X-risk Optimization: A New Paradigm for Deep Learning

Tianbao Yang
Texas A&M University
Outline

• Overview & Background

• Three Use Cases
Advancing Optimization to Make ML/AI Faster and Better

My Research Focus

AI is like an Onion

- **Domains** (e.g., medicine)
- **Applications** (e.g., drug discovery)
- **Representations** (data, models)
- **Formulations** (objectives)
- **Optimization** (algorithms)

Advancing Optimization to Make ML/AI Faster and Better

- Training Faster
- Testing better
Optimization for Machine Learning

\[
\min_{w} F(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(w, z_i)
\]

Empirical Risk Minimization (ERM)
SGD: Stochastic Gradient Descent

\[\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \nabla \ell(\mathbf{w}_t, z_t) \]

Conventional: Polynomally Decreasing

Modern: Stagewise

Modern: Adaptive
Momentum and Adaptive Methods

Imagenet classification with deep convolutional neural networks
A. Krizhevsky, I. Sutskever, G. E. Hinton
Advances in neural information processing systems 25, 1097-1105

Stochastic Heavy-ball Method (SHB)

On the importance of initialization and momentum in deep learning
I. Sutskever, J. Martens, G. Dahl, G. Hinton
International conference on machine learning, 1139-1147

Stochastic Nesterov’s Accelerated Gradient (SNAG)

Adam: A method for stochastic optimization
D. Kingma, J. Ba
International Conference on Learning Representations

\[
\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \nabla \ell(\mathbf{w}_t, \mathbf{z}_t) + \delta_t
\]

Momentum term

Adaptive or Stagewise
A Standard Learning Paradigm

1. Sample Mini-batch Samples
2. Define Mini-batch (MB) Losses
3. Back-propagation on MB Losses
4. Update Model Parameters
Some Undesirable Consequences

"As provided in Figure 4a, R@1 monotonically improves with larger batch size on all three datasets. This observation resonates with the fact that large batches reduce the variance of the stochastic gradients, which has been shown to be beneficial [32]. On the other hand, from the learn-"
Some Undesirable Consequences

<table>
<thead>
<tr>
<th>Query</th>
<th>Ranked Database Images</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Similarity: 0.940 0.870 0.850 0.800 0.775 0.650 0.570 0.430 0.400 0.320

recall\(\@4\) = 0.33, recall\(\@8\) = 0.67
rs\(\@4\) = 0.310, rs\(\@8\) = 0.616

```
Batch size. The effect of the varying batch size is shown in Figure 4 (right). It demonstrates that large batch size leads to better results. A significant performance boost is
```

```
```
Some Undesirable Consequences

5.2. Contrastive learning benefits (more) from larger batch sizes and longer training

Figure 9 shows the impact of batch size when models are trained for different numbers of epochs. We find that, when the number of training epochs is small (e.g. 100 epochs), larger batch sizes have a significant advantage over the smaller ones. With more training steps/epochs, the gaps...
Conventionally Small Batch is Fine

\[
\min_w F(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(w, z_i)
\]

"The stochastic gradient descent (SGD) method and its variants are algorithms of choice for many Deep Learning tasks. These methods operate in a small-batch regime wherein a fraction of the training data, say 32–512 data points, is sampled to compute an approximation to the gradient. It has been observed in practice that when using a larger batch there is a degradation in the quality of the model, as"

A Standard Learning Paradigm

Sample Mini-batch Samples

Define Mini-batch (MB) Losses

Back-propagation on MB Losses

Update Model Parameters

Q: What is Wrong about this Learning Paradigm?

A: ERM is **NOT** enough
Beyond ERM: Deep X-risk Optimization
X-risk

Definition

A family of **Compositional** measures in which the loss function of each data point is defined in a way that **Contrasts** the data point with a **Large number of items**.

\[
F(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(g(w, z_i, S_i))
\]
Challenges of Optimizing X-risk

\[F(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(g(w, z_i, S_i)) \]

Full Gradient

for each data

\[\nabla f_i(g(w, z_i, S_i)) \nabla g(w, z_i, S_i) \]

\[\mathbb{E} \]

Mini-batch Gradient

Biased

\[\nabla f_i(g(w, z_i, B_i)) \nabla g(w, z_i, B_i) \]

Mini-batch
Outline

• Three Use Cases
 • AUPRC/AP Maximization
 • Top-K NDCG Maximization
 • Self-supervised Learning
MIT AICures Challenge

Fighting Secondary Effects of Covid

Evaluation Metric: AUPRC

(a) Test PRC-AUC

<table>
<thead>
<tr>
<th>Rank</th>
<th>Model</th>
<th>Author</th>
<th>Submissions</th>
<th>Test PRC-AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MolecularG</td>
<td>AIDrug@PA</td>
<td>7</td>
<td>0.725</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>AGL Team</td>
<td>20</td>
<td>0.702</td>
</tr>
<tr>
<td>3</td>
<td>MoleculeKit</td>
<td>DIVE@TAMU</td>
<td>7</td>
<td>0.677</td>
</tr>
<tr>
<td>4</td>
<td>GB</td>
<td>BI</td>
<td>6</td>
<td>0.61</td>
</tr>
<tr>
<td>5</td>
<td>Chemprop ++</td>
<td>AICures@MIT</td>
<td>4</td>
<td>0.662</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>Mingjun Liu</td>
<td>3</td>
<td>0.657</td>
</tr>
<tr>
<td>7</td>
<td>Pre-trained OGB-GIN (ensemble)</td>
<td>Weihua Hu@Stanford</td>
<td>2</td>
<td>0.651</td>
</tr>
<tr>
<td>8</td>
<td>RF + fingerprint</td>
<td>Cyrus Maher@Vir Bio</td>
<td>1</td>
<td>0.649</td>
</tr>
<tr>
<td>9</td>
<td>Graph Self-supervised Learning</td>
<td>SJTU_NRC_Mila</td>
<td>3</td>
<td>0.622</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>Congjie He</td>
<td>10</td>
<td>0.611</td>
</tr>
</tbody>
</table>

(b) Test ROC-AUC

<table>
<thead>
<tr>
<th>Rank</th>
<th>Model</th>
<th>Author</th>
<th>Submissions</th>
<th>Test ROC-AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MoleculeKit</td>
<td>DIVE@TAMU</td>
<td>7</td>
<td>0.928</td>
</tr>
<tr>
<td>2</td>
<td>Chemprop ++</td>
<td>AICures@MIT</td>
<td>4</td>
<td>0.877</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>Gianluca Bontempi</td>
<td>7</td>
<td>0.848</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>Apoorv Umang</td>
<td>1</td>
<td>0.81</td>
</tr>
<tr>
<td>5</td>
<td>Pre-trained OGB-GIN (ensemble)</td>
<td>Weihua Hu@Stanford</td>
<td>2</td>
<td>0.837</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>Kexin Huang</td>
<td>1</td>
<td>0.824</td>
</tr>
<tr>
<td>7</td>
<td>Chemprop</td>
<td>Rijat Gupta</td>
<td>7</td>
<td>0.818</td>
</tr>
<tr>
<td>8</td>
<td>MLP</td>
<td>ITM</td>
<td>7</td>
<td>0.807</td>
</tr>
<tr>
<td>9</td>
<td>Graph Self-supervised Learning</td>
<td>SJTU_NRC_Mila</td>
<td>3</td>
<td>0.8</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>Congjie He</td>
<td>10</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Why AUROC Max. is NOT Enough?

Challenge: Highly Imbalanced Data
Non-Parametric Estimator: Average Precision

\[
AP(h) = \frac{1}{n_+} \sum_{x_i \in S_+} \text{Precision}(h(x_i))
\]

\[
\text{Precision}(h(x_i)) = \frac{\sum_{x_j \in S_+} \mathbb{I}(h(x_j) \geq h(x_i))}{\sum_{x_j \in S} \mathbb{I}(h(x_j) \geq h(x_i))}
\]

Positive Examples

All Examples
Deep AUPRC Maximization

Limitations of Literature on AUPRC Maximization
(1) Not applicable to deep learning (e.g., SVM-AP, Yue et al.)
(2) No Convergence, require large batch (e.g., FastAP, Cakir et al.)

Our Contributions:
(1) New Formulation based on Compositional Opt.
(2) First Algorithms with Convergence Theory
(3) Practical Algorithms and Improved Theory

(NeurIPS’21, AISTATS’22, ICML’22)
Our Formulation

\[
\min_{\mathbf{w}} F(\mathbf{w}) = \frac{1}{n_+} \sum_{\mathbf{x}_i \in S_+} f(g_i(\mathbf{w}))
\]

Limitations of Existing Methods

- Not Convergent (e.g., SGD/Adam)
- Not-scalable (e.g., NASA, Ghadimi et al.)
- Require Large batch size (e.g., BSGD, Hu et al.)

Finite-sum Coupled Compositional Optimization

(NeurIPS 2021)
Key Idea of SOAP

Full Gradient $\nabla f(g_i(w_t))$ at t^{th} iteration

Naïve Mini-batch $\nabla f(\hat{g}_i(w_t))$

Unbiased

Vs.

Variance-reduced $\nabla f(u_i^t)$

Biased but variance-reduced

$u_i^t = (1 - \beta)u_i^{t-1} + \beta \hat{g}_i(w_t)$

$x_i \in \mathcal{B}_+$

Sampled Positive
Theories

Goal

\[\| \nabla F(w) \| \leq \epsilon \]

<table>
<thead>
<tr>
<th>Conference</th>
<th>Update Style</th>
<th>Convergence Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>NeurIPS’21</td>
<td>SGD-style</td>
<td>(O\left(\frac{1}{\epsilon^5}\right))</td>
</tr>
<tr>
<td></td>
<td>Momentum or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adam-style</td>
<td></td>
</tr>
<tr>
<td>ICML’22, AISTATS’22</td>
<td>Improved Convergence</td>
<td>(O\left(\frac{1}{\epsilon^4}\right))</td>
</tr>
<tr>
<td>Dataset</td>
<td>Method</td>
<td>GINE</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HIV</td>
<td>CE</td>
<td>0.2774 (± 0.0101)</td>
</tr>
<tr>
<td></td>
<td>CB-CE</td>
<td>0.3082 (± 0.0101)</td>
</tr>
<tr>
<td></td>
<td>Focal</td>
<td>0.3236 (± 0.0078)</td>
</tr>
<tr>
<td></td>
<td>LDAM</td>
<td>0.2904 (± 0.0008)</td>
</tr>
<tr>
<td></td>
<td>AUC-M</td>
<td>0.2998 (± 0.0010)</td>
</tr>
<tr>
<td></td>
<td>SmoothAP</td>
<td>0.2686 (± 0.0007)</td>
</tr>
<tr>
<td></td>
<td>FastAP</td>
<td>0.0169 (± 0.0031)</td>
</tr>
<tr>
<td></td>
<td>MinMax</td>
<td>0.2874 (± 0.0073)</td>
</tr>
<tr>
<td></td>
<td>SOAP</td>
<td>0.3485 (± 0.0083)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Method</th>
<th>GINE</th>
<th>MPNN</th>
<th>ML-MPNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUV</td>
<td>CE</td>
<td>0.0017 (± 0.0001)</td>
<td>0.0021 (± 0.0002)</td>
<td>0.0025 (± 0.0004)</td>
</tr>
<tr>
<td></td>
<td>CB-CE</td>
<td>0.0055 (± 0.0011)</td>
<td>0.0483 (± 0.0083)</td>
<td>0.0121 (± 0.0016)</td>
</tr>
<tr>
<td></td>
<td>Focal</td>
<td>0.0041 (± 0.0007)</td>
<td>0.0281 (± 0.0141)</td>
<td>0.0122 (± 0.0001)</td>
</tr>
<tr>
<td></td>
<td>LDAM</td>
<td>0.0044 (± 0.0022)</td>
<td>0.0118 (± 0.0098)</td>
<td>0.0059 (± 0.0021)</td>
</tr>
<tr>
<td></td>
<td>AUC-M</td>
<td>0.0026 (± 0.0001)</td>
<td>0.0040 (± 0.0012)</td>
<td>0.0028 (± 0.0012)</td>
</tr>
<tr>
<td></td>
<td>SmoothAP</td>
<td>0.0073 (± 0.0012)</td>
<td>0.0068 (± 0.0038)</td>
<td>0.0029 (± 0.0005)</td>
</tr>
<tr>
<td></td>
<td>FastAP</td>
<td>0.0016 (± 0.0000)</td>
<td>0.0023 (± 0.0021)</td>
<td>0.0022 (± 0.0012)</td>
</tr>
<tr>
<td></td>
<td>MinMax</td>
<td>0.0028 (± 0.0008)</td>
<td>0.0027 (± 0.0005)</td>
<td>0.0043 (± 0.0015)</td>
</tr>
<tr>
<td></td>
<td>SOAP</td>
<td>0.0493 (± 0.0261)</td>
<td>0.3352 (± 0.0008)</td>
<td>0.0236 (± 0.0038)</td>
</tr>
</tbody>
</table>

Data

<table>
<thead>
<tr>
<th>Networks</th>
<th>GINE</th>
<th>MPNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td>0.5037 (± 0.0718)</td>
<td>0.6282 (± 0.0634)</td>
</tr>
<tr>
<td>CB-CE</td>
<td>0.5655 (± 0.0453)</td>
<td>0.6308 (± 0.0263)</td>
</tr>
<tr>
<td>Focal</td>
<td>0.5143 (± 0.1062)</td>
<td>0.5875 (± 0.0774)</td>
</tr>
<tr>
<td>LDAM</td>
<td>0.5236 (± 0.0551)</td>
<td>0.6489 (± 0.0556)</td>
</tr>
<tr>
<td>AUC-M</td>
<td>0.5149 (± 0.0748)</td>
<td>0.5542 (± 0.0474)</td>
</tr>
<tr>
<td>SmoothAP</td>
<td>0.2899 (± 0.0220)</td>
<td>0.4081 (± 0.0352)</td>
</tr>
<tr>
<td>FastAP</td>
<td>0.4777 (± 0.0896)</td>
<td>0.4518 (± 0.1495)</td>
</tr>
<tr>
<td>MinMax</td>
<td>0.5292 (± 0.0330)</td>
<td>0.5774 (± 0.0468)</td>
</tr>
<tr>
<td>SOAP</td>
<td>0.6639 (± 0.0515)</td>
<td>0.6547 (± 0.0616)</td>
</tr>
</tbody>
</table>

Molecular Properties Prediction

Graph Neural Networks
MIT AICures Challenge

1st Place

Fighting Secondary Effects of Covid

Collaborating with Prof. Shuiwang Ji’s group at TAMU

Evaluation Metric: AUPRC

<table>
<thead>
<tr>
<th>Rank</th>
<th>Model</th>
<th>Author</th>
<th>Submissions</th>
<th>10-fold CV ROC-AUC</th>
<th>Test ROC-AUC</th>
<th>Test PR-AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DIVE@TAMU</td>
<td>11</td>
<td>0.957</td>
<td>0.729</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MolecularG</td>
<td>AIDrug@PA</td>
<td>9</td>
<td>0.7</td>
<td>0.725</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AGL Team</td>
<td>20</td>
<td>0.675</td>
<td>0.702</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>phucdoitoen@Fujitsu</td>
<td>14</td>
<td>0.898 +/- 0.113</td>
<td>0.508 +/- 0.253</td>
<td>0.867</td>
<td>0.694</td>
</tr>
<tr>
<td>5</td>
<td>GB</td>
<td>BI</td>
<td>6</td>
<td>0.698</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Chemprop ++</td>
<td>AICures@MIT</td>
<td>4</td>
<td>0.877</td>
<td>0.662</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Mingjun Liu</td>
<td>3</td>
<td>0.72</td>
<td>0.657</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Pre-trained OGB-GIN (ensemble)</td>
<td>Weihua Hu@Stanford</td>
<td>2</td>
<td>0.905 +/- 0.133</td>
<td>0.494 +/- 0.333</td>
<td>0.837</td>
</tr>
<tr>
<td>9</td>
<td>RF + fingerprint</td>
<td>Cyrus Maher@Vir Bio</td>
<td>1</td>
<td>0.896 +/- 0.074</td>
<td>0.481 +/- 0.338</td>
<td>0.799</td>
</tr>
<tr>
<td>10</td>
<td>Graph Self-supervised Learning</td>
<td>SJTU_NRC_Mila</td>
<td>3</td>
<td>0.825 +/- 0.210</td>
<td>0.530 +/- 0.342</td>
<td>0.800</td>
</tr>
</tbody>
</table>
Comparison with w/o DAM

<table>
<thead>
<tr>
<th>Rank</th>
<th>Model</th>
<th>Author</th>
<th>Submissions</th>
<th>10-fold CV ROC-AUC</th>
<th>10-fold CV PRC-AUC</th>
<th>Test ROC-AUC</th>
<th>Test PRC-AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DIVE@TAMU</td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td>0.957</td>
<td>0.729</td>
</tr>
</tbody>
</table>

w/o DAM

<table>
<thead>
<tr>
<th>Rank</th>
<th>Model</th>
<th>Author</th>
<th>Submissions</th>
<th>10-fold CV ROC-AUC</th>
<th>10-fold CV PRC-AUC</th>
<th>Test ROC-AUC</th>
<th>Test PRC-AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>MoleculeKit</td>
<td>DIVE@TAMU</td>
<td>7</td>
<td></td>
<td></td>
<td>0.928</td>
<td></td>
</tr>
</tbody>
</table>

w/o DAM

- **5% Improvement in AUPRC**
- **3% Improvement in AUROC**
Deep top-K NDCG Maximization
Search Engines

Recommender Systems

Social Media

Most Relevant Items on the Top

<table>
<thead>
<tr>
<th>Relevance</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>
$\text{NDCG}_q = \frac{1}{Z_q} \sum_{i=1}^{n} \frac{2^{y_i} - 1}{\log_2(1 + r(i))}$

Challenge I

$r(i) = \sum_{\mathbf{x}_j \in S_q} \mathbb{I}(h_{\mathbf{w}}(\mathbf{x}_j; q) \geq h_{\mathbf{w}}(\mathbf{x}_i; q))$

Millions of Movies on Netflix
NDCG Surrogate is X-risk

\[
NDCG_q = \frac{1}{Z_q} \sum_{i=1}^{n} \frac{2^{y_i} - 1}{\log_2(1 + r(i))}
\]

\[
g(w; x_i, S_q) = \sum_{x_j \in S_q} \ell(h_w(x_j; q) - h_w(x_i; q))
\]

\[
f(g(w; x_i, S_q))
\]
Top-K NDCG

\[
\frac{1}{Z^K_q} \sum_{i=1}^{n} \mathbb{I}(i\text{-th item in top-K positions}) \cdot \frac{2^y_i - 1}{\log_2(1 + r(i))}
\]

Challenges

- Finding top-K items require \(O(n \log n)\)
- Top-K selector is non-differentiable
Deep top-K NDCG Maximization

Limitations of Literature on Top-K NDCG Maximization
(1) Small Data or No Convergence (e.g., ApproxNDCG, Qin et al.)
(2) Not Applicable to Deep Learning (e.g., SVM-NDCG, Chakrabarti et al.)

Our Contributions: (ICML’22)
(1) New Formulation based on Bilevel Optimization
(2) First Algorithms with Convergence Theory
(3) Practical Algorithms
Transforming Top-K Selector

(ICML 2022)

Prediction score

\[\mathbb{I}(h_{\mathbf{w}}(\mathbf{x}_i; q) > \lambda_q(\mathbf{w})) \]

The \((K+1)\)-th largest score

\[\lambda_q(\mathbf{w}) = \arg \min_{\lambda} \frac{K + \varepsilon}{n} \lambda + \frac{1}{n} \sum_{i=1}^{n} (h_{\mathbf{w}}(\mathbf{x}_i; q) - \lambda)_+ \]
New Formulation

Multi-block Bilevel Optimization

\[
\min \frac{1}{S} \sum_{(q, x^q_i) \in S} \sigma(h_w(x^q_i; q) - \lambda_q(w)) f(g_{q,i}(w)) \\
\text{s.t. } \lambda_q(w) = \arg \min_{\lambda} L_q(\lambda, w, S_q), \forall q \in Q \\
f(g_i(w))
\]
Challenges

\[\nabla \sigma(h_w(x_i^q; q) - \lambda_q(w))(\nabla h_w(x_i^q; q) - \nabla \lambda_q(w)) \]

Depends on \(S_q \)

Implicit Gradient
Tackle Challenges (K-SONG)

(ICML 2022)

\[
\lambda_{q+1} = \lambda_q - \eta_0 \nabla \lambda L_q(\lambda_q, w_t, B_2^t)
\]

- Only for Sampled Query
- Implicit Gradient
- Depends on \(S_q \)
- SGD on Lower Level
- Smoothing Lower Level
- Estimating Hessian Inverse
- Using Mini-batches
Theories

Goal

\[\| \nabla F(w) \| \leq \epsilon \]

ICML’22

\[O \left(\frac{1}{\epsilon^4} \right) \]
Learning to rank

Movie Recommendation

Table 2: The test NDCG on two Learning to Rank datasets. We report the average NDCG@k (k ∈ [10, 30, 60]) and standard deviation (within brackets) over 5 runs with different random seeds.

<table>
<thead>
<tr>
<th>METHOD</th>
<th>MSLR WEB30K</th>
<th></th>
<th></th>
<th>YAHOO! LTR DATASET</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NDCG@10</td>
<td>NDCG@30</td>
<td>NDCG@60</td>
<td>NDCG@10</td>
<td>NDCG@30</td>
<td>NDCG@60</td>
</tr>
<tr>
<td>RANKNET</td>
<td>0.5227±0.0012</td>
<td>0.5837±0.0006</td>
<td>0.6481±0.0007</td>
<td>0.7668±0.0007</td>
<td>0.8319±0.0008</td>
<td>0.8491±0.0008</td>
</tr>
<tr>
<td>LISTNET</td>
<td>0.5337±0.0022</td>
<td>0.5910±0.0019</td>
<td>0.6535±0.0014</td>
<td>0.7805±0.0010</td>
<td>0.8441±0.0006</td>
<td>0.8613±0.0005</td>
</tr>
<tr>
<td>LISTMLE</td>
<td>0.5210±0.0017</td>
<td>0.5800±0.0015</td>
<td>0.6450±0.0012</td>
<td>0.7796±0.0007</td>
<td>0.8436±0.0006</td>
<td>0.8606±0.0006</td>
</tr>
<tr>
<td>LAMBDA_RANK</td>
<td>0.5324±0.0037</td>
<td>0.5885±0.0032</td>
<td>0.6529±0.0026</td>
<td>0.7794±0.0009</td>
<td>0.8442±0.0008</td>
<td>0.8619±0.0007</td>
</tr>
<tr>
<td>APPROXNDCG</td>
<td>0.5339±0.0008</td>
<td>0.5906±0.0005</td>
<td>0.6530±0.0003</td>
<td>0.7688±0.0004</td>
<td>0.8367±0.0004</td>
<td>0.8556±0.0004</td>
</tr>
<tr>
<td>NEURALNDCG</td>
<td>0.5329±0.0027</td>
<td>0.5881±0.0013</td>
<td>0.6510±0.0012</td>
<td>0.7812±0.0002</td>
<td>0.8443±0.0002</td>
<td>0.8622±0.0003</td>
</tr>
<tr>
<td>SONG</td>
<td>0.5382±0.0007</td>
<td>0.5953±0.0006</td>
<td>0.6573±0.0005</td>
<td>0.7842±0.0004</td>
<td>0.8477±0.0003</td>
<td>0.8644±0.0003</td>
</tr>
<tr>
<td>K-SONG</td>
<td>0.5397±0.0009</td>
<td>0.5955±0.0004</td>
<td>0.6571±0.0003</td>
<td>0.7859±0.0003</td>
<td>0.8464±0.0002</td>
<td>0.8642±0.0003</td>
</tr>
</tbody>
</table>

Table 4: The test NDCG on two movie recommendation datasets. We report the average NDCG@k (k ∈ [10, 20, 50]) and standard deviation (within brackets) over 5 runs with different random seeds.

<table>
<thead>
<tr>
<th>METHOD</th>
<th>MOVIELENS20M</th>
<th></th>
<th></th>
<th>NETFLIX PRIZE DATASET</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NDCG@10</td>
<td>NDCG@20</td>
<td>NDCG@50</td>
<td>NDCG@10</td>
<td>NDCG@20</td>
<td>NDCG@50</td>
</tr>
<tr>
<td>RANKNET</td>
<td>0.0109±0.0011</td>
<td>0.0190±0.0010</td>
<td>0.0450±0.0016</td>
<td>0.0090±0.0007</td>
<td>0.0146±0.0008</td>
<td>0.0261±0.0010</td>
</tr>
<tr>
<td>LISTNET</td>
<td>0.0182±0.0004</td>
<td>0.0305±0.0002</td>
<td>0.0587±0.0004</td>
<td>0.0115±0.0018</td>
<td>0.0191±0.0013</td>
<td>0.0347±0.0014</td>
</tr>
<tr>
<td>LISTMLE</td>
<td>0.0117±0.0005</td>
<td>0.0210±0.0011</td>
<td>0.0493±0.0010</td>
<td>0.0081±0.0005</td>
<td>0.0134±0.0009</td>
<td>0.0253±0.0005</td>
</tr>
<tr>
<td>LAMBDA_RANK</td>
<td>0.0178±0.0010</td>
<td>0.0310±0.0008</td>
<td>0.0595±0.0006</td>
<td>0.0103±0.0003</td>
<td>0.0175±0.0003</td>
<td>0.0332±0.0004</td>
</tr>
<tr>
<td>APPROXNDCG</td>
<td>0.0202±0.0004</td>
<td>0.0338±0.0004</td>
<td>0.0629±0.0004</td>
<td>0.0121±0.0015</td>
<td>0.0198±0.0005</td>
<td>0.0360±0.0006</td>
</tr>
<tr>
<td>NEURALNDCG</td>
<td>0.0194±0.0013</td>
<td>0.0322±0.0011</td>
<td>0.0609±0.0012</td>
<td>0.0113±0.0011</td>
<td>0.0186±0.0008</td>
<td>0.0342±0.0007</td>
</tr>
<tr>
<td>SONG</td>
<td>0.0232±0.0003</td>
<td>0.0369±0.0004</td>
<td>0.0646±0.0003</td>
<td>0.0141±0.0004</td>
<td>0.0222±0.0005</td>
<td>0.0384±0.0003</td>
</tr>
<tr>
<td>K-SONG</td>
<td>0.0248±0.0003</td>
<td>0.0381±0.0003</td>
<td>0.0662±0.0004</td>
<td>0.0154±0.0003</td>
<td>0.0234±0.0006</td>
<td>0.0377±0.0005</td>
</tr>
</tbody>
</table>
Movielens: 20 Millions User-Movie Pairs

LibAUC vs Tensorflow-Ranking (TFR) on MovieLens 20M

Comparison on training time per epoch

ListNet as X-risk
Self-supervised Learning
Self-supervised learning
SimCLR: Simple Contrastive Learning

A Simple Framework for Contrastive Learning of Visual ... - arXiv
by T Chen · 2020 · Cited by 3849 — Abstract: This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed ...
Mini-batch Contrastive Loss

\[L_B(w; x_i, A, A') = - \ln \frac{\exp(E(A(x_i))^\top E(A'(x_i))/\tau)}{\sum_{z_j \in B_i} (\exp(E(A(x_i))^\top E(z_j))/\tau)} , \]

Data Augmentation

Encoder Network

Mini-Batch Data
Issue of SimCLR

Huge Difference between large batch and small batch

Figure 9. Linear evaluation models (ResNet-50) trained with different batch size and epochs. Each bar is a single run from scratch.10 Chen et al. 2020
Our Contributions:

(1) Explanation of Large Batch of SimCLR

(2) New Method SogCLR without Large Batch Size
How do we understand the issue of SimCLR?

Global Contrastive Loss is the Key

$$L(w; x_i, A, A') = -\ln \frac{\exp(E(A(x_i))^\top E(A'(x_i))/\tau)}{\sum_{z \in S_i} (\exp(E(A(x_i))^\top E(z))/\tau)},$$

All Images Except x_i

Global Contrastive Objective is X-risk

$$F(w) = \mathbb{E}_{x_i \sim \mathcal{D}, A, A' \sim \mathcal{P}}(E(A(x_i))^\top E(A'(x_i))) + \frac{\tau}{n} \sum_{x_i \in \mathcal{D}} \mathbb{E}_A \ln \left(\frac{1}{|S_i|} g(w; x_i, A, S_i) \right),$$

$$f(g(w; x_i, A, S_i))$$
SimCLR Suffers from Small Batch Size

\[\frac{1}{n} \sum_{x_i \in \mathcal{D}} \mathbb{E}_{A} f(g(w; x_i, A, S_i)) \]

\[\nabla f(g(w; x_i, A, S_i)) \nabla g(w; x_i, A, S_i) \]

SimCLR uses the Standard learning Paradigm

\[\nabla f(g(w; x_i, A, B_i)) \nabla g(w; x_i, A, B_i) \]

\[\mathbb{E}[\| \nabla F(w) \|] \leq O \left(\frac{1}{\sqrt{B}} \right) \]
Better way to Optimize GCL: SogCLR

Estimating inner g

$$\nabla f(g(w; x_i, A, S_i)) \nabla g(w; x_i, A, S_i)$$

Maintain and update $u(x_i, A)$? Too Much Memory

$u(x_i)$
SogCLR

Update \(u \)

\[
\mathbf{u}_{i,t} = (1 - \gamma)\mathbf{u}_{i,t-1} + \gamma \frac{1}{2|B_i|} \left(g(\mathbf{w}_t; \mathbf{x}_i, \mathcal{A}, \mathcal{B}_i) + g(\mathbf{w}_t; \mathbf{x}_i, \mathcal{A}', \mathcal{B}_i)\right),
\]

Compute Gradient Estimator

\[
\mathbf{m}_t = -\frac{1}{B} \sum_{\mathbf{x}_i \in \mathcal{B}} \nabla \left(\mathcal{E}(\mathcal{A}(\mathbf{x}_i))^\top \mathcal{E}(\mathcal{A}'(\mathbf{x}_i))\right) + \nabla f(u_{i,t-1}) \frac{1}{2|B_i|} \left(\nabla g(\mathbf{w}_t; \mathbf{x}_i, \mathcal{A}, \mathcal{B}_i) + \nabla g(\mathbf{w}_t; \mathbf{x}_i, \mathcal{A}', \mathcal{B}_i)\right).
\]

Update \(w \)

\[
\mathbf{v}_t = (1 - \beta)\mathbf{v}_{t-1} + \beta \mathbf{m}_t
\]

\[
\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \mathbf{v}_t \text{ (or use Adam-style update)}
\]
Theory of SogCLR

Theorem 1

\[
\mathbb{E}[\|\nabla F(w_t')\|^2] \leq O \left(\frac{1}{\sqrt{BT}} + \frac{\sqrt{n}}{B\sqrt{T}} + \epsilon^2 \right)
\]

Theorem 2

\[
L_2(w; x_i, A, A') = -\ln \frac{\exp(E(A(x_i))^\top E(A'(x_i))/\tau)}{\mathbb{E}_{Ag}(w; x_i, A, S_i)}.
\]

\[
\mathbb{E}[\|\nabla F_{v2}(w_t')\|^2] \leq O \left(\frac{1}{\sqrt{BT}} + \frac{\sqrt{n}}{B\sqrt{T}} \right).
\]

\[T \to \infty \quad \rightarrow 0\]
Experiments

Table 6: Comparison of small-batch training approaches.

<table>
<thead>
<tr>
<th>Method</th>
<th>Batch Size\Epochs</th>
<th>100</th>
<th>200</th>
<th>400</th>
<th>800</th>
</tr>
</thead>
<tbody>
<tr>
<td>SimCLR</td>
<td>256</td>
<td>69.7</td>
<td>73.6</td>
<td>76.1</td>
<td>77.4</td>
</tr>
<tr>
<td>FlatNCE</td>
<td>256</td>
<td>71.5</td>
<td>75.5</td>
<td>76.7</td>
<td>77.8</td>
</tr>
<tr>
<td>SiMo</td>
<td>256</td>
<td>71.5</td>
<td>75.0</td>
<td>76.8</td>
<td>78.2</td>
</tr>
<tr>
<td>SogCLR</td>
<td>256</td>
<td>71.9</td>
<td>76.3</td>
<td>78.7</td>
<td>79.4</td>
</tr>
</tbody>
</table>

Table 1: Comparison of different InfoNCE-loss based contrastive learning methods and their top-1 linear evaluation accuracy by using 800 epochs, a batch size of 256, and ResNet-50 on ImageNet-1K. Momentum encoder is introduced by MoCo [20]. We expect the performance of SogCLR can be further improved by incorporating other techniques, e.g., InfoMin augmentation.

<table>
<thead>
<tr>
<th>Method</th>
<th>Batch Size</th>
<th>Memory Bank</th>
<th>Momentum Encoder</th>
<th>Other Tricks</th>
<th>Convergence</th>
<th>Top1 Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SimCLR [4]</td>
<td>Large-batch</td>
<td>No</td>
<td>No</td>
<td>Strong Aug.</td>
<td>No</td>
<td>66.5</td>
</tr>
<tr>
<td>NNCLR [15]</td>
<td>Large-batch</td>
<td>No</td>
<td>No</td>
<td>Nearest Neighbors</td>
<td>No</td>
<td>68.7</td>
</tr>
<tr>
<td>SiMo [44]</td>
<td>Small-batch</td>
<td>No</td>
<td>Yes</td>
<td>Margin Trick</td>
<td>No</td>
<td>72.1</td>
</tr>
<tr>
<td>MoCov2 [6]</td>
<td>Small-batch</td>
<td>Yes</td>
<td>Yes</td>
<td>Strong Aug.</td>
<td>No</td>
<td>71.1</td>
</tr>
<tr>
<td>InfoMin [36]</td>
<td>Small-batch</td>
<td>Yes</td>
<td>Yes</td>
<td>InfoMin Aug.</td>
<td>No</td>
<td>73.0</td>
</tr>
<tr>
<td>SogCLR (Ours)</td>
<td>Small-batch</td>
<td>No</td>
<td>No</td>
<td>GC Optimization</td>
<td>Yes</td>
<td>72.5</td>
</tr>
</tbody>
</table>
Summary: X-risk as a New Learning Paradigm

- **Any Batch Size**
- **Broad Applications**
- **Convergence Guarantee**
- **Easy Implementation**

1. **Sample Mini-batch Samples**
2. **Define Dynamic Mini-batch (MB) Losses**
3. **Back-propagation on Dynamic MB Losses**
4. **Update Model Parameters**
More X-risks

X-risk

Areas under the Curves
- AUROC
- AUPRC
- One-way Partial AUC
- Two-way Partial AUC

Ranking Measures
- MAP & NDCG
- P-norm Push
- Listwise Loss
- Top-K MAP & NDCG

Performance at the Top
- Top Push
- Recall@K
- Precision@Recall

Contrastive Objectives
- Self-supervised (e.g., SimCLR, CLIP)
- Supervised (e.g., NCA)

Min-Max Opt.

Finite-Sum Coupled Compositional Opt.

Bilevel Opt.
A DEEP LEARNING LIBRARY FOR X-RISK OPTIMIZATION
An open-source library that translates theories to real-world applications

[2022-06] 7 papers about optimization for ML/AI accepted to ICML 2022!

KEY FEATURES & CAPABILITIES

Easy Installation
Easy to install and insert LibAUC code into existing training pipeline with Deep Learning frameworks like PyTorch.

Broad Applications
Users can learn any neural network structures (e.g., linear, MLP, CNN, GNN, transformer, etc) that support their data types.

Efficient Algorithms
Stochastic algorithms with provable theoretical convergence that support learning with millions of data points.

Hands-on Tutorials
Hands-on tutorials are provided for optimizing a variety of measures and objectives belonging to the family of X-risks.
Impact of LibAUC Library

QUICK FACTS
The achievements we made so far.

3+
Challenges winning solution (e.g., Stanford CheXpert, MIT AI4Cures, OGB Graph Property Prediction).

4+
Collaborations and Deployments at multiple industrial units, e.g., Google, Uber, Tencent, etc.

17+
Scientific publications on top-tier AI Conferences (such as ICML, NeurIPS, ICLR).

13000+
Downloaded by more than 13K+ times from over 11 countries.
Acknowledgements: Students

Main Development

Zhuoning Yuan
PhD Student
University of Iowa

Zi-Hao Qiu
PhD Student
Nanjing University

Dixian Zhu
PhD Student
University of Iowa

Gang Li
PhD Student
University of Iowa
Acknowledgements: Students

Other Contributors

- **Zhishuai Guo**
 - PhD Student
 - University of Iowa

- **Quanqi Hu**
 - PhD Student
 - University of Iowa

- **Bokun Wang**
 - PhD Student
 - University of Iowa

- **Qi Qi**
 - PhD Student
 - University of Iowa

- **Yongjian Zhong**
 - PhD Student
 - University of Iowa

- **Mingrui Liu**
 - Assistant Professor
 - George Mason University

- **Yan Yan**
 - Assistant Professor
 - Washington State University

- **Yi Xu**
 - Associate Professor
 - Dalian University of Technology
Acknowledgements: Collaborators

Milan Sonka (Ulowa)
Nitesh Chawla (ND)
Hassan Rafique (Ulndy)
Qi Hang Lin (Ulowa)
Yiming Ying (UAlbany)
Shuiwang Ji (TAMU)
Acknowledgements

Big Data, Career, III, RI, Engineering, Smart Health, Fair AI