$14,900		35	37	36

37-35=2 coins left to apportion

What information tells you that the Alabama paradox occurred in this

example? An extra connwas found (house size increased), but Herrietta lost a coin (seat) even though no other changes occurred in the problem.

Possible Issues - Population Paradox (Section 14.2)

Consider two numbers, A and B, where A > B. The *absolute difference* between the two numbers is A - B

The *relative difference* between the two numbers is $\frac{A-B}{B} \times 100\%$

The *population paradox* occurs when there are a fixed number of seats and a reapportionment causes a state to lose a seat to another state even though the percent increase in the population of the state that loses the seat is larger than the percent increase of the state that wins the seat.

<u>Example</u>

Earlier, we apportioned 100 council members to four districts. Initially, North had 42 seats, South had 27 seats, East had 30 seats, and West had 1 seat. Ten years later, the county reapportioned the 100 council seats using new population data. Use the Hamilton method for this apportionment

$$s = \frac{65910}{100} = 659.1$$

District	Population	q	Rounded quota	Hamilton Apportionment	4
North	28,140	28140 659-1 = 42.6946	42	*/ 43	69
South	17,450	26.4755	26	26	La
East	19,330	29.3279	29	29	Les 1
West	990	1,5020	1	* 2	001
TOTAL	65,910		98	100	

100-98= Iseats left to

Compare the districts' populations.

District	Initial Pop.	New Pop.	Absolute Difference	Relative Difference
North	27,460	28,140	28140-27460=	680 100% = 27460 2,476%
South	17,250	17,450	17450 -17250 = 200	17,250 1.1594%
East	19,210	19,330	19330-19210= 120	19210 . 100% =
West	1000	990	1000 - 990 = Jecreuse 10	10 100% = 10 100% = Decrease 1.01%

Did the population paradox occur?

Explain what information helped you determine whether or not the population paradox occurred.

South and East both lost a seat. One of them lost a Seat to West even though they had an increase than West (in fact, west had a decrease).

Possible Issues - New States Paradox (Section 14.2)

The *new states paradox* occurs in a reapportionment in which an increase in the total number of states (with a proportionate increase in representatives) causes a shift in the apportionment of existing states.

Example

A country has two states, Solid and Liquid. Use Hamilton's method to apportion 12 seats for their congress

$$s = \frac{203995}{12} \approx 16999.58$$

$$|arger fractional portion gets entry
| L21 | seat$$

State	Population	q	Rounded quota	Hamilton Apportionment
Solid	144,899	16999,58 = 8,526	4 8	H 9
Liquid	59,096	3,476	3	3
TOTAL	203,995		11	/2

12-11= | seat left to apportion.

Another state, Plasma, wants to join. If there are 38,240 people in that state, how many representatives should they receive?

Use Hamilton's method to apportion the seats for their congress (the 12 original seats plus the additional seats that were added when Plasma

joined).
$$s = \frac{242,235}{12+2} = \frac{242,235}{14} = 17302.5$$

			D 1.1	YY •1.
State	Population	q	Rounded	Hamilton
2 0000	- CP 0/2002		quota	Apportionment
Solid	144,899	144,899 = 8,374	8	8
Liquid	59,096	3,415	3	+1 4
Plasma	38,240	2,210	2	2
TOTAL	242,235		\$13	14

14-13=1 Seat left to

What information tells you that the new states paradox occurred in this example?

ple?

(plasma)

We added a new state with the proportionate number of representatives, but Solid lost a seax to Liquid. The existing apportionment shifted when the new state was added.

Possible Issues – Quota Condition (Section 14.3)

Example

A school offers four different art classes with the enrollments shown below. Ten new teachers will be hired according to an apportionment using Jefferson's method. Determine who gets the new teachers.

Class	Enrollment	q	Rounded quota	d_i	Next App.	Next d_i	Jefferson App.
Ceramics	785	785 119.2 = 6.586	6	785 = 6+1 ** 112.14		785 = 7+1 98.13	+1 8
Painting	152	1.275	1	152 = 1+1 76		76	
Dance	160	1.342		160 = 171 80		80	1
Theatre	95	0.797	0	95 = 0+1 95	0	95	0
TOTAL	1192		8		9		10

10-8=2 Scats left to apportion

The quota condition says that the number assigned to each represented unit must be the standard quota, q, rounded up or rounded down.

What information tells you that the quota condition was violated in this Ceramics is larger than quota vounded up example?

Comparing Methods

Balinski and Young found that no apportionment method that satisfies the quota condition is free of paradoxes.

- Divisor methods are free of the paradoxes, but they can violate the quota condition.
- Hamilton's method may have paradoxes but does not violate the quota condition.

Sample Exam questions

Sample exam questions are likely to focus on performing all four apportionment methods and recognizing each of the four issues (three paradoxes and the quota condition).