
Efficient Low-Rank Stochastic Gradient Descent Methods
for Solving Semidefinite Programs

Jianhui Chen Tianbao Yang and Shenghuo Zhu
GE Global Research, San Ramon, CA 94583 NEC Labs America, Cupertino, CA 95014

Abstract

We propose a low-rank stochastic gradient
descent (LR-SGD) method for solving a class
of semidefinite programming (SDP) prob-
lems. LR-SGD has clear computational ad-
vantages over the standard SGD peers as
its iterative projection step (a SDP prob-
lem) can be solved in an efficient manner.
Specifically, LR-SGD constructs a low-rank
stochastic gradient and computes an optimal
solution to the projection step via analyzing
the low-rank structure of its stochastic gradi-
ent. Moreover, our theoretical analysis shows
the universal existence of arbitrary low-rank
stochastic gradients which in turn validates
the rationale of the LR-SGD method. Since
LR-SGD is a SGD based method, it achieves
the optimal convergence rates of the standard
SGD methods. The presented experimental
results demonstrate the efficiency and effec-
tiveness of the LR-SGD method.

1 Introduction

Due to rapidly growing demands for analytic capa-
bilities on massive data, stochastic (sub)gradient de-
scent (SGD) based optimization methods [1] have at-
tracted intensive research attentions, from both theo-
rists and practitioners, in the areas of data mining and
machine learning. The advantages of the SGD based
methods include lightweight computation in each al-
gorithmic iteration, drastic simplification in practical
implementations, and provably rates of convergence.

Recently, semidefinite programming (SDP) has been
widely employed for mathematical modeling of many
data mining and machine learning applications such

Appearing in Proceedings of the 17th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2014, Reykjavik, Iceland. JMLR: W&CP volume 33. Copy-
right 2014 by the authors.

as distance metric learning [2], sparse covariance se-
lection [3], matrix optimization [4], and etc.. Owing
to the aforementioned advantages, SGD is a favorable
method for solving those mathematical formulations,
compared to traditional gradient descent (GD) based
methods. Although the SGD methods are generally
very efficient, solving a mathematical formulation in-
volving SDP constraints might still be a computational
bottleneck. In particular, at each iteration of SGD, one
moves an intermediate feasible solution point along the
negative gradient direction towards the global opti-
mum, usually resulting in an infeasible point. One
then has to project the infeasible point back into the
associated positive semidefinite (PSD) cone (a SDP
projection step henceforth) and compute another in-
termediate feasible solution for next SGD iteration.
The SDP projection step is computationally expensive,
as in general it needs a full-spectrum eigendecomposi-
tion on a symmetric matrix [2]. Consequently, these
limitations dramatically restrict the capability of SGD
in large scale data analysis.

In this paper, we propose an efficient approach to solve
the SDP projection step involved in SGD. The main
idea is to incorporate a low-rank stochastic gradient
into the SDP projection step and utilize the special
structure of the low-rank stochastic gradient for effi-
cient computation. Specifically, we first present gen-
eral procedures for constructing low-rank stochastic
gradients of the objective functions and show that the
low-rank constructions are naturally valid stochastic
gradients; using rank-k stochastic gradients, we show
that the optimal solution to the SDP projection step
can be obtained via computing at most k eigenpairs
of a symmetric matrix. It is worth noting that our
low-rank stochastic gradient construction procedure
implies the universal existence of arbitrary low-rank
stochastic gradients. To the best of our knowledge,
our work is the first one that employs arbitrary low-
rank stochastic gradients for alleviating the computa-
tion cost in the projection into a PSD cone.

The proposed low-rank stochastic gradient can be
incorporated into various SGD methods. For il-

Efficient Low-Rank SGD Methods for solving SDP

lustration, we present the details of the standard
SGD method with low-rank stochastic gradients,
namely, low-rank stochastic gradient descent (LR-
SGD) method. Since LR-SGD is a SGD method, it
achieves the same optimal rates of convergence as the
standard SGD. LR-SGD can be applied for solving
various machine learning formulations involving SDP
constraints, for example, multi-task learning [5, 6],
sparse covariance selection [7], distance metric learn-
ing [2, 8, 9], and matrix factorization [8, 9]. We em-
pirically demonstrate the effectiveness of LR-SGD on
several real-world problems.

2 Related Work

We focus on discussing two recent related works. Mah-
davi et al. [10] present a SGD method (called PD-
SGD) which only requires one projection computation
at the final iteration. The key idea is to move the do-
main constraint into the objective function and then
solve a penalized Lagrangian function via a primal-
dual stochastic gradient descent method. Albeit free
of the projection computation in the intermediate iter-
ative steps, a concomitant shortcoming of the method
is that the intermediate solution (at each iteration)
may not satisfy the PSD constraint from the original
mathematical formulation. Hence PD-SGD may not
be appropriate for certain applications, for example,
in online learning, the learner may have to present to
the environment a feasible solution (satisfying the PSD
condition) at each iteration.

The second work is a projection-free algorithm (called
OFW) proposed by Hazan and Kale [11] in online
learning setting. OFW eschews the projection com-
putation by the classical Frank-Wolfe technique [12]
and efficiently finds the optimal solution to the SDP
projection via solving a linear optimization problem at
each iteration. This algorithm keeps the PSD property
at each iteration; it is however devoted to an online
setting, where at each iteration a stochastic function,
instead of a stochastic gradient, is exhibited, though
the latter is more widely applicable and arguably more
interesting in the optimization area [13]. Another lim-
itation of this algorithm is that it suffers from a sub-
optimal convergence rate of O(1/T 1/3) for general con-
vex problems, compared to the optimal convergence
rate O(1/

√
T) for standard SGD methods.

The low-rank stochastic gradients have been exploited
previously for solving specific machine learning ap-
plication problems. Just to name a few, the works
in [14, 15, 16] have adopted an efficient rank-one up-
date for a class of online distance metric learning prob-
lems, where the gradients of the loss functions at each
iteration is simply a rank-one matrix; the work in [17]

exploits low-rank stochastic gradients for efficiently
computing the SVD of a matrix for solving nuclear
norm regularized problems, where the loss function is
a summation of functions defined on each entries of
the matrix.

There are also tremendous research efforts along the
direction of developing fast SDP solvers [18, 19, 20, 21,
22, 23] as well as deriving efficient optimization algo-
rithms for solving specific application problems with
SDP constraints [24, 25, 26, 27]. We do not conduct
comparison with these algorithms, as they do not be-
long to the category of SGD methods.

Notations Denote matrices by capital bold letters.
Denote by S+ = {X ∈ Rd×d : X � 0} a d-dimensional

PSD cone. Let ΠD(X̂) = arg minX∈D ‖X − X̂‖2F .
Let ∂f(X) be the (sub)gradient of f(·) at X. For

an arbitrary symmetric matrix B, (u↑i , λ
↑
i) denotes

its eigenpairs corresponding to the i-th largest eigen-
value, while (u↓i , λ

↓
i) denotes its eigenpairs correspond-

ing to the i-th smallest eigenvalue. Denote ‖X‖2 =

λ↑1, ‖X‖F =
√∑d

i=1 λ
2
i , and ‖X‖1 =

∑d
i=1 |λi|. De-

note [x]+ = max(0, x) and [x]− = min(0, x).

3 Gradient Descent Based Methods
for Semidefinite Programming

We consider to solve the semidefinite program
(SDP) [28] in the following form:

min
A

f(A)

s.t. A ∈ D = {X |X ∈ S+, ‖X‖ ≤ λ}, (1)

where f(·) is an arbitrary convex function (not neces-
sarily differentiable), ‖ · ‖ denotes any matrix norm,
and λ is a positive value (including infinity).

The formulation above is key to many machine learn-
ing tasks; the development on its efficient optimiza-
tion algorithm is of broad interests in data mining and
machine learning communities. For example, by com-
bining the optimization algorithms for solving Eq. (1)
with the alternating direction methods [29, 30], one
can readily develop efficient methods for solving SDP
problems with inequality or equality constraints in
large scale settings.

To solve the SDP in Eq. (1), the gradient descent (GD)
based methods [28] start from an initial solution point
A1 and then iteratively generate intermediate solution
points At+1 (t = 1, . . . , T) by recycling the step

At+1 = ΠD(At − γtG(At)), (2)

where γt > 0 denotes a step size, and G(At) ∈ ∂f(At)
denotes a (sub)gradient of f(·) on At. In contrast,

Jianhui Chen, Tianbao Yang and Shenghuo Zhu

the stochastic gradient decent (SGD) based methods
compute an optimal solution to Eq. (1) by recycling a
projection step as

At+1 = ΠD(At − γtĜ(At;ωt)), (3)

where ωt is a random variable and its probability dis-
tribution P is supported on a set Ω, and Ĝ(A;ω) is a
stochastic gradient that satisfies

Eω
[
Ĝ(A;ω)

]
=

∫
Ω

Ĝ(A;ω)dP (ω) ∈ ∂f(A). (4)

Remark It is worth noting that learning a predictor
from a limited set of examples (without knowing their
true distribution) is essentially a stochastic optimiza-
tion problem [31]. Moreover, the SGD methods enjoy
the same rate of convergence as the GD methods for
optimizing general convex functions and strongly con-
vex functions; they however generally require much
less computation in each iteration and hence are suit-
able for large scale data analysis.

The practical efficiency of the SGD methods criti-
cally depends on the computation of the projection
step (a SDP problem) in Eq. (3). The optimal solu-
tion to Eq. (3) can be routinely obtained by comput-
ing the eigendecomposition of a symmetric matrix, i.e,
At − γtĜ(At;ωt), and then projecting the obtained
eigenvalues into a convex set depending on the em-
ployed constraints. However, this procedure involves
intensive computation and may be prohibitive for high
dimensional problems, as the time complexity of eigen-
decomposition on a dense d× d matrix is O(d3).

To alleviate the computation limitation, we present
an efficient low-rank stochastic gradient descent (LR-
SGD) method which employs a low-rank stochastic
gradient and leads to time complexity O(d2) in each
iteration. In the following presentation, we respec-
tively present the construction of low-rank stochastic
gradients and efficient algorithms for solving the SDP
projection step with low-rank stochastic gradients.

4 Low-Rank Stochastic Gradients
Construction

In this section, we present the procedure of construct-
ing low-rank stochastic gradients for Eq. (3); we defer
the discussion on the efficient computation of Eq. (3)
to the subsequent Section 5.

Before presenting the details of low-rank stochastic
gradients construction, we present below a definition
of the low-rank stochastic gradients.

Definition 1. Ĝk(A;ω) ∈ Rd×d is a rank-k stochastic
gradient of f(A) if

Eω
[
Ĝk(A;ω)

]
=

∫
Ω

Ĝk(A;ω)dP (ω) ∈ ∂f(A), (5)

and Rank(Ĝk(A;ω)) = k < d.

A straightforward approach to construct a low-rank
stochastic gradient is to compute the eigendecompo-
sion on the gradient G(A) =

∑d
i=1 λiuiu

>
i and then

sample k indices {i1, . . . , ik} from {1, 2, · · · , d} ac-

cording to the distribution P (i) = |λi|/
∑d
i=1 |λi|;

the rank-k stochastic gradient is then obtained as
Ĝk(A;ω) = (

∑d
i=1 |λi|/k)

∑k
j=1 sgn(λij)uiju

>
ij

satis-

fying E(Ĝk(A;ω)) = G(A). One limitation of this ap-
proach lies in the full spectrum eigenvalue computa-
tion, which is prohibitive for large scale data analysis.

Next, we present two efficient approaches to construct
low-rank stochastic gradients.

4.1 Direct Construction

For a class of objective functions f(·), their gradients
over A can be explicitly expressed as a sum of a set of
rank-one matrices i.e, ∂f(A) =

∑k
i=1 uiu

>
i ,ui ∈ Rd.

The stochastic gradients of f(A) can then be con-
structed from a selection of the available samples.

As a concrete example, we consider the problem of
Distance Metric Learning for Large Margin Nearest
Neighbor Classification (LMNN) [2] formulated as

min
A�0

c

n

∑
i,j,l

ηij(1−yil)`
(
1 + ‖xi−xj‖2A−‖xi−xl‖2A,0

)
+

1

m

∑
i,j

ηij‖xi−xj‖2A, (6)

where ‖xi − xj‖2A = (xi − xj)
>

A (xi − xj), ηij ∈
{1, 0} indicates whether xj is a target neighbor (a
nearest neighbor of the same class label) of xi, yil ∈
{1, 0} indicates whether xi and xl share the same class
label, `(z, 0) = max(z, 0) denotes the hinge loss, and
n,m, c denote the number of active triplets in the first
term, the number of pairs in the second term, and
a balancing parameter of the two terms, respectively.
The goal here is to learn a distance metric that sepa-
rates examples from different classes with a large mar-
gin and keeps examples from the same class closer.

A low-rank stochastic gradient of the objective func-
tion in Eq. (6) can be computed as follows. We first
randomly sample a triplet (i1, j1, l) as well as a pair
(i2, j2) such that the pairs (xi1 ,xj1) and (xi2 ,xj2) re-
spectively share the same class label while xl has a
different class label to the pair (xi1 ,xj1). We then ob-

tain a construction as Ĝk(A, ω) = c(xi1 − xj1)(xi1 −
xj1)>− c(xi1−xl)(xi1−xl)

>+(xi2−xj2)(xi2−xj2)>

if 1 + ‖xi1 − xj1‖2A − ‖xi1 − xl‖2A > 0 and Ĝk(A, ω) =
(xi2 − xj2)(xi2 − xj2)> otherwise. Note that the con-

structed Ĝk(A, ω) has a rank value at most 3.

Efficient Low-Rank SGD Methods for solving SDP

4.2 Implicit Construction

For general objective functions f(·), their gradients
may not be explicitly expressed as a sum of rank-
one matrices. We present a general procedure to con-
struct a low-rank stochastic gradient which is guaran-
teed to satisfy the conditions in Definition 1, and also
prove that rank-2 matrices are sufficient for construct-
ing stochastic gradients for general SDP problems.

We present below two lemmas which are main building
blocks of the general procedure for constructing low-
rank stochastic gradients. The first lemma shows how
to construct a rank-one matrix D̂ from an arbitrary
diagonal matrix D so that E[D̂] = D holds .

Lemma 1. Given any diagonal matrix D =
diag (D11, · · · , Ddd), let it be an integer sampled
from the set {1, . . . , d} according to the distribu-

tion Pr(it) = |Ditit |/
∑d
i=1 |Dii|, and denote D̂ =

sgn(Ditit)
(∑d

i=1 |Dii|
)

eit e>it , where ei ∈ Rd (i =

1, 2, . . . , d) are canonical bases of Rd. Then E[D̂] = D

and Rank(D̂) = 1.

Proof. Since it ∼ Pr(it), we can easily verify E
[
D̂
]

=∑d
j=1

(
sgn(Djj)

(∑d
i=1 |Dii|

)
eje
>
j Pr(j)

)
= D. This

completes the proof.

The second lemma shows how to construct a rank-one
matrix P̂ from an arbitrary off-diagonal matrix P, so
that E[P̂] = P holds.

Lemma 2. Given an off-diagonal symmetric matrix
P ∈ Rd×d, let P̂ = 1

2v>Pvvv>, where v ∈ Rd
and each of its entries is independently sampled from
{1,−1} with equal probability of 1/2. Then E(P̂) = P.

Proof. We prove E(P̂ii) = 0. From the definition of P̂,
we have E

[(
v>Pvvv>

)
ii

]
= E [vivi

∑
kl vkvlPkl] =

E [
∑
kl vkvlPkl] =

∑
k Pkk = 0, where the second

equality follows from vivi = 1 and the third equal-
ity follows from E[vivj] = 0 if i 6= j.

We then prove E(P̂ij) = Pij for i 6= j. Similarly,

we have E
[(

v>Pvvv>
)
ij

]
= E [

∑
kl vivjvkvlPkl] =

Pij + Pji = 2Pij , where the second equality follows
from the facts that E [vivjvkvl] = 0 if the indices
i, j, k, and l are mutually unequal and E [vivjvkvl] = 1
if i = k, j = l or i = l, j = k. Combining the results
above, we complete this proof.

From Lemmas 1 and 2, we can construct a rank-2
stochastic gradient of f(A) as follows: (1) construct
a gradient G ∈ ∂f(A) and split it into a diagonal ma-
trix D and an off-diagonal matrix P; (2) construct a

rank-one matrix D̂ from the diagonal component D as
described in Lemma 1; (3) construct a rank-one matrix

P̂ from the off-diagonal component P as described in
Lemma 2. Then a rank-2 stochastic gradient of f(A)

can be expressed as D̂ + P̂. Note that given an even
integer k, a rank-k stochastic gradient can be straight-
forwardly computed by averaging over k/2 repetitions

of constructing D̂ + P̂.

Remark The results in Lemmas 1 and 2 imply the
existence of general low-rank stochastic gradients, in-
cluding the rank-2 ones, for an arbitrary SDP problem.

5 Efficient Projection Computation

In this section, we discuss the efficient computation of
the projection step in Eq. (3) using low-rank stochas-
tic gradients; we show that by incorporating a rank-k
stochastic gradient, the optimal solution to Eq. (3) can
be obtained via computing at most k eigenpairs of a
symmetric matrix.

We present detailed algorithms for using rank-2
stochastic gradients and general rank-k stochastic gra-
dients respectively. For illustration, we consider two
commonly used matrix norms, i.e, the spectral norm
and the Frobenius norm for the set D in Eq. (1).

5.1 Projection with Rank-2 Stochastic
Gradients

From Eq. (3), we denote by Bt = At − γtĜ2 (At;ωt)
the symmetric matrix (to be projected into a bounded
SDP cone) from the t-th iteration of SGD. Since

Ĝ2 (At;ωt) is a rank-2 stochastic gradient, we can
rewrite Bt into an explicit form as

B = A− γ(s1v1v
>
1 + s2v2v

>
2), A ∈ D, (7)

where s1, s2 ∈ {1, 0,−1} and γ > 0. Note that in
Eq. (7) we suppress the iteration index t for notational
simplicity. Next we present important properties of
the matrix B, as summarized in the following lemma.

Lemma 3. Let A, B, s1, s2, and γ > 0 be defined in
Eq. (7) and denote s = s1 + s2. Then

• if s ∈ {1, 2}, at most s eigenvalues of B are nega-
tive; moreover, if ‖A‖2 ≤ λ, all eigenvalues of B
are less than or equal to λ.

• if s ∈ {−1,−2}, all eigenvalues of B are larger
than or equal to 0; moreover, if ‖A‖2 ≤ λ, at
most |s| eigenvalues of B are larger than λ.

• if s = 0, at most one eigenvalue of B is negative;
moreover, if ‖A‖2 ≤ λ, at most one eigenvalue of
B is larger than λ.

Jianhui Chen, Tianbao Yang and Shenghuo Zhu

It follows from Lemma 3 that B in Eq. (7) has at
most two negative eigenvalues and moreover B has at
most two eigenvalues larger than λ if ‖A‖2 ≤ λ. Note
that the lemma above can be easily proved using the
standard Weyl’s Inequality [32].

We present an efficient algorithm for solving Eq. (3)
with the spectral norm constraint employed in D, as
summarized in the following theorem.

Theorem 4. Let A, B, s1, s2, and γ be defined in
Eq. (7) and s = s1 + s2. The optimal solution to

min
Â

1
2‖Â−B‖2F

s.t. Â ∈ S+, ‖Â‖2 ≤ λ (8)

is given by Rank-2-Thresholding (B, λ, s) in Algo-
rithm 1.

Proof. Denote the Lagrangian function associated
with Eq. (8) as L(Â,Z1,Z2) = 1

2‖Â−B‖2F−tr(ÂZ1)+

tr((Â − λI)Z2). Let A∗ and {Z∗1,Z∗2} be the optimal
primal and dual variables to Eq. (8), respectively. The
KKT conditions to Eq. (8) can be expressed as

A∗ = B + Z∗1 − Z∗2

tr(A∗Z∗1) = 0, tr((A∗ − λI)Z∗2) = 0 (9)

Z∗1 ∈ S+, Z∗2 ∈ S+.

We compute the optimal solution to Eq. (8) by con-
sidering the following three cases.

Case 1: s ∈ {−1,−2} It follows from Lemma 3 that
all eigenvalues of B are non-negative. Setting Z∗1 = 0,
we have tr((A∗ − λI)Z∗2) = tr((B − λI − Z∗2)Z∗2) =
0. Since B has at most −s eigenvalues larger than

λ, we have Z∗2 = max{λ↑1 − λ, 0}u
↑
1u↑1
>

+ max{λ↑2 −
λ, 0}u↑2u↑2

>
, where (u↑1, λ

↑
1) and (u↑2, λ

↑
2) correspond to

the top two eigenpairs of the matrix B as defined in
the Notation section.

Case 2: s ∈ {1,2} From Lemma 3, we have that all
eigenvalues of B are not larger than λ. It is easy to
verify that all eigenvalues of A∗ are smaller than λ
and hence −(A∗ − λI) ∈ S+. Similarly setting Z∗2 =
0, we have tr(A∗Z∗1) = tr((B + Z∗1)Z∗1) = 0. Since
B has at most s negative eigenvalues, we have Z∗1 =

−min{λ↓1, 0}u
↓
1u↓1
>
−min{λ↓2, 0}u

↓
2u↓2
>

.

Case 3: s = 0 From Lemma 3, we have that B at
most one negative eigenvalue and also has at most one
eigenvalue larger than λ. From Eqs. (9) we have

tr(A∗Z∗1)=tr((B + Z∗1 − Z∗2) Z∗1) = 0

tr((A∗ − λI)Z∗2)=tr((B− λI + Z∗1 − Z∗2)Z∗2)=0 (10)

Z∗1 ∈ S+,Z
∗
2 ∈ S+.

Assuming the orthogonality between Z∗1 and Z∗2 and
using similar analysis to Case 1 and Case 2, we

have Z∗1 = −min{λ↓1, 0}u
↓
1u↓1
>

and Z∗2 = max{λ↑1 −
λ, 0}u↑1u↑1

>
. It can be verified that Z∗1 and Z∗2 satisfy

Eqs. (10) and they are optimal dual solutions.

The primal variable A∗ can be computed from the
first equation in Eqs. (9) using the obtained Z∗1 and
Z∗2. This completes the proof.

Algorithm 1 Rank-2-Thresholding (B, λ, s)

1: if s ∈ {−1,−2} then

2: return B− [λ↑1 − λ]+u↑1u↑1
>
− [λ↑2 − λ]+u↑2u↑2

>

3: else if s = 0 then

4: return B− [λ↑1 − λ]+u↑1u↑1
>
− [λ↓1]−u↓1u↓1

>

5: else if s ∈ {1, 2} then

6: return B− [λ↓1]−u↓1u↓1
>
− [λ↓2]−u↓2u↓2

>

7: end if

We then present an efficient algorithm for solving
Eq. (3) with the Frobenius norm constraint employed
in the domain set D. Note that the results in Theo-
rem 5 cab be proved using techniques similar to the
ones in Section 5.1.

Theorem 5. Let A, B, s1, s2, and γ be defined
in Eq. (7) and denote s = s1 + s2. Denote B̂ =

Rank-2-Thresholding (B,+∞, s) and τ = ‖B̂‖F . The
optimal solution to

min
Â

1

2
‖Â−B‖2F

s.t. Â ∈ S+, ‖Â‖F ≤ λ (11)

is given by A∗ = λB̂/max{λ, τ}.

5.2 Projection with Rank-k Stochastic
Gradients

Similarly, considering the explicit expression of the
rank-k stochastic gradient Ĝk(At;ωt), we can rewrite

Bt = At − γtĜk(At;ωt) as

B = A− γ
k∑
i=1

siviv
>
i , A ∈ D, (12)

where si ∈ {−1, 0,+1} and γ > 0.We present the main
results of this subsection in the following theorem.

Algorithm 2 Rank-k-Thresholding (B, λ, s+, s−)

1: return B−
∑s+
j=1[λ↓j]−u↓ju

↓
j

>
−
∑s−
i=1[λ↑i−λ]+u↑iu

↑
i

>

Efficient Low-Rank SGD Methods for solving SDP

Algorithm 3 LR-SGD for Solving Eq. (1)

1: Initialize A1 ∈ D.
2: for t = 1, 2, · · · do
3: Compute a low-rank stochastic gradient of f(·)

at At as Ĝk (At;ωt) =
∑k
i=1 s

t
iv
t
iv
t
i
>

4: Update At+1 via solving the SDP problem

At+1 = arg min
Â

1

2
‖Â− (At − γtĜk(At;ωt))‖2F

s.t. Â ∈ S+, ‖Â‖ ≤ λ.

5: end for

Theorem 6. Let A,B, si and γ be defined in Eq. (12).
For the sequence {si}, denote the number of positive
entries and the number of negative entries by s+ and
s−, respectively. Consider the SDP problem

min
Â

1
2‖Â−B‖2F (13)

s.t. Â ∈ S+, ‖Â‖ ≤ λ,

where ‖ · ‖ is a matrix norm. Then

(1) if the spectral norm is used, i.e., ‖Â‖2 ≤ λ, the
optimal solution to Eq. (13) is given by A∗ =
Rank-k-Thresholding (B, λ, s+, s−).

(2) if the Frobenius norm is used, i.e., ‖Â‖F ≤
λ, the optimal solution to Eq. (13) is given by

A∗ = λÃ/max{λ, τ}, where τ = ‖Ã‖F and

Ã = Rank-k-Thresholding (B, λ, s+, s−).

Note that the results in Theorem 6 can be proved using
techniques similar to the ones in Section 5.1.

6 Main Algorithm Example

The proposed low-rank stochastic gradients and their
efficient projection algorithms can be combined with
various stochastic based methods for solving the SDP
problem in Eq. (1). For illustration, we use the stan-
dard stochastic (projected) gradient descent method
as an example to demonstrate how such a combi-
nation, i.e., the low-rank stochastic gradient descent
method (LR-SGD), efficiently solves Eq. (1).

The pseudo codes of LR-SGD are presented in Algo-
rithm 3. Since LR-SGD is essentially a SGD method,
it achieves the same convergence rate as the standard
SGD, i.e., O(1/

√
t) for general convex functions and

O (log t/t) for strongly convex functions, where t de-
notes the required iteration number [1, 33].

0 10 20 30 40
4.75

4.8

4.85

4.9

4.95

5

iteration index

ob
je

ct
iv

e
va

lu
e

η = 1

η = 0.1

0 10 20 30 40
0.975

0.98

0.985

0.99

0.995

1

1.005

iteration index

ob
je

ct
iv

e
va

lu
e

η = 1

η = 0.1

Figure 1: Convergence plots of LR-SGD for solving LMNN in
Eq. (6): the left and right plots are obtained respectively by setting

c = 1 and c = 5; c denotes the hinge loss parameter and η/
√
t

specifies the step size in the t-th iteration.

7 Experiments

We conduct numerical studies on LR-SGD in compar-
ison with other representative algorithms to demon-
strate its effectiveness and efficiency.

In the following experiments we use two real-world
datasets, i.e., CiteSeer and Cora [34], as well as a syn-
thetic data. CiteSeer includes 3312 scientific publica-
tions exclusively from 6 categories. Each publication
is represented as a binary vector; the binary entries
indicate the presence or absence of 3703 meaningful
words; all vectors are normalized to unit length. Cora
consists of 2708 scientific publications exclusively from
7 categories. Similarly each publication is denoted by
a normalized binary vector of length 1433. All algo-
rithms are implemented in Matlab and the simulation
studies are conducted on an Intel Xeon 3.2GHZ CPU.

7.1 Convergence Study of LR-SGD

To study the practical convergence speed of LR-SGD,
we use LR-SGD to solve LMNN in Eq. (6) and record
the obtained intermediate objective values.

The experimental setup is as follows. From the Cite-
Seer data, we construct 6624 neighbor pairs (NP) by
randomly selecting 2 neighbor publications (of the
same class label) for each of the 3312 publications;
we then construct 19872 non-neighbor triples (NNT)
by randomly selecting 3 non-neighbor publications (of
a different class label) for each NP. In each iteration
of LR-SGD, we uniformly sample a NP (from the 6624
NPs) and a NNT (from the 19872 NNTs), respectively;
using the sampled NP and NNT, we construct a low-
rank stochastic gradient and update the optimization
variable A towards the global optimum; we run the
algorithm 20000 times and record the intermediate ob-
jective value every 500 iterations.

We use various values for the hinge loss parameter
c and the step size parameter η in the experiments.
For demonstration, we present 4 representative con-
vergence plots in Figure 1. From the experimental
results, we can observe: (1) the parameter η is crit-
ical for the practical convergence speed of LR-SGD;
(2) setting η = 1 leads to faster practical convergence

Jianhui Chen, Tianbao Yang and Shenghuo Zhu

0 20 40 60 80 100 120 140 160
0.4

0.6

0.8

1

1.2

1.4

iteration index

ob
je

ct
iv

e
va

lu
e

LR−SGD
PD−SGD

0 50 100 150 200
0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

iteration index

ob
je

ct
iv

e
va

lu
e

LR−SGD
PD−SGD

0 20 40 60 80 100 120
−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

iteration index

ob
je

ct
iv

e
va

lu
e

LR−SGD

PD−SGD

0 20 40 60 80 100 120
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

iteration index

ob
je

ct
iv

e
va

lu
e

LR−SGD
PD−SGD

Figure 2: Comparison of LR-SGD and PD-SGD in term of their practical convergence speeds. The first two plots are obtained from
solving LMNN with the constraint ‖A‖F ≤ 1 using CiteSeer and Cora, respectively. The second two plots are obtained from solving CML
with the constraint ‖A‖1 ≤ 1 using CiteSeer and Cora, respectively. Note that each index on the x-axis represents 500 algorithmic iterations
as we evaluate the objective value once every 500 iterations.

speed on this specific data, compared to the setting of
using η = 0.1; (3) the demonstrated convergence speed
is consistent with the theoretical analysis in Section 6,
that is, LR-SGD convergence at the rate O(1/

√
T) for

general convex objective functions.

7.2 Comparison with a Competing Method

We compare LR-SGD and PD-SGD in terms of their
practical convergence speeds. Specifically we employ
LR-SGD and PD-SGD respectively for solving the
LMNN formulation in Eq. (6) (with a unit Frobenius
norm constraint ‖A‖F ≤ 1) and the Constrained Met-
ric Learning formulation (CML) [8, 9] (with a unit
spectral norm constraint ‖A‖2 ≤ 1) as

min
A

γ

|S|
∑

(i,j)∈S

‖xi − xj‖2A −
1

|N |
∑

(i,j)∈N

‖xi − xj‖2A

s.t ‖A‖2 ≤ 1, A ∈ S+, (14)

where S and N denote the set of similar pairs (SP) (of
the same class labels) and the set of dissimilar
pairs (DP) (of different class labels), respectively.

We construct data subsets from CiteSeer and Cora for
the following experiments. Similar to Section 7.1, from
CiteSeer we construct 6624 NPs and 331200 NNTs by
randomly selecting 5 non-neighbors for each NP; we
construct 6624 SPs and 331200 DPs by randomly se-
lecting 5 samples of different labels for each SP. We
apply a similar procedure on Cora to construct 5416
NPs and 5416 NNTs as well as 5416 SPs and 5416
DPs.

In each iteration of LR-SGD and PD-SGD, we ran-
domly select a NP and a NNT (or a SP and a DP)
with replacement to construct a low-rank stochastic
gradient to update the optimization variable for solv-
ing LMNN (or for solving CML). We stop LR-SGD if
the objective value change in two successive iterations
is smaller than 10−3 or the maximum iteration num-
ber is larger than 106; we terminate PD-SGD when it
runs the same number of iteration as LR-SGD. In our
experiment, we set c = 1 for both LMNN and CML;
the step size parameters are estimated from tuning.

The experimental results in Figure 2 demonstrate that
LR-SGD attains smaller objective values than PD-

SGD with an appropriate stopping criterion; in other
words, LR-SGD has a faster practical convergence
speed compared to PD-SGD. It is worth noting that
PD-SGD has relatively less computation complexity
per iteration, compared to LR-SGD. Our experimen-
tal results are consistent with this theoretical analysis;
for example, for the first plot in Figure 2, the computa-
tion time for LR-SGD and PD-SGD are 9570 and 4311
minutes, respectively; for the third plot, the computa-
tion time for LR-SGD and PD-SGD are 1903 and 751
minutes, respectively. In our experiments LR-SGD at-
tains smaller objective values than PD-SGD using the
same amount of computation time; this result can also
be inferred from the trend in Figures 2.

7.3 Study of the Low-Rank Approximation

We conduct two experiments to study the implicit con-
struction scheme proposed in Section 4.2. Synthetic
data is employed for the following experiments. The
first experiment is used to verify the validity of the
theoretical results in Lemmas 1 and 2. Specifically, we
construct a symmetric (not necessarily PSD) matrix
G of size 10×10 by sampling its entries from N (0, 1).
Denote the diagonal and off-diagonal components of G
respectively by D and P. From Lemmas 1 and 2, we
construct rank-one counterparts of D and P, respec-
tively, denoted by D̂ and P̂. We repeat the construc-
tion procedure 500 times and measure the difference of
D and its averaged low-rank counterpart D̂, and also
measure the difference of P and its averaged low-rank
counterpart P̂.

We present the experimental results in Figure 3; in the
first plot, we compare the diagonal entries from both
D and the averaged D̂, while in the second and the
third plots, we display the off-diagonal matrix P and
its averaged P̂ with colormap set as gray. Clearly the
experimental results empirically demonstrate E(D̂) =

D and E(P̂) = P, as well as verify the validity of the
theoretical results in Lemmas 1 and 2.

The second experiment is used to study the relation-
ship of the (low-rank) approximation error and the
rank number. Specifically, we generate a symmet-
ric matrix G of size 500 × 500 and then construct a
low-rank matrix Gk of the same size following from

Efficient Low-Rank SGD Methods for solving SDP

0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

entry index

e
n
tr

y
 v

a
lu

e

original

constructed

2 4 6 8 10

2

4

6

8

10

2 4 6 8 10

2

4

6

8

10

0 5 10 15 20
0

5

10

15

20

25

rank index

a
p
p
ro

x
im

a
ti
o
n
 e

rr
o
r

Figure 3: The first 3 plots show a comparison of the constructed diagonal matrix (from Lemma 1) and the off-diagonal matrix (from
Lemma 2) respectively with their ground truth; in the first plot, the diagonal entries of D (original) are compared with the diagonal entries
of the ground truth (constructed); the 2nd and the 3rd plots respectively represent the construction and ground truth of the off-diagonal

matrix. The last plot shows low-rank approximation error using different ranks; the approximation error is defined as ‖G− Ĝ‖F /d.

0 200 400 600 800 1000
0.4

0.6

0.8

1

1.2

1.4

iteration index

ob
je

ct
iv

e
va

lu
e

rank 3

rank 15

rank 30

rank 45

full rank

Figure 4: Convergence plots of LR-SGD using stochastic gradients
of various rank values.

Lemmas 1 and 2. We vary the rank k in the range
20 × {1, 2, · · · , 20} and record the approximation er-
ror, i.e., ‖G−Gk‖F /500, for each value k.

The last plot of Figure 3 demonstrates that the approx-
imation error decreases with the increase of the rank
number (in the constructed matrix). This result is con-
sistent with our hypothesis and also demonstrates the
effectiveness of the low-rank approximation procedure.

7.4 Study on the Rank of the Stochastic
Gradients

We study the effect of the stochastic gradient’s rank
values on the practical convergence speeds of LR-
SGD. Specifically we use LR-SGD to solve a con-
strained version of the Maximum-Margin Matrix Fac-
torization (MMMF) formulation [4] formulated as

min
A

λ‖A‖1 +
∑
i,j∈Ω ` (b−AijYij , 0)

s.t ‖A‖F ≤ 1, A ∈ S+, (15)

where Yij is equal to 1 if sample i and sample j have
the same class label and −1 otherwise, Ω denotes the
pairwise constraint set, and `(·) denotes the hinge loss.

The experimental setup is as follows. We generate 100
samples and evenly assign them to two classes. To
construct the set Ω, we uniformly sample 200 sample
pairs: half of them have the same class label and the
other half have different class labels. For illustration,
we set λ = 1 and b = 0.5 in Eq. (15); for other pa-
rameter settings, we observe similar trends. We com-
pute a stochastic gradient for the objective function of
Eq. (15) as follows: from Lemma 1, sample a rank-k
stochastic gradient from the subgradient (an identity

matrix) of the trace norm term; from Lemmas 1 and 2,
sample a rank-2k stochastic gradient from a subgradi-
ent of the hinge loss term; compute the sum of the ob-
tained two stochastic gradients. This procedure leads
to a stochastic gradient of rank no larger than 3k.

Table 1: Computation time in seconds (Tim.) for computing
various numbers of eigenpairs (Num.) from a symmetric matrix of
size 105 × 105.

Num. 2 50 500 1000 2500 5000
Tim. 1.1 8.6 458.5 1454.9 8318.8 30435.6

We vary the rank value of the stochastic gradients in
LR-SGD and record the intermediate objective values
obtained using such a stochastic gradient. The ex-
perimental results in Figure 4 consistently show that
stochastic gradients of higher ranks lead to faster con-
vergence speed; this is due to the fact that more in-
formation is embedded in the stochastic gradients of
higher ranks. However, computing a stochastic gradi-
ent of a higher rank value obviously needs more com-
putation time, i.e., computing more eigenpairs require
more computation time, as depicted in Table 1. There
is a trade-off between the practical convergence speed
and the required computation time.

8 Conclusions

We presented LR-SGD for solving a class of SDP
problems. By analyzing the low-rank structure of
the stochastic gradients, LR-SGD efficiently solves
the SDP projection involved in each of its iterations,
demonstrating clear computational advantages. Inter-
estingly, our theoretical analysis reveals the universal
existence of low-rank stochastic gradients for a class
of SDP problems and consequently validates the ra-
tionale of LR-SGD. We have applied LR-SGD to solv-
ing distance metric learning problems in comparison
with a representative SGD method. The experimen-
tal results demonstrate the effectiveness and efficiency
of the proposed algorithms. In the future, we plan
to conduct theoretical studies to estimate appropriate
rank values for the stochastic gradients; we also plan to
apply LR-SGD to solving more general SDP problems
with real-world datasets.

Jianhui Chen, Tianbao Yang and Shenghuo Zhu

References

[1] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro,
“Robust stochastic approximation approach to
stochastic programming,” SIAM J. on Optimization,
vol. 19, pp. 1574–1609, 2009.

[2] K. Q. Weinberger and L. K. Saul, “Distance metric
learning for large margin nearest neighbor classifica-
tion,” J. Mach. Learn. Res., vol. 10, pp. 207–244,
2009.

[3] A. d’Aspremont, O. Banerjee, and L. El Ghaoui,
“First-order methods for sparse covariance selection,”
SIAM J. Matrix Anal. Appl., vol. 30, pp. 56–66, 2008.

[4] S. Nathan, D. M. R. Jason, and S. J. Tommi, “Maxi-
mum margin matrix factorization,” in NIPS, 2005.

[5] Y. Zhang and Y. Dit-Yan, “A convex formulation for
learning task relationships in multi-task learning,” in
UAI, 2010.

[6] J. Chen, L. Tang, J. Liu, and J. Ye, “A convex formu-
lation for learning a shared predictive structure from
multiple tasks,” IEEE Trans. Pattern Anal. Mach. In-
tell., vol. 35, pp. 1025–1038, 2013.

[7] A. d’Aspremont, L. El Ghaoui, M. I. Jordan, and
G. R. G. Lanckriet, “A direct formulation for sparse
pca using semidefinite programming,” SIAM Rev.,
vol. 49, pp. 434–448, 2007.

[8] W. Liu, X. Tian, D. Tao, and J. Liu, “Constrained
metric learning via distance gap maximization.” in
AAAI, 2010.

[9] S. C. Hoi, W. Liu, and S.-F. Chang, “Semi-supervised
distance metric learning for collaborative image re-
trieval and clustering,” ACM Trans. Multimedia Com-
put. Commun. Appl., vol. 6, pp. 18:1–18:26, 2010.

[10] M. Mahdavi, T. Yang, R. Jin, S. Zhu, and J. Yi,
“Stochastic gradient descent with only one projec-
tion,” in NIPS, 2012.

[11] E. Hazan and S. Kale, “Stochastic gradient descent
with only one projection,” in ICML, 2012.

[12] M. Frank and P. Wolfe, “An algorithm for quadratic
programming. naval research logistics,” Naval Res.
Logistics, vol. 3, pp. 95–110, 1956.

[13] Y. Nesterov, Introductory Lectures on Convex Opti-
mization: A Basic Course. Springer Netherlands,
2003.

[14] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S.
Dhillon, “Information-theoretic metric learning,” in
ICML, 2007.

[15] S. Shalev-Shwartz, Y. Singer, and A. Y. Ng, “Online
and batch learning of pseudo-metrics,” in ICML, 2004.

[16] P. Jain, B. Kulis, I. S. Dhillon, and K. Grauman,
“Online metric learning and fast similarity search,”
in NIPS, 2008, pp. 761–768.

[17] H. Avron, S. Kale, S. Kasiviswanathan, and V. Sind-
hwani, “Efficient and practical stochastic subgradient
descent for nuclear norm regularization,” in ICML,
2012.

[18] S. Arora, E. Hazan, and S. Kale, “Fast algorithms for
approximate semide.nite programming using the mul-
tiplicative weights update method,” in FOCS, 2005.

[19] E. Hazan, “Sparse approximate solutions to semidefi-
nite programs,” in LATIN, 2008.

[20] A. Kleiner, A. Rahimi, and M. I. Jordan, “Random
conic pursuit for semidefinite programming,” in NIPS,
2010.

[21] S. Laue, “A hybrid algorithm for convex semidefinite
optimization,” CoRR, vol. abs/1206.4608, 2012.

[22] D. Garber and E. Hazan, “Approximating semidefi-
nite programs in sublinear time,” in NIPS, 2011.

[23] Y. Nesterov, “Smoothing technique and its applica-
tions in semidefinite optimization,” Math. Program.,
pp. 245–259, 2007.

[24] Y. Ying and P. Li, “Distance metric learning with
eigenvalue optimization,” J. Mach. Learn. Res., pp.
1–26, 2012.

[25] K. Weinberger and L. Saul, “Fast solvers and effi-
cient implementations for distance metric learning,”
in ICML, 2008.

[26] M. Journée, Y. Nesterov, P. Richtárik, and R. Sepul-
chre, “Generalized power method for sparse principal
component analysis,” J. Mach. Learn. Res., vol. 11,
pp. 517–553, 2010.

[27] A. d’Aspremont, F. Bach, and L. E. Ghaoui, “Optimal
solutions for sparse principal component analysis,” J.
Mach. Learn. Res., vol. 9, pp. 1269–1294, 2008.

[28] S. Boyd and L. Vandenberghe, Convex Optimization.
Cambridge University Press, 2004.

[29] Z. Wen, D. Goldfarb, and W. Yin, “Alternating direc-
tion augmented lagrangian methods for semidefinite
programming,” Mathematical Programming Compu-
tation, 2010.

[30] H. Ouyang, N. He, L. Tran, and A. G. Gray, “Stochas-
tic alternating direction method of multipliers,” in
ICML, 2013.

[31] N. Srebro and A. Tewari, “Stochastic optimization for
machine learning,” in ICML Tutorial, 2010.

[32] J. N. Franklin, Matrix Theory. Courier Dover Pub-
lications, 2000.

[33] J. Duchi, S. Shalev-Shwartz, Y. Singer, and A. Tewari,
“Composite objective mirror descent.” in COLT, 2010.

[34] P. Sen, G. M. Namata, M. Bilgic, L. Getoor, B. Gal-
lagher, and T. Eliassi-Rad, “Collective classification
in network data,” AI Magazine, vol. 29, no. 3, 2008.

