Mandibular Remains Support Taxonomic Validity of *Australopithecus sediba*

Since the announcement of the species *Australopithecus sediba*, questions have been raised over whether the Malapa fossils represent a valid taxon or whether inadequate allowance was made for intraspecific variation, in particular with reference to the temporally and geographically proximate species *Au. africanaus*. The morphology of mandibular remains of *Au. sediba*, including newly recovered material discussed here, shows that it is not merely a late-surviving morph of *Au. africanaus*. Rather—as is seen elsewhere in the cranium, dentition, and postcraniar skeleton—these mandibular remains share similarities with other australopiths but can be differentiated from the hypodigm of *Au. africanaus* both in size and shape as well as in their ontogenetic growth trajectory.

Mandibular remains are well represented in the hominin fossil record and have been included among the holotypes of numerous early hominin taxa, including *Australopithecus sediba* from Malapa (1, 2). The suggestion (3–5) that insufficient consideration was given to intraspecific variation when *Au. sediba* was diagnosed as a discrete taxon can be further investigated by using recently recovered mandibular remains. Most notable among these are two conjoined fragments, UW88-128 and UW88-129, that can be refit to the previously published mandibular specimen UW88-54 (1) to form a nearly complete right hemimandible with complete dentition of an adult individual, Malapa Hominin 2 (MH2) (Fig. 1). These new portions allow us to examine the premolar and M1 regions of the mandibular corpus of an adult probable female of *Au. sediba* and provide a first look at the mandibular incisors and premolars of this taxon. In addition, we can now directly compare the mandibular canines of probable male and female individuals of *Au. sediba*.

As is seen in the cranium and postcranial skeleton of *Au. sediba* (1, 6–14), the reassembled mandible of MH2 exhibits a mosaic of morphological characters that align it with specimens attributed to both *Australopithecus* and early *Homo*. For instance, the mandible of MH2 shares with *Au. africanaus* such features as a moderately developed lateral prominence, moderately developed lateral superior and marginal tori, weakly delineated anterior and posterior marginal tubercles, a well-developed ectocondyloid buttress, and a well-developed lateral eminence of the ramus. However, it differs from *Au. africanaus* and resembles specimens of early *Homo* by evincing relief between the alveolar prominence and the subalveolar fossa; possessing a small, steeply inclined postincisive planium; and revealing weakly developed endochondral and endocondyloid buttresses, which result in a triangular planium that is ill-defined along its inferior extent (15). However, gross morphology in hominin mandibles tends to be variable, as is seen in a direct comparison of MH1 and MH2; thus, we turn to size and shape analyses of mandibular corpora to assess the taxonomic validity of *Au. sediba*.

Linear dimensions of mandibular corpora have been shown to be taxonomically informative within fossil representatives of the genus *Homo* (2). In absolute measures, the mandibular corpus of MH2 is slightly taller and narrower than that of MH1 (Fig. 2 and table S1). There is considerable overlap in mandibular corpus height between *Au. afarensis*, *Au. africanaus*, *Au. sediba*, *H. habilis*, *H. erectus*, and even *H. sapiens*. The corpus of MH1 is narrower than *Au. africanaus* at the level of the P4; it overlaps with the lower end of the range of *Au. africanaus* at the level of the M1, although only a single specimen of *Au. africanaus*, the otherwise large-toothed Stw 498, is narrower. MH1 overlaps with *H. habilis* and *H. erectus* in width at the level of the P4 and M1, although again plotting near the lower end of the range of both taxa. The newly reassembled mandible of MH2 is narrower still than MH1 at the level of the P4, and M1, plotting above the range for *Au. afarensis*, *H. habilis*, and *H. erectus*; it appears among the narrowest in the African hominin fossil record. Calculating corpus cross-sectional area by using the formula for an ellipse, MH1 and MH2 have similar values at the level of both the P4 and M1. The cross-sectional areas of the mandibular corpora of *Au. sediba* are small at the level of the P4 and M4, plotting at or below the lowest end of the range of values for *Au. africanaus* and within the ranges of *H. habilis* and *H. erectus*. In linear dimensions, mandibular corpus width—and to a lesser extent cross-sectional area—thus appear useful for discriminating *Au. sediba* from *Au. africanaus* and for assigning the former taxon with specimens attributed to early *Homo*. This is particularly the case with the adult specimen MH2.

To better understand the nature of differentiation between early hominin taxa in both size and shape of mandibular corpora, we replicated the approach of Lague and colleagues (2) using specimens attributed to species of *Australopithecus* and early *Homo* in Africa and Georgia (15). Seven of the eight measures originally used (2) could be replicated in the reassembled mandible of MH2 and form the basis of our analyses. Randomization of “distinctness values” (RDV) (2, 16) reveals that within-group variance is less than between-group variance; thus, it appears that the mandibles of *Australopithecus* and *Homo* that we examined do indeed reflect a taxonomic signal. We therefore investigated the size and shape of the mandibular corpus of *Au. sediba* in relation to other hominins. We performed a multivariate analysis of variance (MANOVA) (15), the overall results of which can be visualized as a plot of between-group differences, scaled to within group variances (Fig. 3A). The major result illustrated in this plot is that *H. sapiens* are clearly distinct from early hominins, especially the robust australopiths, whereas *Au. sediba* clusters with the nonrobust australopiths and early *Homo*. This major axis indicates that human mandibles are small overall, have relatively narrow corpora, and relatively mesiodistally (MD) elongated (though small overall) canine alveoli (table S2).

Among the early hominins, *Au. sediba* most closely matches this pattern. A planned contrast within the MANOVA results explicitly comparing *Au. sediba* and *Au. africanaus* revealed a significant difference between them (*F*1,21 = 2.55, *P* = 0.037). The difference between these two taxa primarily involved the smaller overall size of the mandible, the relatively deeper mandibular corpus, and the relatively MD elongated pre- molar row in *Au. sediba* when compared with that of *Au. africanaus* (table S3). In other words, the mandibles of *Au. sediba* are not only scaled differently than those of *Au. africanaus*, they are also shaped differently. Removal of humans from the ordination resulted in a primary axis that principally defined differences between the robust australopiths and the remaining early hominins (Fig. 3B). However, the secondary axis—approximately one-third the magnitude of the first—separated *Au. sediba* clearly from all other early hominins (planned contrast, *P* = 0.034). This effect was due to *Au. sediba* having a relatively MD elongated canine alveolus (table S3). Excluding size as a variable results in ordinations similar to those in Fig. 3, demonstrating that size is not unduly influencing the analysis (fig. S1).
Australopithecus sediba

The mandibular molars of Au. sediba were recorded as being small, similar to specimens attributed to early Homo (1), and we now have data on the remaining mandibular dentition from MH2 (figs. S2 and S3). Although the incisors of MH2 are too worn to reliably reconstruct their mesiodistal (MD) MD lengths, the buccolingual (BL) breadth of the I₃ plots at the lowest end of the range of Au. africanus and H. erectus but within the range of Au. robustus and H. sapiens. The BL breadth of the I₃ plots at the lowest end of the range of Au. africanus, but within the range of Au. robustus, Au. boisei, H. erectus, and H. sapiens. The only specimen of Au. africanaus that overlaps with MH2 in the BL breadth of both incisors is Stw 151, a specimen described as more derived toward Homo than are the remainder of the Sterkfontein Member 4 sample (17). As in MH1 (1), the MD length of the canine of MH2 is small, plotting below the range for Au. africanaus and H. habilis, and within the range of H. erectus and H. sapiens. In BL breadth, the canine of MH1 plots near the lowest end of the range for Au. africanaus and close to the mean for H. habilis and H. erectus, whereas the canine of MH2 falls below the range of these early Homo taxa as well as Au. africanaus. Indeed, the canine of MH2, and to a lesser extent of MH1, is among the smallest in the hominin fossil record. Likewise, the premolars of MH2 are small and generally plot at or below the lower end of the ranges seen in Au. africanaus and H. habilis, appearing especially MD shortened; where the P₃ of Au. sediba overlaps with Au. africanaus, only a single specimen attributed to Au. africanaus, Stw 112, appears smaller than MH2. Conversely, the premolars of Au. sediba plot within the ranges of H. erectus and H. sapiens denticitions.

The shape of the premolars is also diagnostic; occlusal outline analysis of both the P₃ and the P₄ by using elliptical function Fourier analysis (EFFA) positions them as outliers relative to both Au. africanaus and Au. robustus, demonstrating that these teeth differ in both size and shape from other South African australopiths (fig. S4) (15). Although the complete dentition of MH2 appears small in size similar to that of Homo, it shares with Australopithecus a pattern of increasing tooth size along the molar row (fig. S5).

Using mandibular molars, it was originally estimated that the dentition of MH1 was between 8.1 and 10.7% larger than that of MH2 (1). We can now extend this to include canines: The canine of MH1 is ~9.6% larger than the canine of MH2 in MD length and ~20.0% larger in BL breadth. Converting this to a square root of the basal crown area, the canine of MH1 is ~15% larger than that of MH2. This can be compared with canine dimorphism levels derived for other hominins by using the “mean” method of estimation (15, 18). With a value of 1.15, Au. sediba is intermediate between taxa such as Au. afarensis (1.21) and Au. boisei (1.21) on the one hand and taxa such as Au. africanaus (1.11), Au. robustus (1.11), H. erectus (1.13), and H. sapiens (1.07) on the other. Although the “mean” method tends to overestimate dimorphism in fossil species for which sex is generally unknown (18), with probable male and female individuals Au. sediba provides a known sample. Sample sizes are small for the hominin taxa, although these data nonetheless serve to highlight the dimorphism evident in the otherwise small canines of Au. sediba. Although the canines of Au. sediba are small and lack the diagnostic lingual relief seen in Au. africanaus, a pattern shared with early Homo, they reveal a degree of canine dimorphism that approaches levels seen in several other australopith taxa and that is also close to that of H. erectus.

Last, we tested whether Au. sediba shares a common pattern of development with Au. africanaus using Euclidean distance matrix analysis (EDMA) (15). We examine the ontogeny of mandibular shape in the fossil species Au. sediba, Au. africanaus, and H. erectus and in the extant species H. sapiens and Pan troglodytes. Juvenile samples are roughly the same developmental age as MH1 (pre-M₂ eruption), and therefore by necessity this comparison captures only one stage of development. EDMA was performed on mean forms of extant samples and on individual fossil juvenile and adult specimens as representatives of their respective species (table S4) (19–22). In addition, simulated hypothetical juvenile Au.
Fig. 2. Mandibular corpus measures of *Au. sediba* compared with other early hominin taxa. (A) Corpus height at *P*_n. (B) Corpus width at *P*_n. (C) Corpus area at *P*_n computed by using the formula for an ellipse [r(heigh/2) * (width/2)]. (D) Corpus height at *M*_n. (E) Corpus area at *M*_n computed by using the formula for an ellipse [r(heigh/2) * (width/2)].

Measures for *Au. aferensis*, *Au. boisei*, *H. habilis*, *H. rudolfensis*, and *H. erectus* specimens are from (23–25); measures of *Au. africana*, *Au. sediba*, *Au. robustus*, and *H. sapiens* specimens were taken by D.J.d.R. on original materials.

Fig. 3. Visualization of the first two canonical axes from the MANOVA on form. (A) Including humans. (B) Excluding humans. Details of canonical plot interpretation are available in the text, and computation is available in supplementary text S1. Measures for *Au. aferensis*, *Au. boisei*, *H. habilis*, *H. rudolfensis*, and *H. erectus* specimens are from (23–25); measures of *Au. africana*, *Au. sediba*, *Au. robustus* and *H. sapiens* specimens were taken by D.J.d.R. on original materials. Plot aspect ratio indicates the relative magnitude (eigenvalues) of the respective canonical axes.
References and Notes

15. Methods and results are available as supplementary materials on Science Online.

Acknowledgments: We thank the South African Heritage Resource agency for the permits to work on the Malapa site and the Nash family for granting access to the Malapa site and continued support of research on their reserve. The South African Department of Science and Technology, and the African Origins Platform (AOP), the South African National Research Foundation, the Institute for Human Evolution (IHE), the Palaeoanthropological Scientific Trust (PAST), the Andrew W. Mellon Foundation, the L.S.B. Leakey Foundation Baldwin Fellowship, the United States Diplomatic Mission to South Africa, the French Embassy in South Africa, the National Geographic Society, the A. H. Schultz Foundation, the Oppenheimer and Ackerman families, Sir Richard Branson, and the Program to Enhance Scholarly and Creative Activities and the International Research Travel Award Grant of Texas A&M University all provided funding for this research. D.J.D.R. holds a Ray A. Rothrock ’77 Fellowship at Texas A&M University, which provided additional funding. The University of the Witwatersrand’s Schools of Geosciences and Anatomical Sciences and the Bernard Price Institute for Palaeoanthropology provided support and facilities. The authors declare that they have no real or apparent conflicts of interest. We thank E. Mbaa, P. Kiura, V. Imnijiri, and the National Museums of Kenya; P. Moewma and the National Museum and House of Culture of Tanzania; S. Potze of the Ditsong Museum; B. Billings of the School of Anatomical Sciences of the University of the Witwatersrand; W. Secorona of the Ziko South African Museum; and L. M. Jellima of the Cleveland Museum of Natural History for access to comparative fossil and extant primate and human materials in their care. Numerous individuals have been involved in the ongoing preparation and excavation of these fossils, including C. Dube, B. Bloff, C. Kemp, M. Kagis, M. Lunguza, J. Malaha, G. Mokema, P. Mukanela, T. Nemvhundi, M. Ngcamphalala, S. Jirah, S. Tshabalala, and C. Yates. Other individuals who have given substantial support to this project include B. de Klerk, C. Steininger, B. Kahn, L. Pollarolo, B. Zipfel, J. Kreten, D. Confort, J. McCaffery, C. Diamini, H. Visser, R. McCrae-Samuel, B. Nikosi, B. Lawe, L. Backwell, F. Thackeray, M. Peltier, J. Cheverud, and D. Roach. The Au. sediba specimens are archived at the Evolutionary Studies Institute at the University of the Witwatersrand. All data used in this study are available upon request, including access to the original specimens, by bona fide scientists.

Supplementary Materials

www.sciencemag.org/cgi/doi/10.1126/science.1232999

Methods and Results

Supplementary Text

Figs. 51 to 55

Tables S1 to S5

References (26–33)

20 November 2012; accepted 13 March 2013

10.1126/science.1232997

1232997-4 12 APRIL 2013 VOL 340 SCIENCE www.sciencemag.org