Supplementary Materials "Adaptive SVRG Methods under Error Bound Conditions with Unknown Growth Parameter"

Yi Xu ${ }^{\dagger}$, Qihang Lin ${ }^{\ddagger}$, Tianbao Yang ${ }^{\dagger}$
${ }^{\dagger}$ Department of Computer Science, The University of Iowa, Iowa City, IA 52242, USA
${ }^{\ddagger}$ Department of Management Sciences, The University of Iowa, Iowa City, IA 52242, USA
\{yi-xu, qihang-lin, tianbao-yang\}@uiowa.edu

1 Proof of Theorem 2

Theorem 2. Assume that the problem (1) satisfies the $H E B$ condition with $\theta \in(0,1 / 2]$ and $F\left(x_{0}\right)-$ $F_{*} \leq \epsilon_{0}$, where x_{0} is an initial solution. Let $\eta=1 /(36 L)$, and $T_{1} \geq 81 L c^{2}\left(1 / \epsilon_{0}\right)^{1-2 \theta}$. Then Algorithm 1 ensures

$$
\begin{equation*}
\mathrm{E}\left[F\left(\bar{x}^{(R)}\right)-F_{*}\right] \leq(1 / 2)^{R} \epsilon_{0} . \tag{11}
\end{equation*}
$$

In particular, by running Algorithm 1 with $R=\left\lceil\log _{2} \frac{\epsilon_{0}}{\epsilon}\right\rceil$, we have $\mathrm{E}\left[F\left(\bar{x}^{(R)}\right)-F_{*}\right] \leq \epsilon$, and the computational complexity for achieving an ϵ-optimal solution in expectation is $O\left(n \log \left(\epsilon_{0} / \epsilon\right)+\right.$ $\left.L c^{2} \max \left\{\frac{1}{\epsilon^{1-2 \theta}}, \log \left(\epsilon_{0} / \epsilon\right)\right\}\right)$.

We need the following lemma to prove Theorem 2, which has been established in previous work [2].
Lemma 3. For the r-th outer loop of Algorithm 1, for any $x_{*} \in \Omega_{*}$ we have
$2 \eta(1-4 L \eta) T_{r} \mathrm{E}\left[F\left(\bar{x}^{(r)}\right)-F\left(x_{*}\right)\right] \leq \mathrm{E}\left[\left\|\bar{x}^{(r-1)}-x_{*}\right\|_{2}^{2}\right]+8 L \eta^{2}\left(T_{r}+1\right) \mathrm{E}\left[F\left(\bar{x}^{(r-1)}\right)-F\left(x_{*}\right)\right]$.

Proof of Theorem 2. Denote by $\epsilon_{r}=\epsilon_{0} / 2^{r}$. We will prove (11) by induction. Assume that $\mathrm{E}\left[F\left(\bar{x}^{(r-1)}\right)-F\left(x_{*}\right)\right] \leq \epsilon_{r-1}$, which is true for $r=1$. Let x_{*} in Lemma 3 be the closest optimal solution to $\bar{x}^{(r-1)}$. Taking expectation over all random variables on both sides of 12 , we get

$$
\begin{aligned}
& \mathrm{E}\left[F\left(\bar{x}^{(r)}\right)-F_{*}\right] \leq \frac{1}{2 \eta(1-4 L \eta) T_{r}} \mathrm{E}\left\|\bar{x}^{(r-1)}-x_{*}\right\|_{2}^{2}+\frac{4 L \eta\left(T_{r}+1\right)}{(1-4 L \eta) T_{r}} \mathrm{E}\left[F\left(\bar{x}^{(r-1)}\right)-F_{*}\right] \\
\leq & \frac{1}{2 \eta(1-4 L \eta) T_{r}} c^{2} \mathrm{E}\left[F\left(\bar{x}^{(r-1)}\right)-F_{*}\right]^{2 \theta}+\frac{4 L \eta\left(T_{r}+1\right)}{(1-4 L \eta) T_{r}} \mathrm{E}\left[F\left(\bar{x}^{(r-1)}\right)-F_{*}\right] \\
\leq & \frac{1}{2 \eta(1-4 L \eta) T_{r}} c^{2}\left(\mathrm{E}\left[F\left(\bar{x}^{(r-1)}\right)-F_{*}\right]\right)^{2 \theta}+\frac{4 L \eta\left(T_{r}+1\right)}{(1-4 L \eta) T_{r}} \mathrm{E}\left[F\left(\bar{x}^{(r-1)}\right)-F_{*}\right],
\end{aligned}
$$

where the second inequality uses the HEB condition and the last inequality uses the concavity of $x^{2 \theta}$ for $x \geq 0$ and $2 \theta \leq 1$. By noting the values of $\eta=\frac{1}{36 L}$ and $T_{r} \geq 81 L c^{2} \epsilon_{r-1}^{2 \theta-1}$,

$$
\frac{1}{2 \eta(1-4 L \eta) T_{r}} c^{2} \epsilon_{r-1}^{2 \theta} \leq \frac{\epsilon_{r-1}}{4}, \quad \frac{4 L \eta\left(T_{r}+1\right)}{(1-4 L \eta) T_{r}} \epsilon_{r-1} \leq \frac{\epsilon_{r-1}}{4}
$$

Thus $\mathrm{E}\left[F\left(\bar{x}^{(r)}\right)-F_{*}\right] \leq \frac{\epsilon_{r-1}}{2} \triangleq \epsilon_{r}$. We can complete the proof in light of $R=\left\lceil\log _{2} \frac{\epsilon_{0}}{\epsilon}\right\rceil$.

2 Proof of Lemma 3

Proof. First, we can write the update of $x_{t}^{(r)}=\arg \min _{x \in \mathbb{R}^{d}} \frac{1}{2}\left\|x-\left(x_{t-1}^{(r)}-\eta g_{t}^{(r)}\right)\right\|_{2}^{2}+\eta \Psi(x)$, and we know that $\frac{1}{2}\left\|x-\left(x_{t-1}^{(r)}-\eta g_{t}^{(r)}\right)\right\|_{2}^{2}+\eta \Psi(x)$ is 1 -strongly convex w.r.t. $\|\cdot\|_{2}$ in terms of x. By the first-order optimilaty condition, for any x we get

$$
\frac{1}{2}\left\|x-\left(x_{t-1}^{(r)}-\eta g_{t}^{(r)}\right)\right\|_{2}^{2}+\eta \Psi(x) \geq \frac{1}{2}\left\|x_{t}^{(r)}-\left(x_{t-1}^{(r)}-\eta g_{t}^{(r)}\right)\right\|_{2}^{2}+\eta \Psi\left(x_{t}^{(r)}\right)+\frac{1}{2}\left\|x_{t}^{(r)}-x\right\|_{2}^{2}
$$

Rewrite above inequality, then

$$
\begin{align*}
\eta \Psi\left(x_{t}^{(r)}\right)-\eta \Psi(x) \leq & \frac{1}{2}\left\|x_{t-1}^{(r)}-x\right\|_{2}^{2}-\frac{1}{2}\left\|x_{t}^{(r)}-x\right\|_{2}^{2}-\frac{1}{2}\left\|x_{t}^{(r)}-x_{t-1}^{(r)}\right\|_{2}^{2}+\eta\left\langle g_{t}^{(r)}, x-x_{t}^{(r)}\right\rangle \\
= & \frac{1}{2}\left\|x_{t-1}^{(r)}-x\right\|_{2}^{2}-\frac{1}{2}\left\|x_{t}^{(r)}-x\right\|_{2}^{2}+\eta\left\langle g_{t}^{(r)}-\nabla f\left(x_{t-1}^{(r)}\right), x-x_{t}^{(r)}\right\rangle \\
& +\eta\left\langle\nabla f\left(x_{t-1}^{(r)}\right), x_{t-1}^{(r)}-x_{t}^{(r)}\right\rangle-\frac{1}{2}\left\|x_{t}^{(r)}-x_{t-1}^{(r)}\right\|_{2}^{2} \\
& +\eta\left\langle\nabla f\left(x_{t-1}^{(r)}\right), x-x_{t-1}^{(r)}\right\rangle . \tag{13}
\end{align*}
$$

Since f is L-smooth and $0<\eta \leq \frac{1}{L}$,

$$
\begin{aligned}
f\left(x_{t}^{(r)}\right)-f\left(x_{t-1}^{(r)}\right) & \leq\left\langle\nabla f\left(x_{t-1}^{(r)}\right), x_{t}^{(r)}-x_{t-1}^{(r)}\right\rangle+\frac{L}{2}\left\|x_{t}^{(r)}-x_{t-1}^{(r)}\right\|_{2}^{2} \\
& \leq\left\langle\nabla f\left(x_{t-1}^{(r)}\right), x_{t}^{(r)}-x_{t-1}^{(r)}\right\rangle+\frac{1}{2 \eta}\left\|x_{t}^{(r)}-x_{t-1}^{(r)}\right\|_{2}^{2} .
\end{aligned}
$$

That is,

$$
\begin{equation*}
\eta\left\langle\nabla f\left(x_{t-1}^{(r)}\right), x_{t-1}^{(r)}-x_{t}^{(r)}\right\rangle-\frac{1}{2}\left\|x_{t}^{(r)}-x_{t-1}^{(r)}\right\|_{2}^{2} \leq \eta\left[f\left(x_{t-1}^{(r)}\right)-f\left(x_{t}^{(r)}\right)\right] \tag{14}
\end{equation*}
$$

By the convexity of f, we get

$$
\begin{equation*}
\left\langle\nabla f\left(x_{t-1}^{(r)}\right), x-x_{t-1}^{(r)}\right\rangle \leq f(x)-f\left(x_{t-1}^{(r)}\right) . \tag{15}
\end{equation*}
$$

Plugging in inequalities (14) and (15) into inequality (13), we get

$$
\begin{align*}
F\left(x_{t}^{(r)}\right)-F(x) \leq & \frac{1}{2 \eta}\left\|x_{t-1}^{(r)}-x\right\|_{2}^{2}-\frac{1}{2 \eta}\left\|x_{t}^{(r)}-x\right\|_{2}^{2}-\left\langle g_{t}^{(r)}-\nabla f\left(x_{t-1}^{(r)}\right), x_{t}^{(r)}-x\right\rangle \\
= & \frac{1}{2 \eta}\left\|x_{t-1}^{(r)}-x\right\|_{2}^{2}-\frac{1}{2 \eta}\left\|x_{t}^{(r)}-x\right\|_{2}^{2}-\left\langle g_{t}^{(r)}-\nabla f\left(x_{t-1}^{(r)}\right), \widehat{x}_{t}^{(r)}-x\right\rangle \\
& -\left\langle g_{t}^{(r)}-\nabla f\left(x_{t-1}^{(r)}\right), x_{t}^{(r)}-\widehat{x}_{t}^{(r)}\right\rangle \\
\leq & \frac{1}{2 \eta}\left\|x_{t-1}^{(r)}-x\right\|_{2}^{2}-\frac{1}{2 \eta}\left\|x_{t}^{(r)}-x\right\|_{2}^{2}-\left\langle g_{t}^{(r)}-\nabla f\left(x_{t-1}^{(r)}\right), \widehat{x}_{t}^{(r)}-x\right\rangle \\
& +\left\|g_{t}^{(r)}-\nabla f\left(x_{t-1}^{(r)}\right)\right\|_{2}\left\|x_{t}^{(r)}-\widehat{x}_{t}^{(r)}\right\|_{2} \\
\leq & \frac{1}{2 \eta}\left\|x_{t-1}^{(r)}-x\right\|_{2}^{2}-\frac{1}{2 \eta}\left\|x_{t}^{(r)}-x\right\|_{2}^{2}-\left\langle g_{t}^{(r)}-\nabla f\left(x_{t-1}^{(r)}\right), \widehat{x}_{t}^{(r)}-x\right\rangle \\
& +\left\|g_{t}^{(r)}-\nabla f\left(x_{t-1}^{(r)}\right)\right\|_{2}\left\|x_{t-1}^{(r)}-\eta g_{t}^{(r)}-\left(x_{t-1}^{(r)}-\eta \nabla f\left(x_{t-1}^{(r)}\right)\right)\right\|_{2} \\
= & \frac{1}{2 \eta}\left\|x_{t-1}^{(r)}-x\right\|_{2}^{2}-\frac{1}{2 \eta}\left\|x_{t}^{(r)}-x\right\|_{2}^{2}-\left\langle g_{t}^{(r)}-\nabla f\left(x_{t-1}^{(r)}\right), \widehat{x}_{t}^{(r)}-x\right\rangle \\
& +\eta\left\|g_{t}^{(r)}-\nabla f\left(x_{t-1}^{(r)}\right)\right\|_{2}^{2}, \tag{16}
\end{align*}
$$

where $\widehat{x}_{t}^{(r)}=\arg \min _{x \in \mathbb{R}^{d}} \frac{1}{2} \| x-\left(x_{t-1}^{(r)}-\eta \nabla f\left(x_{t-1}^{(r)}\right) \|_{2}^{2}+\eta \Psi(x)\right.$. Please notice that the update of $\widehat{x}_{t}^{(r)}$ is not used in the Algorithm, but only for analysis. Letting $x=x_{*}$ and taking expectation over both sides, we have

$$
\begin{aligned}
2 \eta \mathrm{E}\left[F\left(x_{t}^{(r)}\right)-F\left(x_{*}\right)\right] \leq & \left\|x_{t-1}^{(r)}-x_{*}\right\|_{2}^{2}-\mathrm{E}\left[\left\|x_{t}^{(r)}-x_{*}\right\|_{2}^{2}\right]+2 \eta^{2} \mathrm{E}\left[\left\|g_{t}^{(r)}-\nabla f\left(x_{t-1}^{(r)}\right)\right\|_{2}^{2}\right] \\
\leq & \left\|x_{t-1}^{(r)}-x_{*}\right\|_{2}^{2}-\mathrm{E}\left[\left\|x_{t}^{(r)}-x_{*}\right\|_{2}^{2}\right] \\
& +8 L \eta^{2}\left[F\left(x_{t-1}^{(r)}\right)-F\left(x_{*}\right)+F\left(\bar{x}^{(r-1)}\right)-F\left(x_{*}\right)\right],
\end{aligned}
$$

where we use the fact that $\mathrm{E}\left[\left\langle g_{t}^{(r)}-\nabla f\left(x_{t-1}^{(r)}\right), \widehat{x}_{t}^{(r)}-x\right\rangle\right]=0$ and use Corollary 3.5 in [2] to upper bound the expected variance $\mathrm{E}\left[\left\|g_{t}^{(r)}-\nabla f\left(x_{t-1}^{(r)}\right)\right\|_{2}^{2}\right]$. Then

$$
\begin{align*}
\mathrm{E}\left[\left\|x_{t}^{(r)}-x_{*}\right\|_{2}^{2}\right] \leq & \left\|x_{t-1}^{(r)}-x_{*}\right\|_{2}^{2}-2 \eta \mathrm{E}\left[F\left(x_{t}^{(r)}\right)-F\left(x_{*}\right)\right] \\
& +8 L \eta^{2}\left[F\left(x_{t-1}^{(r)}\right)-F\left(x_{*}\right)+F\left(\bar{x}^{(r-1)}\right)-F\left(x_{*}\right)\right] \tag{17}
\end{align*}
$$

For a fixed r, by summing the previous inequality over $t=1, \ldots, T$ and taking expectation with respect to the history of random variables sequence $i_{1}, i_{2}, \ldots, i_{T}$, we obtain

$$
\begin{align*}
& 2 \eta(1-4 L \eta) \sum_{t=1}^{T-1} \mathrm{E}\left[F\left(x_{t}^{(r)}\right)-F\left(x_{*}\right)\right] \\
\leq & \left\|x_{0}^{(r)}-x_{*}\right\|_{2}^{2}-\mathrm{E}\left[\left\|x_{T}^{(r)}-x_{*}\right\|_{2}^{2}\right]-2 \eta \mathrm{E}\left[F\left(x_{T}^{(r)}\right)-F\left(x_{*}\right)\right] \\
& +8 L \eta^{2}\left[F\left(x_{0}^{(r)}\right)-F\left(x_{*}\right)+T\left(F\left(\bar{x}^{(r-1)}\right)-F\left(x_{*}\right)\right)\right] \\
\leq & \left\|x_{0}^{(r)}-x_{*}\right\|_{2}^{2}+8 L \eta^{2}\left[F\left(x_{0}^{(r)}\right)-F\left(x_{*}\right)+T\left(F\left(\bar{x}^{(r-1)}\right)-F\left(x_{*}\right)\right)\right] \\
= & \left\|x_{0}^{(r)}-x_{*}\right\|_{2}^{2}+8 L \eta^{2}(T+1)\left[F\left(x_{0}^{(r)}\right)-F\left(x_{*}\right)\right], \tag{18}
\end{align*}
$$

where the last inequality uses the facts that $-\mathrm{E}\left[\left\|x_{T}^{(r)}-x_{*}\right\|_{2}^{2}\right] \leq 0$ and $-2 \eta \mathrm{E}\left[F\left(x_{T}^{(r)}\right)-F\left(x_{*}\right)\right] \leq 0$, and the last equality uses $x_{0}^{(r)}=\bar{x}^{(r-1)}$. By the convexity of $F(x)$ and the defination of $\bar{x}^{(r)}$ and $x_{0}^{(r)}=\bar{x}^{(r-1)}$ we have

$$
\begin{equation*}
2 \eta(1-4 L \eta) T \mathrm{E}\left[F\left(\bar{x}^{(r)}\right)-F\left(x_{*}\right)\right] \leq\left\|\bar{x}^{(r-1)}-x_{*}\right\|_{2}^{2}+8 L \eta^{2}(T+1)\left[F\left(\bar{x}^{(r-1)}\right)-F\left(x_{*}\right)\right] \tag{19}
\end{equation*}
$$

3 Proof of Theorem 3

Theorem 3. Assume that the problem (1) satisfies the HEB with $\theta \in(0,1 / 2)$ and $F\left(x_{0}\right)-F_{*} \leq \epsilon_{0}$, where x_{0} is an initial solution, and $c_{0} \leq c$. Let $\epsilon \leq \frac{\epsilon_{0}}{2}, R=\left\lceil\log _{2} \frac{\epsilon_{0}}{\epsilon}\right\rceil$ and $T_{1}^{(1)}=81 L c_{0}^{2}\left(1 / \epsilon_{0}\right)^{1-2 \theta}$. Then with at most a total number of $S=\left\lceil\frac{1}{\frac{1}{2}-\theta} \log _{2}\left(\frac{c}{c_{0}}\right)\right\rceil+1$ calls of SVRG ${ }^{\text {HEB }}$ in Algorithm 2, we find a solution $x^{(S)}$ such that $\mathrm{E}\left[F\left(x^{(S)}\right)-F_{*}\right] \leq \epsilon$. The computaional complexity of SVRG ${ }^{\text {HEB-RS }}$ for obtaining such an ϵ-optimal solution is $O\left(n \log \left(\epsilon_{0} / \epsilon\right) \log \left(c / c_{0}\right)+\frac{L c^{2}}{\epsilon^{1-2 \theta}}\right)$.

Proof. Denote by $c_{s+1}=2^{\frac{1-2 \theta}{2}} c_{s}$. Since $c \geq c_{0}$ and $\frac{2}{1-2 \theta}>2$, we have $F\left(x_{0}\right)-F_{*} \leq \epsilon_{0}\left(\frac{c}{c_{0}}\right)^{\frac{2}{1-2 \theta}}$. Following the proof of Theorem 2, we can show that

$$
\begin{equation*}
\mathrm{E}\left[F\left(x^{(1)}\right)-F_{*}\right] \leq\left(\frac{1}{2}\right)^{R} \epsilon_{0}\left(\frac{c}{c_{0}}\right)^{\frac{2}{1-2 \theta}}=\epsilon\left(\frac{c}{c_{0}}\right)^{\frac{2}{1-2 \theta}} \tag{20}
\end{equation*}
$$

with $R=\left\lceil\log _{2} \frac{\epsilon_{0}}{\epsilon}\right\rceil$ and $T_{1}^{(1)}=81 L c_{0}^{2}\left(\frac{1}{\epsilon_{0}}\right)^{1-2 \theta}=81 L c^{2}\left(\frac{1}{\epsilon_{0}\left(\frac{c}{c_{0}}\right)^{\frac{2}{1-2 \theta}}}\right)^{1-2 \theta}$. Next, since $\epsilon \leq \frac{\epsilon_{0}}{2}$, then we have $\mathrm{E}\left[F\left(x^{(1)}\right)-F_{*}\right] \leq \frac{\epsilon_{0}}{2}\left(\frac{c}{c_{0}}\right)^{\frac{2}{1-2 \theta}}=\epsilon_{0}\left(\frac{c}{c_{1}}\right)^{\frac{2}{1-2 \theta}}$. By running SVRG ${ }^{\text {heb }}$ from $x^{(1)}$ with $T_{1}^{(2)}=81 L c_{1}^{2}\left(\frac{1}{\epsilon_{0}}\right)^{1-2 \theta}=81 L c^{2}\left(\frac{1}{\epsilon_{0}\left(\frac{c}{c_{1}}\right)^{\frac{2}{1-2 \theta}}}\right)^{1-2 \theta}$, Theorem 2 2 ensures that

$$
\begin{equation*}
\mathrm{E}\left[F\left(x^{(2)}\right)-F_{*}\right] \leq\left(\frac{1}{2}\right)^{R} \epsilon_{0}\left(\frac{c}{c_{1}}\right)^{\frac{2}{1-2 \theta}}=\epsilon\left(\frac{c}{c_{1}}\right)^{\frac{2}{1-2 \theta}} . \tag{21}
\end{equation*}
$$

By continuing the process, with $S=\left\lceil\frac{2}{1-2 \theta} \log _{2}\left(\frac{c}{c_{0}}\right)\right\rceil+1$, we have

$$
\begin{equation*}
\mathrm{E}\left[F\left(x^{(S)}\right)-F_{*}\right] \leq\left(\frac{1}{2}\right)^{R} \epsilon_{0}\left(\frac{c}{c_{S-1}}\right)^{\frac{2}{1-2 \theta}}=\epsilon\left(\frac{c}{c_{S-1}}\right)^{\frac{2}{1-2 \theta}} \leq \epsilon \tag{22}
\end{equation*}
$$

The total number of iterations for the S calls of $S V R G^{\text {heb }}$ is upper bounded by

$$
\begin{aligned}
T_{\text {total }}= & \sum_{s=0}^{S-1}\left(n R+\sum_{r=1}^{R} T_{1}^{(s+1)} 2^{(1-2 \theta)(r-1)}\right)=n R S+\sum_{s=0}^{S-1} T_{1}^{(s+1)} \sum_{r=1}^{R} 2^{(1-2 \theta)(r-1)} \\
& =n R S+\sum_{s=0}^{S-1} T_{1}^{(1)} 2^{(1-2 \theta) s} \sum_{r=1}^{R} 2^{(1-2 \theta)(r-1)} \\
& \leq O\left(n \log \left(\epsilon_{0} / \epsilon\right) \log \left(c / c_{0}\right)+\left(\frac{c}{c_{0}}\right)^{2}\left(\frac{\epsilon_{0}}{\epsilon}\right)^{1-2 \theta} T_{1}^{(1)}\right) \\
& \leq O\left(n \log \left(\epsilon_{0} / \epsilon\right) \log \left(c_{0}\right)+\frac{L c^{2}}{\epsilon^{1-2 \theta}}\right)
\end{aligned}
$$

4 Omitted Proof of Lemma 2

Lemma 4. Let $\bar{x}=\arg \min _{x \in \Omega}\langle\nabla f(\tilde{x}), x-\tilde{x}\rangle+\frac{L}{2}\|x-\tilde{x}\|_{2}^{2}+\Psi(x)$. Assume that $f(x)$ is L-smooth, we have

$$
\begin{equation*}
F(\tilde{x})-F_{*} \geq \frac{L}{2}\|\bar{x}-\tilde{x}\|^{2} \tag{23}
\end{equation*}
$$

Proof. Since $f(x)$ is L-smooth, then we get

$$
\begin{equation*}
f(\bar{x})-f(\tilde{x}) \leq\langle\nabla f(\tilde{x}), \bar{x}-\tilde{x}\rangle+\frac{L}{2}\|\bar{x}-\tilde{x}\|_{2}^{2} \tag{24}
\end{equation*}
$$

By the defination of \bar{x} and the strong convexity of $L(x)=\langle\nabla f(\tilde{x}), x-\tilde{x}\rangle+\frac{L}{2}\|x-\tilde{x}\|_{2}^{2}+\Psi(x)$, we have

$$
\begin{equation*}
\langle\nabla f(\tilde{x}), \bar{x}-\tilde{x}\rangle+\frac{L}{2}\|\bar{x}-\tilde{x}\|_{2}^{2}+\Psi(\bar{x}) \leq \Psi(\tilde{x})-\frac{L}{2}\|\bar{x}-\tilde{x}\|_{2}^{2} \tag{25}
\end{equation*}
$$

Combining inequalities 24, and with the fact that $F(x)=f(x)+\Psi(x)$ yeilds

$$
F(\tilde{x})-F(\bar{x}) \geq \frac{L}{2}\|\bar{x}-\tilde{x}\|^{2}
$$

We complete the proof by using $F(\bar{x}) \geq F_{*}$.

5 Proof of Lemma 1

Lemma 1. Let $\bar{x}=\arg \min _{x \in \Omega}\langle\nabla f(\tilde{x}), x-\tilde{x}\rangle+\frac{L}{2}\|x-\tilde{x}\|_{2}^{2}+\Psi(x)$. Then under the QEB condition of the problem (1), we have

$$
\begin{equation*}
F(\bar{x})-F_{*} \leq\left(L+L_{f}\right)^{2} c^{2}\|\bar{x}-\tilde{x}\|_{2}^{2} \tag{26}
\end{equation*}
$$

Before delving into the detailed analysis, we first present some lemmas.
Lemma 5 (Theorem 1 [1]). For a constant $L>0$ and $y \in \Omega$, if

$$
v=\arg \min _{z \in \Omega}\left\{f(y)+\langle\nabla f(y), z-y\rangle+\frac{L}{2}\|z-y\|_{2}^{2}+\Psi(z)\right\}
$$

then for any $x \in \Omega$,

$$
\begin{equation*}
\left\langle F^{\prime}(v), x-v\right\rangle \geq-\left(L+L_{f}\right)\|v-y\|_{2}\|v-x\|_{2} . \tag{27}
\end{equation*}
$$

Proof. By the first order optimality condition, for any $x \in \Omega$,

$$
\left\langle\nabla f(y)+\Psi^{\prime}(v)+L(v-y), x-v\right\rangle \geq 0
$$

where $\Psi^{\prime}(v) \in \partial \Psi(v)$, the set of subgradient of Ψ at v. Then

$$
\begin{aligned}
\left\langle\nabla f(v)+\Psi^{\prime}(v), v-x\right\rangle & \leq\langle\nabla f(v)-\nabla f(y)-L(v-y), v-x\rangle \\
& =\langle\nabla f(v)-\nabla f(y), v-x\rangle-L\langle v-y, v-x\rangle \\
& \leq\|\nabla f(v)-\nabla f(y)\|_{2}\|v-x\|_{2}+L\|v-y\|_{2}\|v-x\|_{2} \\
& \leq\left(L_{f}+L\right)\|v-y\|_{2}\|v-x\|_{2} .
\end{aligned}
$$

where the last inequality uses the smoothness of f. We complete the proof by using $F^{\prime}(v)=$ $\nabla f(v)+\Psi^{\prime}(v)$.

Lemma 6. Suppose that the problem (1) satisfies the QEB condition (2) and then for any y, v defined in Lemma 5] we have

$$
\begin{equation*}
\left\|v-v_{*}\right\|_{2} \leq\left(L_{f}+L\right) c^{2}\|v-y\|_{2} \tag{28}
\end{equation*}
$$

where v_{*} is the closest optimal solution to v.
Proof. By the proof of Lemma 5, we have

$$
\begin{aligned}
\left(L_{f}+L\right)\|v-y\|_{2}\left\|v-v_{*}\right\|_{2} & \geq\left\langle\nabla f(v)+\Psi^{\prime}(v), v-v_{*}\right\rangle \\
& =\left\langle F^{\prime}(v), v-x_{*}\right\rangle \geq F(v)-F_{*} \geq \frac{1}{c^{2}}\left\|v-v_{*}\right\|_{2}^{2}
\end{aligned}
$$

where the second inequality uses the convexity of F and the last inequality uses the quadratic error bound condition (2).

Lemma 7. ssume that the problem (1) satisfies the $Q E B$. Let $\bar{x}=\arg \min _{x \in \Omega}\langle\nabla f(\tilde{x}), x-\tilde{x}\rangle+$ $\frac{L}{2}\|x-\tilde{x}\|_{2}^{2}+\Psi(x)$. Then we have

$$
\begin{equation*}
F(\bar{x})-F_{*} \leq\left(L+L_{f}\right)^{2} c^{2}\|\bar{x}-\tilde{x}\|_{2}^{2} \tag{29}
\end{equation*}
$$

Proof. Let x_{*} denote the closest optimal solution to $\bar{x}^{(s+1)}$. By Lemma 6 in the supplement, we have

$$
\left\|\bar{x}-x_{*}\right\| \leq\left(L+L_{f}\right) c^{2}\|\bar{x}-\tilde{x}\| .
$$

By Lemma 5 in the supplement and the convexity of F, we have

$$
F(\bar{x})-F_{*} \leq-\left\langle F^{\prime}(\bar{x}), x_{*}-\bar{x}\right\rangle \leq\left(L+L_{f}\right)\|\bar{x}-\tilde{x}\|\left\|\bar{x}-x_{*}\right\| .
$$

Combining the two inequalities above together leads to

$$
F(\bar{x})-F_{*} \leq\left(L+L_{f}\right)^{2} c^{2}\|\bar{x}-\tilde{x}\|^{2}
$$

References

[1] Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical Programming, 140(1):125-161, 2013.
[2] L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization, 24(4):2057-2075, 2014.

