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Abstract

In this paper, we consider the problem of re-
covering the s largest elements of an arbitrary
vector from noisy measurements. Inspired by
previous work, we develop an homotopy al-
gorithm which solves the ℓ1-regularized least
square problem for a sequence of decreasing
values of the regularization parameter. Com-
pared to the previous method, our algorithm
is more efficient in the sense it only updates
the solution once for each intermediate prob-
lem, and more practical in the sense it has a
simple stopping criterion by checking the s-
parsity of the intermediate solution. Theoret-
ical analysis reveals that our method enjoys a
linear convergence rate in reducing the recov-
ery error. Furthermore, our guarantee for re-
covering the top s elements of the target vec-
tor is tighter than previous results, and that
for recovering the target vector itself matches
the state of the art in compressive sensing.

1 Introduction

Compressive Sensing (CS) is a new paradigm of da-
ta acquisition that enables reconstruction of sparse or
compressible signals from a relatively small number of
linear measurements (Candès and Tao, 2006; Donoho,
2006). The standard assumption is that one has access
to linear measurements of the form

y = U⊤x∗ + e

where x∗ ∈ R
d is the unknown target vector, U ∈

R
d×m is the sensing matrix and e ∈ R

m is a vector
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of noise. Recently, substantial process has been made
in designing the encoder U and the associated decoder
∆ which recovers x∗ from U and y (Davenport et al.,
2012).

One of the most famous decoders for CS is the ℓ1-
regularized least squares (ℓ1-LS) formulation, known
as Lasso in statistics (Tibshirani, 1996), given by

min
1

2
‖y − U⊤x‖22 + λ‖x‖1.

The recovery performance of Lasso has been extensive-
ly studied and generally speaking, it can recover x∗
up to the noise level under appropriate assumption-
s (Daubechies et al., 2004; Tropp, 2006; Zhang, 2009).

Under the assumption that λ is given beforehand,
Xiao and Zhang (2012) propose a proximal-gradient
homotopy method to improve the efficiency of ℓ1-LS.
The key idea is to solve the ℓ1-LS problem for a se-
quence of decreasing values of the regularization pa-
rameter, and use an approximate solution at the end
of each stage to warm start the next stage. In this
study, we make three steps further. We show that (i)
it is sufficient to run composite gradient mapping only
once for each regularization parameter, (ii) the target
regularization parameter can be detected adaptively
based on the sparsity of the current solution, and (iii)
this simple algorithm can deliver a tighter bound for
recovering the s largest elements of x∗.

For a vector x, we denote by xs the vector that con-
tains the s largest elements of x. Let x̂ be the solution
returned by our algorithm. Under the assumption that
U is a sub-Gaussian random matrix, our algorithm is
able to reduce the recovery error exponentially over it-
erations, and the final recover error ‖x̂−xs∗‖2 is smaller
than

O

(√

s log d

m
(‖e‖2 + ‖x∗ − xs∗‖2) + ‖(x∗ − xs∗)

s‖2
)

where e is the vector of noise, and ‖(x∗−xs∗)
s‖2 is the
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ℓ2-norm of the s largest elements of x∗ − xs∗. In con-
trast, previous analysis in CS (Davenport et al., 2012)
can only upper bound the recovery error for xs∗ by

O (‖e‖2 + ‖x∗ − xs∗‖2) .

Thus, our recovery guarantee could be significantly
better than previous results if the ℓ2-norm of x∗ − xs∗
is not concentrated on its s largest elements (i.e.,
‖(x∗−xs∗)

s‖2 ≪ ‖x∗−xs∗‖2). Following the triangle in-
equality, we obtain the following bound for recovering
x∗

‖x̂− x∗‖2 ≤ O

(

‖x∗ − xs∗‖2 +
√

s log d

m
‖e‖2

)

which matches state of the art (DeVore et al., 2009).

2 Related Work

Existing algorithms in CS could be roughly cat-
egorized into convex optimization based approach-
es and greedy approaches (Davenport et al., 2012;
Blumensath et al., 2012). Roughly speaking, convex
approaches have better theoretical guarantee, while
greedy approaches are more efficient.

In the noise-free setting, Candès and Tao (2005) pose
the following ℓ1-minimization problem, denoted by ∆1,
for decoding

min ‖x‖1 s. t. U⊤x = y.

To analyze the recovery performance, they introduce
the Restricted Isometry Property (RIP) for matrices.
Define the isometry constant of U as the smallest num-
ber δs such that the following holds for all s-sparse
vectors x ∈ R

d

(1− δs)‖x‖22 ≤ ‖U⊤x‖22 ≤ (1 + δs)‖x‖22.

It has been shown that if δs + δ2s + δ3s < 1 or
δ2s <

√
2 − 1, the decoder ∆1 yields perfect recov-

ery for all s-sparse vectors x∗ ∈ R
d (Candès and Tao,

2005; Candès, 2008). If U is constructed as the ran-
dom matrix with independent sub-Gaussian columns,
a sufficient condition is to take m = Ω(s log d) mea-
surements (Mendelson et al., 2008).

In the general case, Candès (2008) propose the follow-
ing convex formulation, denoted by ∆ǫ

1, for decoding

min ‖x‖1 s. t. ‖y − U⊤x‖2 ≤ ǫ

where ǫ is an upper bound of ‖e‖2. Let ∆ǫ
1(U

⊤x∗+e)
be the solution returned by the above decoder. Sup-
pose U satisfies the RIP of order 2s with δ2s <

√
2−1,

we have

‖∆ǫ
1(U

⊤x∗ + e)− x∗‖2 ≤ O

(‖x∗ − xs∗‖1√
s

+ ǫ

)

for all x∗ ∈ R
d. An obvious drawback of this ap-

proach is that we must have a good a priori esti-
mate of ‖e‖2. This limitation is soon addressed by
Wojtaszczyk (2010), who shows that the decoder ∆1

performs very well even in the noise setting. In par-
ticular, if U is a Gaussian random matrix and m =
Ω(s log d), with an overwhelming probability, we have

‖∆1(U
⊤x∗ + e)− x∗‖2 ≤ O

(‖x∗ − xs∗‖1√
s

+ ‖e‖2
)

for all x∗ ∈ R
d. Another possible way is to estimate

the noise level under the Bayesian framework (Ji et al.,
2008).

Notice that in the above inequalities, the ℓ2-norm
of the recovery error is upper bounded by the ℓ1-
norm of the corresponding error of the best s-term
approximation. To make the result more consisten-
t, it is natural to ask whether we could upper bound
‖∆(U⊤x∗ + e)−x∗‖2 by ‖x∗ −xs∗‖2 for some decoder
∆. Unfortunately, even in the noise-free setting, if we
want the following inequality

‖∆(U⊤x∗)− x∗‖2 ≤ O(‖x∗ − xs∗‖2)

to hold for all x∗ ∈ R
d, the number of measurements

m needs to be on the order of d (Cohen et al., 2009).
This difficulty motivates the study of instance opti-
mality in probability, which means we are looking for
some performance guarantee that holds with a high
probability for an arbitrary but fixed vector x∗. When
U is a Gaussian random matrix and m = Ω(s log d),
Wojtaszczyk (2010) shows that with an overwhelming
probability

‖∆1(U
⊤x∗ + e)− x∗‖2 ≤ O (‖x∗ − xs∗‖2 + ‖e‖2)

for any fixed x∗ ∈ R
d. This result is extended to more

general families of matrices by DeVore et al. (2009).

The typical greedy approaches include Matching
Pursuit (MP) (Mallat and Zhang, 1993), Iterative
Hard Thresholding (IHT) (Blumensath and Davies,
2008; Garg and Khandekar, 2009), and Com-
pressive Sampling Matching Pursuit (CoSaMP)
(Needell and Tropp, 2009). Due to space limitation,
we only give a brief description of IHT. In each itera-
tion, IHT first performs gradient descent with respect
to ‖U⊤x − y‖22 and then applies hard-thresholding
to keep the s largest elements, in contrast to the
soft-thresholding in our method. Let xt denote the
solution of IHT in the t-th iteration. The updating
rule is given by

xt+1 =
[
xt − ηU(U⊤xt − y)

]s

where η is the step size. Under certain RIP condition,
it has been shown that the recovery error of IHT can
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Algorithm 1 A Simple Homotopy Algorithm

Input: Sensing Matrix U ∈ R
d×n, Measurements

y ∈ R
m, Shrinking Parameter γ, Sparsity s, Maximum

Number of Iterations T ,

1: Initialize x1 = 0, λ1 = ‖Uy‖∞
2: for t = 1, 2, . . . , T do

3: xt+1 = Pλt

(
xt − U(U⊤xt − y)

)

4: if ‖xt+1‖0 > 2s then

5: Return xt
6: end if

7: λt+1 = γλt
8: end for

9: Return xT+1

be upper bounded by

O

(

‖x∗ − xs∗‖2 +
‖x∗ − xs∗‖1√

s
+ ‖e‖2

)

for all x∗ ∈ R
d (Blumensath et al., 2012).

3 A Simple Homotopy Algorithm for

Compressive Sensing

We first introduce the proposed homotopy algorithm,
and then present its theoretical guarantee.

3.1 The Algorithm

In our algorithm, we solve a sequence of ℓ1-regularized
least squares (ℓ1-LS) with decreasing regularization
parameters. In particular, we set

λ1 = ‖Uy‖∞, λt+1 = γλt

for some γ < 1. For each intermediate ℓ1-LS problem,
we use the solution from the previous iteration as the
initial point, and perform composite gradient mapping
(Nesterov, 2013) to update it once, i.e.,

xt+1 =argmin
x∈Rd

〈x, U(U⊤xt − y)〉+ ‖x− xt‖22
2

+ λt‖x‖1

=Pλt

(
xt − U(U⊤xt − y)

)

where Pλt
() is the soft-thresholding operator (Donoho,

1995) defined as

Pλt
(α) =

{
0, if |α| ≤ λt;
sign(α)(|α| − λt), otherwise.

The algorithm will stop when the sparsity of inter-
mediate solution exceeds the budget 2s. The above
procedure is summarized in Algorithm 1.

Although the basic idea of our algorithm is motivated
from the proximal-gradient homotopy (PGH) method
(Xiao and Zhang, 2012), we make the following sub-
stantial extensions.

• Multiple iterations are needed by PGH to solve
the intermediate optimization problem to achieve
some predefined precision, in contrast, our algo-
rithm only updates once for each problem.

• While PGH assumes a target regularization pa-
rameter is given beforehand, our algorithm is able
to detect it adaptively based on the sparsity of the
intermediate solution.

• Xiao and Zhang (2012) only analyze the recovery
error of PGH for exactly sparse vectors, in com-
parison, we provide recovery guarantee for an ar-
bitrary vector. This difference is more fundamen-
tal in the context of compressive sensing.

3.2 Main Results

We first describe the assumptions about the sensing
matrix

U =
1√
m
[u1, . . . ,um] =

1√
m
[v1, . . . ,vd]

⊤ ∈ R
d×m

where ui ∈ R
d, i = 1, . . . ,m, and vj ∈ R

m, j =
1, . . . , d. We assume

• Both the columns and rows of U are sub-Gaussian
vectors, and for the sake of simplicity, we assume
the sub-Gaussian norm is smaller than 1. That
is, for any vector x ∈ R

d and z ∈ R
m, we have

‖x⊤ui‖ψ2
≤ ‖x‖2, i = 1, . . . ,m and ‖z⊤vj‖ψ2

≤
‖z‖2, j = 1, . . . , d, where ‖ · ‖ψ2

is the sub-
Gaussian norm of random variables (Vershynin,
2012).

• ui’s are sampled independently from an isotropic
distribution, that is, E[uiu

⊤
i ] = I.

Examples of such random vectors are Gaussian vectors
and Rademacher vectors.

Given a fixed vector x∗, we receive measurements y =
U⊤x∗ + e, where e encodes potential noise. In this
paper, e is unknown and we make no assumption about
the noise model. Our goal is to recover the s largest
elements of x∗ from U and y.

We have the following theorem to bound the recovery
error.1

Theorem 1. Let x̂ be the solution output from our
algorithm and T is the maximum number of iterations

allowed. Choosing γ = 1+
√
2

3 , then, with a probability
at least 1− 6Te−τ , we have

‖x̂− xs∗‖2 ≤ max
(
6Λ, 3λ1

√
sγT

)

1As a reminder, xs denotes the vector that contains the
s largest elements of x.
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where

Λ =

√

s(τ + log d)

m
‖e‖2

+ C

(

‖(x∗ − xs∗)
s‖2 +

√

τ + s log(d/s)

m
‖x∗ − xs∗‖2

)

(1)

for some universal constant C, provided

C

√

τ + s log(d/s)

m
≤ 1

6
. (2)

Remark The constants in the above theorem should
not be treated literally, because we have made no effort
to optimize them. Generally speaking, a smaller γ will
lead to a fast convergence rate, but a larger constant,
which is 6 now, in the recovery guarantee.

The above theorem implies that the recovery error re-
duces exponentially until it reaches O(Λ). Thus, with
a sufficiently large T , the recovery error of xs∗ can be
upper bounded by

O

(√

s log d

m
(‖e‖2 + ‖x∗ − xs∗‖2) + ‖(x∗ − xs∗)

s‖2
)

.

In the noise-free setting, our analysis also implies exact
recovery of s-sparse vectors, since Λ = 0 if ‖e‖2 = 0
and ‖x∗‖0 ≤ s.

From the literature of CS (Davenport et al., 2012,
Theorem 1.14), we find that previous analysis is
able to upper bound the recovery error of xs∗ by
c (‖x∗ − xs∗‖2 + ‖e‖2) for some constant c > 1. Thus,
when m is large enough, our upper bound could be
significantly smaller than the existing results. Finally,
it is worth to mention that if our goal is to recover x∗,
following the triangle inequality, our analysis yields the
same upper bound as previous studies (DeVore et al.,
2009).

3.3 A Post-processing Step

Since x̂ is 2s-sparse and xs∗ is s-sparse, one may ask
whether it is possible to find a good s-sparse vector
to approximate xs∗. The following theorem shows that
we can simply select the s largest elements of x̂ to
approximate xs∗ and the recovery error is on the same
order.

Theorem 2. Let y ∈ R
d be a s-sparse vector. Then,

we have

‖xs − y‖2 ≤
√
3‖x− y‖2, ∀x ∈ R

d.

4 Analysis

We here present the proofs of main theorems. The
omitted proofs are provided in the supplementary ma-
terial.

4.1 Proof of Theorem 1

Notice that starting our algorithm with λ1 = ‖Uy‖∞
has the same effect as staring with ‖Uy‖∞γ−k, k ∈ Z,
which means we can set λ1 as large as we need. Thus,
without loss of generality, we can assume

λ1 ≥ 1

3
√
s
max (‖xs∗‖2, 6Λ) . (3)

We first state two theorems that are central to our
analysis. Theorem 3 reveals that the recovery error
of our algorithm will reduce by a constant factor until
it reaches the optimal level. Then, Theorem 4 shows
that the recovery error will remain small, as long as
the sparsity of the solution does not exceed 2s.

We denote by S∗ and St the support set of xs∗ and xt,
respectively.

Theorem 3. Assume |St \ S∗| ≤ s, ‖xt − xs∗‖2 ≤
3λt

√
s, and Λ ≤ 1

2λt
√
s, where Λ is given in (1).

Then, with a probability at least 1− 6e−τ , we have

|St+1 \ S∗| ≤ s and ‖xt+1 − xs∗‖2 ≤ 3λt+1

√
s

provided the condition in (2) is true.

Theorem 4. Assume |St| ≤ 2s, ‖xt−xs∗‖2 ≤ 6Λ, and
Λ > 1

2λt
√
s, where Λ is given in (1). If |St+1| ≤ 2s,

then with a probability at least 1− 6e−τ , we have

‖xt+1 − xs∗‖2 ≤ 2(1 +
√
3)Λ

provided the condition in (2) is true.

We continue the proof of Theorem 1 in the following.
Let

k = min

{

t : Λ >
1

2
λt
√
s

}
(3)
> 1.

In the following, we will show that the recovery er-
ror ‖xt − xs∗‖2 will first decrease exponentially as t
approaches k, and then keep below 6Λ.

T < k From (3), we have ‖x1 − xs∗‖2 = ‖xs∗‖2 ≤
3λ1

√
s. Since the condition Λ ≤ λt

√
s

2 holds for
t = 1, . . . , T , we can apply Theorem 3 to bound the re-
covery error in each iteration. Thus, with a probability
at least 1− 6Te−τ , we have

‖x̂− xs∗‖2 = ‖xT+1 − xs∗‖2 ≤ 3λT+1

√
s = 3λ1

√
sγT .
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T ≥ k From the above analysis, with a probability at
least 1−6(k−1)e−τ , we have ‖xk−xs∗‖2 ≤ 3

√
sλk and

|Sk \ S∗| ≤ s, which also means our algorithm arrives
the k-th iteration. In the k-th iteration, there will be
two cases: |Sk+1| > 2s and |Sk+1| ≤ 2s. For the first
case, our algorithm terminates, and return xk as the
final solution, implying

‖x̂− xs∗‖2 = ‖xk − xs∗‖2 ≤ 3λk
√
s ≤ 6Λ.

For the second case, our algorithm keeps running, and
we can bound the recovery error of xk+1 by Theorem 4.
If T = k or |Sk+2| > 2s, our algorithm terminates and
return xk+1 as the final solution, which implies

‖x̂− xs∗‖2 = ‖xk+1 − xs∗‖2 ≤ 2(1 +
√
3)Λ.

Otherwise, our algorithm keeps running. Since 2(1 +√
3) ≤ 6, the condition in Theorem 4 are satisfied, and

thus can be applied repeatedly to bound the recovery
error for all the rest iterations.

4.2 Proof of Theorem 3

We need the following theorem to analyze the behavior
of the composite gradient descent.

Theorem 5. Suppose xt − xs∗ is a 3s-sparse vector.
With a probability at least 1− 6e−τ , we have

∥
∥
∥

[
U
(
U⊤xt − y

)
− (xt − xs∗)

]s
∥
∥
∥
2

≤Λ + C

√

τ + s log(d/s)

m
‖xt − xs∗‖2

where Λ is given in (1).

Given a set S ⊆ [d], xS denotes the vector which co-
incides with x on S and has zero coordinates outside
S. We denote the sub-gradient of ‖ · ‖1 by ∂‖ · ‖1.
Using the fact that

xt+1

=argmin
x∈Rd

1

2

∥
∥x− xt + U

(
U⊤xt − y

)∥
∥
2

2
+ λt‖x‖1,

we have

0

≤
〈
xt+1 − xt + U

(
U⊤xt − y

)
+ λt∂‖xt+1‖1,

xs∗ − xt+1〉
≤〈xt+1 − xt + U

(
U⊤xt − y

)
,xs∗ − xt+1〉

+ λt‖xs∗‖1 − λt‖xt+1‖1
≤〈xt+1 − xt + U

(
U⊤xt − y

)
,xs∗ − xt+1〉

+ λt‖xs∗‖1 − λt‖[xt+1]S∗
‖1

≤〈xt+1 − xt + U
(
U⊤xt − y

)
,xs∗ − xt+1〉

+ λt‖[xt+1 − xs∗]S∗
‖1

≤〈xt+1 − xt + U
(
U⊤xt − y

)
,xs∗ − xt+1〉

+ λt
√
s‖xt+1 − xs∗‖2

and thus

λt
√
s‖xt+1 − xs∗‖2

≥〈xt+1 − xt + U
(
U⊤xt − y

)
,xt+1 − xs∗〉

=‖xt+1 − xs∗‖22
+ (xt+1 − xs∗)

⊤ (U
(
U⊤xt − y

)
− (xt − xs∗)

)
.

(4)

According to Theorem 5, with a probability at least
1− 6e−τ , we have

∥
∥
∥

[
U
(
U⊤xt − y

)
− (xt − xs∗)

]s
∥
∥
∥
2

≤Λ + C

√

τ + s log(d/s)

m
‖xt − xs∗‖2

(2)

≤Λ +
1

6
‖xt − xs∗‖2 ≤ λt

√
s.

The above inequality implies the magnitude of the s-
mallest d − s elements of xt − U(U⊤xt − y) − xs∗ is
smaller than λt. Combining with the fact that

xt+1 = Pλt

(
xt − U(U⊤xt − y)

)
,

it is easy to verify that |St+1 \ S∗| ≤ s. Furthermore,
∣
∣(xt+1 − xs∗)

⊤ (U
(
U⊤xt − y

)
− (xt − xs∗)

)∣
∣

≤
(
‖[xt+1 − xs∗]S∗

‖2 + ‖[xt+1 − xs∗]St+1\S∗
‖2
)
λt
√
s

≤λt
√
2s‖xt+1 − xs∗‖2.

Substituting the above inequality into (4), with a prob-
ability at least 1− 6e−τ , we have

‖xt+1 − xs∗‖22 ≤
(

λt
√
s+ λt

√
2s
)

‖xt+1 − xs∗‖2

and thus

‖xt+1 − xs∗‖2 ≤ (1 +
√
2)λt

√
s ≤ 3λt+1

√
s.

4.3 Proof of Theorem 4

We need to reuse (4) that appears in the analysis of
Theorem 3. According to Theorem 5, with a probabil-
ity at least 1− 6e−τ , we have

∥
∥
∥

[
U
(
U⊤xt − y

)
− (xt − xs∗)

]s
∥
∥
∥
2

(2)

≤Λ +
1

6
‖xt − xs∗‖2 ≤ 2Λ.

Notice that xt+1 − xs∗ is 3s-sparse in this case, and it
is easy to verify that

∣
∣(xt+1 − xs∗)

⊤ (U
(
U⊤xt − y

)
− (xt − xs∗)

)∣
∣

≤2
√
3Λ‖xt+1 − xs∗‖2.
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Substituting the above inequality into (4), we have

‖xt+1 − xs∗‖22 ≤
(

λt
√
s+ 2

√
3Λ
)

‖xt+1 − xs∗‖2
≤2(1 +

√
3)Λ‖xt+1 − xs∗‖2,

and thus

‖xt+1 − xs∗‖2 ≤ 2(1 +
√
3)Λ.

4.4 Proof of Theorem 5

In the analysis, we need to bound ‖(UU⊤z)s‖2 for a
fixed vector z ∈ R

d, and ‖[(UU⊤ − I)z]s‖2, for all 3s-
sparse vectors z ∈ R

d. Thus, we build the following
two theorems.

Theorem 6. For a fixed z ∈ R
d, with a probability at

least 1− 2e−τ , we have

∥
∥
∥

(
UU⊤z

)s
∥
∥
∥
2
≤ C

(√

τ + s log(d/s)

m
‖z‖2 + ‖zs‖2

)

for some constant C > 0.

Theorem 7. With a probability at least 1− 2e−τ , for
all z ∈ R

d with ‖z‖0 ≤ 3s, we have

∥
∥
∥

[
(UU⊤ − I)z

]s
∥
∥
∥
2
≤ C

√

τ + s log(d/s)

m
‖z‖2

for some constant C > 0.

We rewrite U
(
U⊤xt − y

)
− (xt − xs∗) as

U
(
U⊤xt − y

)
− (xt − xs∗)

=U
(
U⊤xt − U⊤x∗ − e

)
− (xt − xs∗)

=UU⊤(xs∗ − x∗)
︸ ︷︷ ︸

:=wa

+(UU⊤ − I)(xt − xs∗)
︸ ︷︷ ︸

:=wb

− Ue
︸︷︷︸

:=wc

.

Then, we have

∥
∥
∥

[
U
(
U⊤xt − y

)
− (xt − xs∗)

]s
∥
∥
∥
2

≤‖ws
a‖2 + ‖ws

b‖2 + ‖ws
c‖2.

Bounding ‖ws
a‖2 According to Theorem 6, with a

probability at least 1− 2e−τ , we have

‖ws
a‖2

=
∥
∥
∥

[
UU⊤(xs∗ − x∗)

]s
∥
∥
∥
2

≤C

(√

τ + s log(d/s)

m
‖x∗ − xs∗‖2 + ‖(x∗ − xs∗)

s‖2
)

for some constant C > 0.

Bounding ‖ws
b‖2 Notice that xt − xs∗ is a 3s-sparse

vector. According to Theorem 7, with a probability at
least 1− 2e−τ , we have

‖ws
b‖2 =

∥
∥
∥

[
(UU⊤ − I)(xt − xs∗)

]s
∥
∥
∥
2

≤C

√

τ + s log(d/s)

m
‖xt − xs∗‖2

for some constant C > 0.

Bounding ‖ws
c‖2 Since U = 1√

m
[v1, . . . ,vd]

⊤, and

we assume vi is a sub-Gaussian vector. We have

‖v⊤
j e‖ψ2

≤ ‖e‖2, j = 1, . . . , d.

Using the property of Orliz norm (Koltchinskii, 2009,
2011), with a probability at least 1− 2e−τ , we have

|v⊤
j e| ≤ ‖v⊤

j e‖ψ2

√
τ ≤ ‖e‖2

√
τ .

By taking the union bound, we have, with a probabil-
ity at least 1− 2e−τ ,

‖Ue‖∞ =
1√
m

max
j

|v⊤
j e| ≤ ‖e‖2

√

τ + log d

m

implying

‖ws
c‖2 = ‖(Ue)

s‖2 ≤ ‖e‖2
√

s(τ + log d)

m
.

We complete the proof by combining the bounds for
‖ws

a‖2, ‖ws
b‖2, and ‖ws

c‖2.

4.5 Proof of Theorem 6

We define the set of s-sparse vectors with length small-
er than 1 as

Kd,s =
{
x ∈ R

d : ‖x‖2 ≤ 1, ‖x‖0 ≤ s
}
.

Then, it is easy to check that

Es(z) := max
w∈Kd,s

w⊤UU⊤z = ‖(UU⊤z)s‖2.

Let Kd,s(ǫ) be a proper ǫ-net for Kd,s with the smallest
cardinality, and N(Kd,s, ǫ) = |Kd,s(ǫ)| be the covering
number for Kd,s. We have the following lemma for
bounding N(Kd,s, ǫ) (Plan and Vershynin, 2013, Lem-
ma 3.3).

Lemma 1. For ǫ ∈ (0, 1) and s ≤ d, we have

logN(Kd,s, ǫ) ≤ s log

(
9d

ǫs

)

.
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Using the ǫ-net Kd,s(ǫ), we define a discretized version
of Es(z) as

Es(z, ǫ) = max
w∈Kd,s(ǫ)

w⊤UU⊤z.

The following lemma relates Es(z) with Es(z, ǫ).
Lemma 2. For ǫ ∈ (0, 1/

√
2), we have

Es(z) ≤
Es(z, ǫ)
1−

√
2ǫ

.

Based on the conclusion from Lemma 2, it is sufficient
to bound Es(z, ǫ). To this end, we need the following
lemma to bound the difference between w⊤UU⊤z −
w⊤z for a fixed w.

Lemma 3. For fixed w and z with ‖w‖2 ≤ 1, with a
probability at least 1− 2e−τ , we have

|w⊤UU⊤z−w⊤z| ≤ C

√
τ

m
‖z‖2

for some constant C > 0.

By taking the union bound, with a probability at least
1− 2e−τ , we have

max
w∈Kd,s(ǫ)

∣
∣w⊤UU⊤z−w⊤z

∣
∣

≤C

√

τ + s log(9d/[ǫs])

m
‖z‖2.

Since

max
w∈Kd,s(ǫ)

w⊤z ≤ max
w∈Kd,s

w⊤z = ‖zs‖2,

we have

Es(z, ǫ) = max
w∈Kd,s(ǫ)

w⊤UU⊤z

≤ max
w∈Kd,s(ǫ)

∣
∣w⊤UU⊤z−w⊤z

∣
∣+ max

w∈Kd,s(ǫ)
w⊤z

≤C

√

τ + s log(9d/[ǫs])

m
‖z‖2 + ‖zs‖2.

We complete the proof by using Lemma 2 with ǫ = 1/2.

4.6 Proof of Theorem 7

Recall the definitions of Kd,s and Kd,s(ǫ) in the proof
of Theorem 6. Evidently, for any z with ‖z‖0 ≤ 3s, we
have ∥

∥
∥

[
(UU⊤ − I)z

]s
∥
∥
∥
2
≤ G3s‖z‖2

where
G3s = max

r∈Kd,3s

∥
∥
∥

[
(UU⊤ − I)r

]s
∥
∥
∥
2
.

Thus, what we need is to provide an upper bound for
G3s.

Define

Fs(r) =
∥
∥
∥

[
(UU⊤ − I)r

]s
∥
∥
∥
2
= max

w∈Kd,s

w⊤(UU⊤ − I)r.

We first provide an upper bound for Fs(r), and then
G3s. From the analysis of Theorem 6, with a probabil-
ity at least 1− 2e−τ , we have

Fs(r, ǫ) = max
w∈Kd,s(ǫ)

w⊤(UU⊤ − I)r

≤C

√

τ + s log(9d/[ǫs])

m
‖r‖2.

for some constant C > 0. Following the proof of Lem-
ma 2, it is straightforward to show that

Fs(r) ≤
Fs(r, ǫ)
1−

√
2ǫ

, ∀ǫ ∈ (0, 1/
√
2).

Similar to the proof of Theorem 6, we can set ǫ = 1/2.
Thus, for a fixed r, with a probability at least 1−2e−τ ,
we have

Fs(r) ≤ C

√

τ + s log(d/s)

m
‖r‖2

for some constant C > 0.

Next, we repeat the above argument again to bound
G3s. We define a discreted version of G3s as

G3s(ǫ) = max
r∈Kd,3s(ǫ)

Fs(r).

By taking the union bound, with a probability at least
1− 2e−τ , we have

G3s(ǫ) ≤ C

√

τ + s log(d/s) + 3s log(9d/[3ǫs])

m

for some constant C > 0. We complete the proof by
using

G3s ≤
G3s(ǫ)

1−
√
2ǫ

, ∀ǫ ∈ (0, 1/
√
2).

5 Empirical Study

In this section, we perform several experiments to ex-
amine the recovery performance of our method.

We first examine the ability of exact recovery under
noise-free setting. x∗ ∈ R

10000 is a 20-sparse vec-
tor, that is generated randomly and normalized to
unit length. We construct the sensing matrix U ∈
R

10000×1000 as the Gaussian random matrix. Fig. 1
shows how the recovery error of our algorithm decreas-
es with different choices of γ. It is clear that our algo-
rithm achieves a linear convergence rate, and a smaller
γ leads to a faster convergence rate.
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Figure 1: x∗ is sparse.

50 100 150 200 250 300 350

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 # of Iterations

R
e
c
o
v
e
ry

 E
rr

o
r

 

 

γ=0.8
γ=0.92
γ=0.97
γ=0.99

Figure 2: x∗ is dense.
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Figure 3: x∗ is dense and y contains noise.
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Figure 4: SHA versus PGH.

We then generate a unit length x∗ ∈ R
10000 that has a

power-law decay. Specifically, the i-th largest elements
of x∗ is proportional to i−1. Fig. 2 shows the recovery
error for x20

∗ without noise and Fig. 3 shows the recov-
ery error when the measurements are contaminated by
Gaussian noise with ‖e‖2 = 0.5. We observe that the
recovery error still decreases rapidly until it reaches
certain precision, at which the sparsity of the current
solution exceeds 40 and our method terminates.

Finally, we compare our simple homotopy algorithm
(SHA) with the proximal-gradient homotopy method
(PGH). Following the setting in (Xiao and Zhang,
2012), we construct U ∈ R

5000×1000 where entries are
sampled independently from U(−

√
3,
√
3), i.e., the u-

niform distribution over [−
√
3,
√
3], x∗ ∈ R

5000 where
‖x∗‖0 = 100 and the non-zero entries are sampled from
U(−1, 1), and e ∈ R

1000 where entries are sampled
from U(−0.01, 0.01). Fig. 4 shows that our algorithm
converges faster.

6 Conclusion and Future Work

In this paper, we provide a simple homotopy algorith-
m for CS that is more efficient and practical than its

counterpart. Theoretical analysis shows that our al-
gorithm has a linear convergence rate in reducing the
recovery error, and the recovery guarantee for xs∗ could
be much tighter than previous results under appropri-
ate conditions.

Notice that existing studies in CS provide matching
lower and upper bounds for recovering the whole vec-
tor x∗ (Donoho, 2006; Cohen et al., 2009). It is un-
clear to us what would be the lower bound if our goal
is to recover xs∗. We will investigate this issue in future.
We will also study how to apply our algorithm to one-
bit compressive sensing (Boufounos and Baraniuk,
2008; Plan and Vershynin, 2013; Zhang et al., 2014),
which is a new setting of CS where the measurement
is quantized to a single bit.
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